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Abstract

For four types of functions ξ : ]0,∞[→]0,∞[, we characterize the law of two
independent and positive r.v.’s X and Y such that U := ξ(X + Y ) and V :=
ξ(X) − ξ(X + Y ) are independent. The case ξ(x) = 1/x has been treated by Letac
and Weso lowski (2000). As for the three other cases, under the weak assumption
that X and Y have density functions whose logarithm is locally integrable, we prove
that the distribution of (X,Y ) is unique. This leads to Kummer, gamma and beta
distributions. This improves the result obtained in [1] where more regularity was
required from the densities.

Keywords: Gamma distribution; generalized inverse Gaussian distribution; Matsumoto-
Yor property; Kummer distribution; Beta distribution.

1 Introduction

Consider a decreasing and bijective function ξ : ]0,∞[→]0,∞[. If X, Y are non-Dirac,
positive and independent random variables with law µX and µY respectively, we say that
the triplet (ξ, µX, µY ) has the Matsumoto-Yor property if the r.v.’s :

U := ξ(X + Y ), V := ξ(X) − ξ(X + Y ) (1.1)

are independent.
Given ξ, let D(ξ) denote the set of all possible laws of (X, Y ) such that (ξ, µX , µY ) has
the Matsumoto-Yor property. Define Dlog(ξ) (resp. D2(ξ)) as the subset of D(ξ) so that
X and Y have densities whose logarithms are locally integrable over ]0,∞[ (resp. the
densities of X and Y are of class C2).
It is convenient to introduce eα(x) = (eαx − 1)/α for α > 0 and e0(x) = x (this notation
has been wisely given by a referee). Let α, β ≥ 0 and δ > 0. For any x > 0, define y =
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h(α, β, δ)(x) as the unique y > 0 so that eα(x)eβ(y) = δ. Under additional assumptions,
it has been proved in [1] that D2(ξ) is not empty if and only if ξ ∈ F , where F :=
{

h(α, β, δ), α, β ≥ 0, δ > 0
}

. Obviously F = F1 ∪ · · · ∪ F4 where F1 :=
{

δ/x, δ > 0
}

,
F2 :=

{

h(α, 0, δ), α, δ > 0
}

, F3 :=
{

h(0, β, δ), β, δ > 0
}

and F4 :=
{

h(α, β, δ), α, β, δ >
0
}

. Moreover F2,F3 and F4 admit a more explicit form : F2 =
{

δf(αx); α, δ > 0
}

,
F3 =

{

δg(βx); β, δ > 0
}

and F4 =
{

βfα(βx)/; α, β, δ > 0
}

, with

f(x) := h(1, 0, 1)(x) =
1

ex − 1
, x > 0, (1.2)

g(x) = f−1(x) = h(0, 1, 1)(x) = log

(

1 + x

x

)

, x > 0, (1.3)

fδ(x) := h(1, 1, δ)(x) = log

(

ex + δ − 1

ex − 1

)

, x > 0 (δ > 0). (1.4)

1) For p, a, b > 0, consider the gamma distribution γ(λ, a)(dx) =
aλ

Γ(λ)
xλ−1e−ax1(0,∞)(x)dx

and the generalized inverse gaussian distribution GIG(p, a, b) with density proportional to

xp−1e−
1

2
(a2x−1+b2x)1(0,∞)(x). The first class F1 corresponds to the case considered in [4] and

[3]. More precisely, for a = b it has been proved in [4] that if X and Y are two independent

r.v.’s, X ∼ GIG(−p, a, b) and Y ∼ γ(p, b2/2), then U :=
1

X + Y
and V :=

1

X
−

1

X + Y
are independent and U ∼ GIG(−p, b, a), V ∼ γ(p, a2/2). Subsequently, it has been shown
in [3] that, if ξ(x) = 1/x, then D(ξ) equals {GIG(−p, a, b) ⊗ γ(p, b2/2), p, a, b > 0}.
2) The aim of this paper is to prove that, for ξ ∈ Fi, 2 ≤ i ≤ 4, Dlog(ξ) = D2(ξ). (see
Theorems 2.1 and 2.3). This is a first step towards the proof of the following conjecture :
D(ξ) = D2(ξ). Let us recall the description of D2(ξ) given in [1] where ξ ∈ Fi, 2 ≤ i ≤ 4.
a) D2(f) is the family of distributions pX(x)dx⊗ pY (y)dy, with

pX(x) = C∗e−(a+b)x(1 − e−x)−b−1 exp

(

−c
e−x

1 − e−x

)

