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 where more regularity was required from the densities.

Introduction

Consider a decreasing and bijective function ξ : ]0, ∞[→]0, ∞[. If X, Y are non-Dirac, positive and independent random variables with law µ X and µ Y respectively, we say that the triplet (ξ, µ X , µ Y ) has the Matsumoto-Yor property if the r.v.'s :

U := ξ(X + Y ), V := ξ(X) -ξ(X + Y ) (1.1)
are independent. Given ξ, let D(ξ) denote the set of all possible laws of (X, Y ) such that (ξ, µ X , µ Y ) has the Matsumoto-Yor property. Define D log (ξ) (resp. D 2 (ξ)) as the subset of D(ξ) so that X and Y have densities whose logarithms are locally integrable over ]0, ∞[ (resp. the densities of X and Y are of class C 2 ). It is convenient to introduce e α (x) = (e αx -1)/α for α > 0 and e 0 (x) = x (this notation has been wisely given by a referee). Let α, β ≥ 0 and δ > 0. For any x > 0, define y = h(α, β, δ)(x) as the unique y > 0 so that e α (x)e β (y) = δ. Under additional assumptions, it has been proved in [START_REF] Koudou | Independence properties of the Matsumoto-Yor type[END_REF] that D 2 (ξ) is not empty if and only if ξ ∈ F , where F := h(α, β, δ), α, β ≥ 0, δ > 0 . Obviously F = F 1 ∪ • • • ∪ F 4 where F 1 := δ/x, δ > 0 , F 2 := h(α, 0, δ), α, δ > 0 , F 3 := h(0, β, δ), β, δ > 0 and F 4 := h(α, β, δ), α, β, δ > 0 . Moreover F 2 , F 3 and F 4 admit a more explicit form : F 2 = δf (αx); α, δ > 0 , F 3 = δg(βx); β, δ > 0 and F 4 = βf α (βx)/; α, β, δ > 0 , with f (x) := h(1, 0, 1)(x) = 1 e x -1 , x > 0, (1.2)

g(x) = f -1 (x) = h(0, 1, 1)(x) = log 1 + x x , x > 0, (1.3) 
f δ (x) := h(1, 1, δ)(x) = log e x + δ -1 e x -1
, x > 0 (δ > 0).

(1.4)

1) For p, a, b > 0, consider the gamma distribution γ(λ, a)(dx) = a λ Γ(λ) x λ-1 e -ax 1 (0,∞) (x)dx
and the generalized inverse gaussian distribution GIG(p, a, b) with density proportional to

x p-1 e -1 2 (a 2 x -1 +b 2 x) 1 (0,∞) (x).
The first class F 1 corresponds to the case considered in [START_REF] Matsumoto | An analogue of Pitman's 2M -X theorem for exponential Wiener functional, Part II: the role of the generalized inverse Gaussian laws[END_REF] and [START_REF] Letac | An independence property for the product of GIG and gamma laws[END_REF]. More precisely, for a = b it has been proved in [START_REF] Matsumoto | An analogue of Pitman's 2M -X theorem for exponential Wiener functional, Part II: the role of the generalized inverse Gaussian laws[END_REF] that if X and Y are two independent

r.v.'s, X ∼ GIG(-p, a, b) and Y ∼ γ(p, b 2 /2), then U := 1 X + Y and V := 1 X - 1 X + Y are independent and U ∼ GIG(-p, b, a), V ∼ γ(p, a 2 /2). Subsequently, it has been shown in [3] that, if ξ(x) = 1/x, then D(ξ) equals {GIG(-p, a, b) ⊗ γ(p, b 2 /2), p, a, b > 0}.
2) The aim of this paper is to prove that, for ξ ∈ F i , 2 ≤ i ≤ 4, D log (ξ) = D 2 (ξ). (see Theorems 2.1 and 2.3). This is a first step towards the proof of the following conjecture : D(ξ) = D 2 (ξ). Let us recall the description of D 2 (ξ) given in [START_REF] Koudou | Independence properties of the Matsumoto-Yor type[END_REF] where