1{x>0} (1.5)

pY (y) =
Γ(a+ b)

Γ(a)Γ(b)
(1 − e−y)b−1e−ay1{y>0} (1.6)

where a, b, c > 0 and C∗ is the normalizing constant (in the sequel, C∗ stands for the
unique positive constant so that the related function is a density).
Moreover, D2(f

−1) =
{

K(2)(a, b, c) ⊗ γ(b, c), a, b, c > 0
}

, with K(2)(a, b, c) the Kummer
distribution of type 2 :

K(2)(a, b, c)(dx) := C∗xa−1(1 + x)−a−be−cx1(0,∞)(x)dx, a, c > 0, b ∈ R. (1.7)

b) D2(fδ) is the family of distributions pX(x)dx⊗ pY (y)dy, with

pX(x) = C∗ e−(a+b)x(δe−x + 1 − e−x)−λ−b(1 − e−x)λ−11{x>0}, (1.8)

pY (y) =
Γ(a+ b)

Γ(a)Γ(b)
(1 − e−y)b−1e−ay1{y>0}. (1.9)
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The corresponding laws of U and V are

pU(u) = C∗e−u(λ+b)(1 − e−u)a−1(1 + (δ − 1)e−u)−a−b1{u>0}, (1.10)

pV (v) =
Γ(λ+ b)

Γ(λ)Γ(b)
e−λv(1 − e−v)b−1 1{v>0}, (1.11)

where a, b > 0 and λ ∈ R.
3) Note that lim

δ→0
fδ(δx) = g(x). This permits to make a link between D2(g) and {D2(fδ); δ >

0} (see Proposition 2.5 below).
We state the results in Section 2 and prove them in Section 3.

2 The results

1) Consider (U, V ) defined by (1.1) with ξ = f . Then

(U, V ) :=

(

1

eX+Y − 1
,

1

eX − 1
−

1

eX+Y − 1

)

(2.1)

and (X, Y ) =
(

g(U + V ), g(U) − g(U + V )
)

, i.e.

(X, Y ) =

(

log

(

1 +
1

U + V

)

, log

(

1 +
1

U

)

− log

(

1 +
1

U + V

))

. (2.2)

Theorem 2.1 Let (X, Y ) be a couple of independent positive r.v.’s with densities pX and
resp. pY . It is supposed that pX and pY are positive and that log pX and log pY are locally
integrable over ]0,∞[. Suppose that U and V defined by (2.1) are independent, then the
densities of X and Y are given by (1.5), resp. (1.6). Moreover, U ∼ K(2)(a, b, c) and
V ∼ γ(b, c).

Remark 2.2 1. Keeping the notation given in the Introduction, Theorem 2.1 means
that Dlog(f) =

{

pX(x)dx⊗ pY (y)dy, a, b, c > 0
}

.

2. It is clear that (X, Y ) =
(

log(1 + 1/V ′), − logU ′
)

with :

U ′ :=
1 + 1

U+V

1 + 1
U

, V ′ = U + V. (2.3)

It is easy to verify that log pX and log pY are locally integrable on ]0,∞[ if and only if
log pU ′ and log pV ′ are locally integrable on ]0, 1[ and ]0,∞[ respectively. Using usual
calculations, the formulation of Matsumoto-Yor independence property related to
U, V, U ′ and V ′ is the following : suppose that U and V are independent and U ′ and
V ′ defined by (2.3) are independent, then U ′ ∼ Beta(a, b) and V ′ ∼ K(2)(a+b,−b, c)

where a, b, c > 0 and Beta(a, b)(dx) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1−x)b−11{0<x<1}dx. Moreover

U ∼ K(2)(a, b, c) and V ∼ γ(b, c). This gives a characterization of the Kummer
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distributions. Observe that we retrieve by the way the following convolution formula
mentioned in [2] :

K(2)(a, b, c) ∗ γ(b, c) = K(2)(a + b,−b, c). (2.4)

2) Let us deal with ξ = fδ.

Theorem 2.3 Let (X, Y ) be a couple of independent positive r.v.’s with densities pX and
resp. pY such that pX and pY are positive, log pX and log pY are locally integrable over
]0,∞[. If U = fδ(X+Y ) and V = fδ(X)− fδ(X+Y ) are independent, then the densities
of Y and X are given by (1.8) and resp. (1.9). Moreover (1.10) and (1.11) are the
densities of U and resp. V .

It is interesting to introduce new r.v.’s X ′, Y ′, U ′ and V ′ taking their values in ]0, 1[,
via X ′ := e−X , Y ′ := e−Y , U ′ := e−U and V ′ := e−V , see Subsection 2.2 in [1] for
interpretations and details. We easily deduce from definitions :

(U ′, V ′) =

(

1 −X ′Y ′

1 + (δ − 1)X ′Y ′
,

1 −X ′

1 + (δ − 1)X ′

1 + (δ − 1)X ′Y ′

1 −X ′Y ′

)

. (2.5)

Note that log pX and log pY are locally integrable on ]0,∞[ if and only if log pX′ and
log pY ′ are locally integrable on ]0, 1[. In this new setting Theorem 2.3 takes the following
form.

Theorem 2.4 If X ′, Y ′ are independent, if U ′, V ′ are independent and if the densities pX′,
pY ′ are such that log pX′ and log pY ′ are locally integrable over ]0, 1[, then X ′ ∼ βδ(a +
b, λ;−λ− b), and Y ′ ∼ Beta(a, b). Moreover, U ′ ∼ βδ(λ + b, a;−a − b), V ′ ∼ Beta(λ, b),
where

βα(a, b; c)(dx) = kxa−1(1 − x)b−1(αx+ 1 − x)c1(0,1)(x)dx (2.6)

a, b, λ > 0 and k is the normalizing constant.

LetXδ and Yδ be two independent r.v.’s with densities given by (1.8) and (1.9) respectively,
with λ = a0, b = b0 and a = c0/δ.

Proposition 2.5 1)
(

Xδ/δ, Yδ/δ
)

converges in distribution as δ → 0 to (X∗, Y ∗) where

X∗ and Y ∗ are independent, X∗ ∼ K(2)(a0, b0, c0) and Y ∗ ∼ γ(b0, c0).
2) Let Uδ := fδ(Xδ + Yδ) and Vδ := fδ(Xδ) − fδ(Xδ + Yδ). Then (Uδ, Vδ) converges in
distribution as δ → 0 to (U∗, V ∗). Furthermore, (U∗, V ∗) and

(

g(X∗+Y ∗), g(X∗)−g(X∗+
Y ∗)

)

have the same distribution. In particular U∗ and V ∗ are independent with densities
the right-hand side of (1.5) and (1.6) respectively, with a = a0, b = b0 and c = c0.
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3 Proofs

3.1 Proof of Theorem 2.1

Suppose that X and Y are independent, that the functions log pX and log pY are locally
integrable over ]0,∞[, and that U and V are independent. Our approach is direct and is
based on the calculation of the densities of (U, V ) and (X, Y ) using (2.1) and (2.2). This
leads to two functional equations involving pX , pY , pU and pV .

Lemma 3.1 Let us introduce : h := −
pX
pY f ′

, k := −
pU
pV g′

, F := log k, α := log pV , β :=

log pY and H(r) := log

(

h
(

log
(

1 +
2

r

)

)

)

, where r > 0. Then the following functional

equations hold :

H(s) −H(t) = α

(

s(s+ 2)

2(s+ t + 2)

)

− α

(

t(t+ 2)

2(s+ t+ 2)

)

, s, t > 0. (3.7)

F (u) − F (v) = β
(

g(u) − g(u+ v)
)

− β
(

g(v) − g(u+ v)
)

, u, v > 0. (3.8)

Proof of Lemma 3.1
Under the above assumptions, the density function of (U, V ) is

pU(u)pV (v) = pX(g(u+ v)) pY (g(u) − g(u+ v)) g′(u+ v)g′(u) (3.9)

and the one of (X, Y ) is :

pX(z)pY (w) = pU(f(z + w)) pV (f(z) − f(z + w)) f ′(z + w)f ′(z), z, w > 0. (3.10)