ξ ∈ F i , 2 ≤ i ≤ 4. a) D 2 (f ) is the family of distributions p X (x)dx ⊗ p Y (y)dy, with p X (x) = C * e -(a+b)x (1 -e -x ) -b-1 exp -c e -x 1 -e -x 1 {x>0} (1.5) p Y (y) = Γ(a + b) Γ(a)Γ(b) (1 -e -y ) b-1 e -ay 1 {y>0} (1.6)
where a, b, c > 0 and C * is the normalizing constant (in the sequel, C * stands for the unique positive constant so that the related function is a density). Moreover,

D 2 (f -1 ) = K (2) (a, b, c) ⊗ γ(b, c), a, b, c > 0 , with K (2) (a, b, c) the Kummer distribution of type 2 : K (2) (a, b, c)(dx) := C * x a-1 (1 + x) -a-b e -cx 1 (0,∞) (x)dx, a, c > 0, b ∈ R. (1.7) b) D 2 (f δ ) is the family of distributions p X (x)dx ⊗ p Y (y)dy, with p X (x) = C * e -(a+b)x (δe -x + 1 -e -x ) -λ-b (1 -e -x ) λ-1 1 {x>0} , (1.8) p Y (y) = Γ(a + b) Γ(a)Γ(b) (1 -e -y ) b-1 e -ay 1 {y>0} . (1.9)
The corresponding laws of U and V are

p U (u) = C * e -u(λ+b) (1 -e -u ) a-1 (1 + (δ -1)e -u ) -a-b 1 {u>0} , (1.10) p V (v) = Γ(λ + b) Γ(λ)Γ(b) e -λv (1 -e -v ) b-1 1 {v>0} , (1.11)
where a, b > 0 and λ ∈ R.

3) Note that lim δ→0 f δ (δx) = g(x). This permits to make a link between D 2 (g) and {D 2 (f δ ); δ > 0} (see Proposition 2.5 below).

We state the results in Section 2 and prove them in Section 3.

2 The results 1) Consider (U, V ) defined by (1.1) with ξ = f . Then

(U, V ) := 1 e X+Y -1 , 1 e X -1 - 1 e X+Y -1 (2.1)
and (X, 

Y ) = g(U + V ), g(U) -g(U + V ) , i.e. (X, Y ) = log 1 + 1 U + V , log 1 + 1 U -log 1 + 1 U + V . ( 2 
(f ) = p X (x)dx ⊗ p Y (y)dy, a, b, c > 0 . 2. It is clear that (X, Y ) = log(1 + 1/V ′ ), -log U ′ with : U ′ := 1 + 1 U +V 1 + 1 U , V ′ = U + V. (2.
3)

It is easy to verify that log p X and log p Y are locally integrable on ]0, ∞[ if and only if log p U ′ and log p V ′ are locally integrable on ]0, 1[ and ]0, ∞[ respectively. Using usual calculations, the formulation of Matsumoto-Yor independence property related to U, V, U ′ and V ′ is the following : suppose that U and V are independent and U ′ and V ′ defined by (2.3) are independent, then

U ′ ∼ Beta(a, b) and V ′ ∼ K (2) (a+b, -b, c) where a, b, c > 0 and Beta(a, b)(dx) = Γ(a + b) Γ(a)Γ(b) x a-1 (1 -x) b-1 1 {0<x<1} dx. Moreover U ∼ K (2) (a, b, c) and V ∼ γ(b, c
). This gives a characterization of the Kummer distributions. Observe that we retrieve by the way the following convolution formula mentioned in [START_REF] Letac | The random continued fractions of Dyson and their extension[END_REF] :

K (2) (a, b, c) * γ(b, c) = K (2) (a + b, -b, c). (2.4)
2) Let us deal with ξ = f δ .

Theorem 2.3 Let (X, Y ) be a couple of independent positive r.v.'s with densities p X and resp. p Y such that p X and p Y are positive, log p X and log p Y are locally integrable over ]0, ∞[.