Replacing (z, w) by (w, z) in (3.10) leads to :

pX(w)pY (z) = pU
(

f(z + w)
)

pV
(

f(w) − f(z + w)
)

f ′(z + w)f ′(w), z, w > 0. (3.11)

First, we divide the left-hand side of (3.10) by the left-hand side of (3.11) and second, we
take the logarithm, we obtain :

log h(z) − log h(w) = log
(

pV
(

f(z) − f(z + w)
)

)

− log
(

pV
(

f(w) − f(z + w)
)

)

. (3.12)

Set: z = log

(

1 +
2

s

)

and w = log

(

1 +
2

t

)

. Note that z, w > 0 ⇔ s, t > 0. Then

the left-hand side of (3.12) is H(s) − H(t). According to the definition of f , we have
successively :

f(z) =
1

ez − 1
=
s

2
, f(w) =

t

2
, f(z + w) =

st

2(s+ t+ 2)
.

Therefore,

f(z) − f(z + w) =
s(s+ 2)

2(s+ t + 2)
, f(w) − f(z + w) =

t(t + 2)

2(s+ t + 2)
.
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Thus, the right-hand side of (3.12) is α

(

s(s+ 2)

2(s+ t+ 2)

)

− α

(

t(t+ 2)

2(s+ t+ 2)

)

and we get

(3.7).
Relation (3.8) can be proved similarly using (3.9).

�

Lemma 3.2 The functions H,α, F and β are of class C1.

The proof of Lemma 3.2 is postponed in a special subsection 3.2 devoted to this problem.
Denote φ(s, t) :=

(

g(s) − g(s+ t), g(t) − g(s+ t)
)

. Then (3.8) can be written as :

F (s) − F (t) = β
(

φ1(s, t)
)

− β
(

φ2(s, t)
)

(3.13)

where φ = (φ1, φ2). Similarly, according to (3.12), there exists φ so that log h(s) −
log h(t) = α

(

φ1(s, t)
)

− α
(

φ2(s, t)
)

. This leads us to consider functional equations of the
type :

G(s) −G(t) = θ
(

φ1(s, t)
)

− θ
(

φ2(s, t)
)

, s, t > 0.

and the goal is to give sufficient conditions so that θ and G are of class C1. Theorem 2.3
will be proved using the above approach.

Lemma 3.3 There exists N < 0, L ∈ R and M > −1 such that

pV (s) = e2NssMeL, s > 0. (3.14)

Consequently, V ∼ γ(M + 1,−2N).

Proof of Lemma 3.3 According to Lemma 3.2, the functions H and α are C1. Let us
differentiate (3.7) with respect to s. With the notation

ŝ :=
s(s+ 2)

2(s+ t+ 2)
, t̂ :=

t(t+ 2)

2(s+ t+ 2)

we get

H ′(s) = α′(ŝ)

[

s+ 1

s+ t+ 2
−

s(s+ 2)

2(s+ t+ 2)2

]

+ α′(t̂)
t(t+ 2)

2(s+ t+ 2)2
. (3.15)

a) Let t→ 0 in (3.15).
We have ŝ→ s/2 and t̂→ 0 as t→ 0. Writing

α′(t̂)
t(t+ 2)

2(s+ t+ 2)2
= t̂α′(t̂)

1

s+ t + 2

we deduce from (3.15) that
M := lim

u→0
uα′(u) (3.16)

exists and

H ′(s) =
1

2
α′

(s

2

)

+
M

s + 2
. (3.17)
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b) Let us now take t→ ∞ in (3.15).
It is clear that lim

t→∞
ŝ = 0. Therefore, taking the limit t→ ∞ in (3.15) and using identities

α′(ŝ)
s+ 1

s+ t+ 2
=

(

ŝα′(ŝ)
)2(s+ 1)

s(s + 2)

α′(ŝ)
s(s+ 2)

2(s+ t+ 2)2
=

(

ŝα′(ŝ)
) 1

s+ t+ 2

we can conclude that :
2N := lim

u→∞
α′(u) (3.18)

exists and

H ′(s) = N +
M

s
+

M

s+ 2
, s > 0. (3.19)

Combining the above identity and (3.17) leads to :

α′(s) = 2N +
M

s
, s > 0. (3.20)

Recall that α = log(pV ) and pV is a density function. Then, (3.14) follows from integration
of (3.20).