If U = f δ (X + Y ) and V = f δ (X) -f δ (X + Y ) are independent,
then the densities of Y and X are given by (1.8) and resp. (1.9). Moreover (1.10) and (1.11) are the densities of U and resp. V . [START_REF] Koudou | Independence properties of the Matsumoto-Yor type[END_REF] for interpretations and details. We easily deduce from definitions : 

It is interesting to introduce new r.v.'s X ′ , Y ′ , U ′ and V ′ taking their values in ]0, 1[, via X ′ := e -X , Y ′ := e -Y , U ′ := e -U and V ′ := e -V , see Subsection 2.2 in
(U ′ , V ′ ) = 1 -X ′ Y ′ 1 + (δ -1)X ′ Y ′ , 1 -X ′ 1 + (δ -1)X ′ 1 + (δ -1)X ′ Y ′ 1 -X ′ Y ′ . ( 2 
Y ′ ∼ Beta(a, b). Moreover, U ′ ∼ β δ (λ + b, a; -a -b), V ′ ∼ Beta(λ, b), where β α (a, b; c)(dx) = kx a-1 (1 -x) b-1 (αx + 1 -x) c 1 (0,1) (x)dx (2.6)
a, b, λ > 0 and k is the normalizing constant.

Let X δ and Y δ be two independent r.v.'s with densities given by (1.8) and (1.9) respectively, with λ = a 0 , b = b 0 and a = c 0 /δ.

Proposition 2.5 1) X δ /δ, Y δ /δ converges in distribution as δ → 0 to (X * , Y * ) where X * and Y * are independent, X * ∼ K (2) (a 0 , b 0 , c 0 ) and Y * ∼ γ(b 0 , c 0 ). 2) Let U δ := f δ (X δ + Y δ ) and V δ := f δ (X δ ) -f δ (X δ + Y δ ). Then (U δ , V δ ) converges in distribution as δ → 0 to (U * , V * ). Furthermore, (U * , V * ) and g(X * +Y * ), g(X * )-g(X * + Y *
) have the same distribution. In particular U * and V * are independent with densities the right-hand side of (1.5) and (1.6) respectively, with a = a 0 , b = b 0 and c = c 0 .

3 Proofs

Proof of Theorem 2.1

Suppose that X and Y are independent, that the functions log p X and log p Y are locally integrable over ]0, ∞[, and that U and V are independent. Our approach is direct and is based on the calculation of the densities of (U, V ) and (X, Y ) using (2.1) and (2.2). This leads to two functional equations involving p X , p Y , p U and p V .

Lemma 3.1 Let us introduce : h := - p X p Y f ′ , k := - p U p V g ′ , F := log k, α := log p V , β := log p Y and H(r) := log h log 1 + 2 r
, where r > 0. Then the following functional equations hold :

H(s) -H(t) = α s(s + 2) 2(s + t + 2) -α t(t + 2) 2(s + t + 2)
, s, t > 0.

(3.7)

F (u) -F (v) = β g(u) -g(u + v) -β g(v) -g(u + v) , u, v > 0. (3.8)
Proof of Lemma 3.1 Under the above assumptions, the density function of (U, V ) is

p U (u)p V (v) = p X (g(u + v)) p Y (g(u) -g(u + v)) g ′ (u + v)g ′ (u) (3.9)
and the one of (X, Y ) is :

p X (z)p Y (w) = p U (f (z + w)) p V (f (z) -f (z + w)) f ′ (z + w)f ′ (z), z, w > 0. (3.10)
Replacing (z, w) by (w, z) in (3.10) leads to :

p X (w)p Y (z) = p U f (z + w) p V f (w) -f (z + w) f ′ (z + w)f ′ (w), z, w > 0. (3.11)
First, we divide the left-hand side of (3.10) by the left-hand side of (3.11) and second, we take the logarithm, we obtain :

log h(z) -log h(w) = log p V f (z) -f (z + w) -log p V f (w) -f (z + w) . (3.12) Set: z = log 1 + 2 s and w = log 1 + 2 t . Note that z, w > 0 ⇔ s, t > 0.
Then the left-hand side of (3.12) is H(s) -H(t). According to the definition of f , we have successively :

f (z) = 1 e z -1 = s 2 , f (w) = t 2 , f (z + w) = st 2(s + t + 2)
.

Therefore,

f (z) -f (z + w) = s(s + 2) 2(s + t + 2) , f (w) -f (z + w) = t(t + 2) 2(s + t + 2)
.

Thus, the right-hand side of (3.12) is α

s(s + 2) 2(s + t + 2) -α t(t + 2) 2(s + t + 2)
and we get (3.7). Relation (3.8) can be proved similarly using (3.9).

Lemma 3.2

The functions H, α, F and β are of class C 1 .

The proof of Lemma 3.2 is postponed in a special subsection 3.2 devoted to this problem. Denote φ(s, t) := g(s)g(s + t), g(t)g(s + t) . Then (3.8) can be written as :

F (s) -F (t) = β φ 1 (s, t) -β φ 2 (s, t) (3.13) 
where φ = (φ 1 , φ 2 ). Similarly, according to (3.12), there exists φ so that log h(s)log h(t) = α φ 1 (s, t)α φ 2 (s, t) . This leads us to consider functional equations of the type :

G(s) -G(t) = θ φ 1 (s, t) -θ φ 2 (s, t) , s, t > 0.
and the goal is to give sufficient conditions so that θ and G are of class C 1 . Theorem 2.3 will be proved using the above approach.

Lemma 3.3 There exists N < 0, L ∈ R and M > -1 such that

p V (s) = e 2N s s M e L , s > 0. (3.14)
Consequently, V ∼ γ(M + 1, -2N).

Proof of Lemma 3. 

H ′ (s) = α ′ (ŝ) s + 1 s + t + 2 - s(s + 2) 2(s + t + 2) 2 + α ′ ( t) t(t + 2) 2(s + t + 2) 2 . ( 3 
α ′ (ŝ) s(s + 2) 2(s + t + 2) 2 = ŝα ′ (ŝ) 1 s + t + 2
we can conclude that :

2N := lim u→∞ α ′ (u) (3.18)
exists and

H ′ (s) = N + M s + M s + 2 , s > 0. (3.19)
Combining the above identity and (3.17) leads to :

α ′ (s) = 2N + M s , s > 0. (3.20)
Recall that α = log(p V ) and p V is a density function. Then, (3.14) follows from integration of (3.20). 

F ′ (u) = (g ′ (u)-g ′ (u+v))β ′ (g(u)-g(u+v))+g ′ (u+v)β ′ g(v)-g(u+v) , u, v > 0. (3.22) a) Let v → ∞ in (3.22). It is clear that (1.3), lim x→∞ g ′ (x) = 0 and lim x→∞ g(x) = 0 imply: lim v→∞ (g ′ (u) -g ′ (u + v))β ′ g(u) -g(u + v) = g ′ (u)β ′ (g(u)).
Let us rewrite the terms in the right-hand side of (3.22), we have

g(v) -g(u + v) = log 1 + u v(u + v + 1)
, u, v > 0, (3.23)

g ′ (u + v)β ′ g(v) -g(u + v) = A 1 A 2
where

A 1 = log 1 + u v(u + v + 1) β ′ log 1 + u v(u + v + 1) A 2 = - 1 (u + v)(u + v + 1) log 1 + u v(u+v+1) . Consequently, lim v→∞ A 2 = - 1 u . Next, taking v → ∞ in (3.

22) we deduce that

A := lim x→0 xβ ′ (x) (3.24)
exists and

F ′ (u) = g ′ (u)β ′ (g(u)) - A u , u > 0. (3.25) b) Let v → 0 in (3.22). Obviously, g ′ (u) -g ′ (u + v) β ′ g(u) -g(u + v) = A 3 A 4
where

A 3 = g(u) -g(u + v) β ′ g(u) -g(u + v) , A 4 = g ′ (u) -g ′ (u + v) g(u) -g(u + v) .
As lim

v→0 (g(u) -g(u + v)) = 0, (3.24) implies that lim v→0 A 3 = A. A direct calculation shows that : g ′ (u) -g ′ (u + v) = - v(v + 2u + 1) u(u + 1)(u + v)(u + v + 1) then, lim v→0 A 4 = - 1 + 2u u(1 + u) .
From (3.23), we have lim 

v→0 (g(v) -g(u + v)) = ∞,
F ′ (u) = - 1 + 2u u(1 + u) A + Bg ′ (u), u > 0. ( 3 
β ′ (g(u)) = - A (1 + u)g ′ (u) + B, u > 0. (3.27) Setting v = g(u), we have u = f (v), g ′ (u) = 1 f ′ (v) and β ′ (v) = B - Af ′ (v) 1 + f (v) = B + A e v -1 , v > 0.
Recall that β = log p Y and p Y is a density function. Then integrating the previous identity gives directly (3.21).