�

Lemma 3.4 There exists A > 0, C ∈ R and B < 0 such that

pY (v) = eC(1 − e−v)AeBv, v > 0. (3.21)

Proof of Lemma 3.4 Taking the u-derivative in (3.8) we get :

F ′(u) = (g′(u)−g′(u+v))β ′(g(u)−g(u+v))+g′(u+v)β ′
(

g(v)−g(u+v)
)

, u, v > 0. (3.22)

a) Let v → ∞ in (3.22).
It is clear that (1.3), lim

x→∞
g′(x) = 0 and lim

x→∞
g(x) = 0 imply:

lim
v→∞

(g′(u) − g′(u+ v))β ′
(

g(u) − g(u+ v)
)

= g′(u)β ′(g(u)).

Let us rewrite the terms in the right-hand side of (3.22), we have

g(v) − g(u+ v) = log

(

1 +
u

v(u+ v + 1)

)

, u, v > 0, (3.23)

g′(u+ v)β ′
(

g(v) − g(u+ v)
)

= A1A2

where

A1 = log

(

1 +
u

v(u+ v + 1)

)

β ′

(

log

(

1 +
u

v(u+ v + 1)

))
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A2 = −
1

(u+ v)(u+ v + 1) log
(

1 + u
v(u+v+1)

) .

Consequently, lim
v→∞

A2 = −
1

u
. Next, taking v → ∞ in (3.22) we deduce that

A := lim
x→0

xβ ′(x) (3.24)

exists and

F ′(u) = g′(u)β ′(g(u)) −
A

u
, u > 0. (3.25)

b) Let v → 0 in (3.22). Obviously,

(

g′(u) − g′(u+ v)
)

β ′
(

g(u) − g(u+ v)
)

= A3A4

where

A3 =
(

g(u) − g(u+ v)
)

β ′
(

g(u) − g(u+ v)
)

, A4 =
g′(u) − g′(u+ v)

g(u) − g(u+ v)
.

As lim
v→0

(g(u) − g(u+ v)) = 0, (3.24) implies that lim
v→0

A3 = A.

A direct calculation shows that :

g′(u) − g′(u+ v) = −
v(v + 2u+ 1)

u(u+ 1)(u+ v)(u+ v + 1)

then, lim
v→0

A4 = −
1 + 2u

u(1 + u)
.

From (3.23), we have lim
v→0

(g(v) − g(u+ v)) = ∞, then, taking v → 0 in (3.22) and using

the above result imply that B := lim
x→∞

β ′(x) exists and

F ′(u) = −
1 + 2u

u(1 + u)
A+Bg′(u), u > 0. (3.26)

c) We now determine β. Using both (3.25) and (3.26) we get :

β ′(g(u)) = −
A

(1 + u)g′(u)
+B, u > 0. (3.27)

Setting v = g(u), we have u = f(v), g′(u) = 1
f ′(v)

and

β ′(v) = B −
Af ′(v)

1 + f(v)
= B +

A

ev − 1
, v > 0.

Recall that β = log pY and pY is a density function. Then integrating the previous identity
gives directly (3.21).

�
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Lemma 3.5 The density functions of U and X are respectively given by :

pU(u) = eL+Ju−A−B+M−1(u+ 1)B−A−1e2Nu u > 0, (3.28)

pX(x) = eC+I22M exp

(

2N

ex − 1

)

e(B−M−1)x(1 − e−x)A−2M−2, x > 0, (3.29)

(I, J ∈ R and N < 0) and this proves that U follows the Kummer distribution K(2)(−A−
B +M, 2A−M + 1,−2N).

Proof of Lemma 3.5
a) It is clear that using the definition of g, (3.26) may be written as

F ′(u) = −(A+B)
1

u
+ (B − A)

1

u+ 1
.

As a consequence,

F (u) = −(A +B) log u+ (B − A) log(u+ 1) + J

where J is a constant. Thus, k(u) = eF (u) = u−A−B(u + 1)B−AeJ . Identity (3.28) follows
from the definition of k (cf Lemma (3.1)) and (3.14).
b) Integrating (3.19) leads to

H(s) = Ns +M log s+M log(s+ 2) + I, s > 0, (3.30)

where I is a constant. Recall that H(s) := log
(

h
(

log
(

1 + 2
s

)

))

, therefore

h

(

log
(

1 +
2

s

)

)

= eIeNssM(s+ 2)M , s > 0. (3.31)

Setting x = log(1 + 2
s
) we have s = 2

ex−1
and

h(x) = eI exp

(

2N

ex − 1

) (

2

ex − 1

)M (

2

ex − 1
+ 2

)M

, x > 0. (3.32)

As a result, by the definition of h (cf Lemma (3.1)) and (3.21)) we easily obtain (3.29).

�

Plugging the expressions of the four densities (3.14), (3.21), (3.28) and (3.29) in (3.10)
we obtain A = M . This ends the proof of Theorem 2.1, with A = M = b − 1, B = −a
and N = −c/2.

�
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3.2 Auxiliary results

In this section we give a theoretical setting which allows to prove that the pairs (H,α)
and (F, β) (resp. (Fδ, β)) introduced in Lemma 3.1 (resp. relation (3.39)) are of class C1.

Lemma 3.6 Let ξ : ]0,∞[→]0,∞[ be a bijection of class C1 such that ξ′(x) < 0 and
consider φ(u, v) :=

(

ξ(u) − ξ(u + v), ξ(v) − ξ(u + v)
)

. Denote Jφ(u, v) the determinant
of the Jacobian of φ. Then

Jφ(u, v) = −ξ′(u)ξ′(v)ξ′(u+ v)
(

ξ1(u+ v) − ξ1(u) − ξ1(v)
)

, u, v > 0 (3.33)

where ξ1(x) := −1/ξ′(x).

Proof of Lemma 3.6 The proof is straightforward.

�

Lemma 3.7 Consider φ = (φ1, φ2) : (0,∞)2 → (0,∞)2 as in Lemma 3.6, satisfying
moreover Jφ(u, v) 6= 0 for any u, v > 0 and :

G(s) −G(t) = θ
(

φ1(s, t)
)

− θ
(

φ2(s, t)
)

, s, t > 0. (3.34)

where either θ or G : (0,∞) → (0,∞) is a locally integrable function over (0,∞).
Then G and θ are C1.

Proof of Lemma 3.7
1) Let y0 > 0. Let 0 < t0 < ξ−1(y0) and s0 := ξ−1

(

ξ(t0) − y0

)

− t0. Then s0 > 0,
φ2(s0, t0) = y0 and Jφ(s0, t0) 6= 0. Let us introduce x0 := φ1(s0, t0). Then, φ(s0, t0) =
(x0, y0). Using the theorem of implicit functions, there exists ψ = (ψ1, ψ2) of class C1

such that ψ(x0, y0) = (s0, t0) and :

φ ◦ ψ(x, y) = (x, y), (x, y) ∈ V (x0) × V (y0) (3.35)

where V (x0) and V (y0) are some neighborhoods of x0 and resp. y0.
In particular, for any y ∈ V (y0) and i = 1, 2, the map ψi,y : x 7→ ψi(x, y) is C1 and
bijective on V (x0).
2) It is clear that (3.35) and (3.34) imply :

G
(

ψ1(x, y)
)

−G
(

ψ2(x, y)
)

= θ(x) − θ(y), (x, y) ∈ V (x0) × V (y0). (3.36)

Consider any x1 < x0 < x2 in V (x0) and suppose that G is locally integrable. We can
integrate (3.36) over (x1, x2) with respect to x:

∫ x2

x1

G
(

ψ1(x, y)
)

dx−

∫ x2

x1

G
(

ψ2(x, y)
)

dx =

∫ x2

x1

θ(x) dx− (x2 − x1)θ(y). (3.37)
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After the change of variable s = ψ1(x, y) in the first integral and the change of variable
t = ψ2(x, y) in the second integral, we get :

∫ ψ1(x2,y)

ψ1(x1,y)

G(s)
(

ψ−1
1,y

)′
(s) ds −

∫ ψ2(x2,y)

ψ2(x1,y)

G(t)
(

ψ−1
2,y

)′
(t) dt

=

∫ x2

x1

θ(x) dx− (x2 − x1)θ(y). (3.38)

Taking absolute values in (3.36) implies that all the previous integrals are finite. The case
where θ is locally integrable can be handled similarly.
Since the left-hand side of (3.38) is continuous in y (because ψ is C1), the function θ is
continuous. From the continuity of θ and (3.34) we deduce that G is continuous (because
φ is continuous). Consequently, the left-hand side of (3.38) is a C1 function in y, hence θ
is C1. We deduce, again from (3.34), that G is C1. Our approach has been inspired by
the one of [5].

�

From now on, we consider the particular cases ξ = f and ξ = g. We have :

ξ1(u+ v) − ξ1(u) − ξ1(v) =

{

(1 − e−u)(1 − e−v)(eu+v + 1) if ξ = f
2uv if ξ = g.

Therefore Jξ(u, v) 6= 0.
Using the definition of h, we have log h = log pX − log pY − log(−f ′). Thus log h is locally
integrable (f ′ is continuous). Then, relations (3.8), (3.12), Lemmas 3.6 and 3.7 imply
Lemma 3.2.

3.3 Proof of Theorem 2.3

Let us assume that X and Y are independent and U and V are independent. Since fδ is
equal to its inverse then X = fδ(U + V ) and Y = fδ(U) − fδ(U + V ). Reasoning as in
the proof of Lemma 3.1, we easily get :

Fδ(u) − Fδ(v) = β
(

fδ(u) − fδ(u+ v)
)

− β
(

fδ(v) − fδ(u+ v)
)

, u, v > 0. (3.39)

where k := −
pU
pV f ′

δ

, Fδ := log k and β := log pY .

With ξ := fδ, we get :

ξ1(u+ v) − ξ1(u) − ξ1(v) =
1

δ
(1 − e−u)(1 − e−v)(eu+v + 1 − δ).

Consequently, we deduce from (3.39) and Lemma 3.7 that β and Fδ are of class C1. Next,
taking the u-derivative in (3.39) leads to :

F ′
δ(u) = (f ′

δ(u)−f ′
δ(u+v))β ′

(

fδ(u)−fδ(u+v)
)

+f ′
δ(u+v)β ′

(

fδ(v)−fδ(u+v)
)

, u, v > 0.
(3.40)
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The sequel of the proof of Theorem 2.3 is very similar to the one of Theorem 2.1. For
this reason we just mention the main steps, without any details.
a) Letting v → ∞ in (3.40) implies that A := lim

x→0
xβ ′(x) exists and

F ′
δ(u) = f ′

δ(u)β ′(fδ(u)) −
A

eu − 1
, u > 0. (3.41)

b) Taking v → 0 in (3.40) leads to

F ′
δ(u) = A

1 − δ − e2u

(eu − 1)(eu − 1 + δ)
+Bf ′

δ(u), u > 0. (3.42)

where B is the real number defined as B := lim
x→∞

β ′(x).

c) Combining (3.41) with (3.42) we deduce :

f ′
δ(u)β ′(fδ(u)) = −A

eu

eu − 1 + δ
+Bf ′

δ(u).

Integrating the above relation and setting v = fδ(u) we obtain :

β(v) = −A log

(

δev

ev − 1

)

+Bv + C, v > 0 (3.43)

where C > 0. Recall that β = log pY , then

pY (v) = eCδ−A(1 − e−v)AeBv, v > 0 (A > −1, B < 0). (3.44)

Note that (X, Y ) =
(

fδ(U +V ), fδ(U)−fδ(U +V )
)

and recall that X, Y are independent
and U, V are independent. Applying (3.44) with Y instead of V gives :

pV (v) = eC
′

δ−A
′

(1 − e−v)A
′

eB
′v v > 0 (A′ > −1, B′ < 0, C ′ ∈ R).

Then the computation of the densities of U and X is straightforward as in the proof of
Theorem 2.1 and we have the desired result with A = b−1, B′ = −λ, B = −a, A′ = b−1.

�
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