Lemma 3.5 The density functions of U and X are respectively given by :

p U (u) = e L+J u -A-B+M -1 (u + 1) B-A-1 e 2N u u > 0, (3.28) p X (x) = e C+I 2 2M exp 2N e x -1 e (B-M -1)x (1 -e -x ) A-2M -2 , x > 0, (3.29) 
(I, J ∈ R and N < 0) and this proves that U follows the Kummer distribution

K (2) (-A - B + M, 2A -M + 1, -2N).
Proof of Lemma 3.5 a) It is clear that using the definition of g, (3.26) may be written as

F ′ (u) = -(A + B) 1 u + (B -A) 1 u + 1 .
As a consequence,

F (u) = -(A + B) log u + (B -A) log(u + 1) + J
where J is a constant. Thus, k(u) = e F (u) = u -A-B (u + 1) B-A e J . Identity 

Auxiliary results

In this section we give a theoretical setting which allows to prove that the pairs (H, α) and (F, β) (resp. (F δ , β)) introduced in Lemma 3.1 (resp. relation (3.39)) are of class C 1 .

Lemma 3.6 Let ξ : ]0, ∞[→]0, ∞[ be a bijection of class C 1 such that ξ ′ (x) < 0 and consider φ(u, v) := ξ(u)ξ(u + v), ξ(v)ξ(u + v) . Denote J φ (u, v) the determinant of the Jacobian of φ. Then

J φ (u, v) = -ξ ′ (u)ξ ′ (v)ξ ′ (u + v) ξ 1 (u + v) -ξ 1 (u) -ξ 1 (v) , u, v > 0 (3.33)
where ξ 1 (x) := -1/ξ ′ (x).

Proof of Lemma 3.6 The proof is straightforward.

Lemma 3.7 Consider φ = (φ 1 , φ 2 ) : (0, ∞) 2 → (0, ∞) 2 as in Lemma 3.6, satisfying moreover J φ (u, v) = 0 for any u, v > 0 and :

G(s) -G(t) = θ φ 1 (s, t) -θ φ 2 (s, t) , s, t > 0. (3.34)
where either θ or G : (0, ∞) → (0, ∞) is a locally integrable function over (0, ∞).

Then G and θ are C 1 .

Proof of Lemma 3.7 1) Let y 0 > 0. Let 0 < t 0 < ξ -1 (y 0 ) and s 0 := ξ -1 ξ(t 0 )y 0t 0 . Then s 0 > 0, φ 2 (s 0 , t 0 ) = y 0 and J φ (s 0 , t 0 ) = 0. Let us introduce x 0 := φ 1 (s 0 , t 0 ). Then, φ(s 0 , t 0 ) = (x 0 , y 0 ). Using the theorem of implicit functions, there exists ψ = (ψ 1 , ψ 2 ) of class C 1 such that ψ(x 0 , y 0 ) = (s 0 , t 0 ) and :

φ • ψ(x, y) = (x, y), (x, y) ∈ V (x 0 ) × V (y 0 ) (3.35)
where V (x 0 ) and V (y 0 ) are some neighborhoods of x 0 and resp. y 0 .

In particular, for any y ∈ V (y 0 ) and i = 1, 2, the map ψ i,y : x → ψ i (x, y) is C 1 and bijective on V (x 0 ).

2) It is clear that (3.35) and (3.34) imply :

G ψ 1 (x, y) -G ψ 2 (x, y) = θ(x) -θ(y), (x, y) ∈ V (x 0 ) × V (y 0 ). ( 3 

.36)

Consider any x 1 < x 0 < x 2 in V (x 0 ) and suppose that G is locally integrable. We can integrate (3.36) over (x 1 , x 2 ) with respect to x:

x 2 x 1 G ψ 1 (x, y) dx - x 2 x 1 G ψ 2 (x, y) dx = x 2 x 1 θ(x) dx -(x 2 -x 1 )θ(y). ( 3 

.37)

After the change of variable s = ψ 1 (x, y) in the first integral and the change of variable t = ψ 2 (x, y) in the second integral, we get :

ψ 1 (x 2 ,y) ψ 1 (x 1 ,y) G(s) ψ -1 1,y ′ (s) ds - ψ 2 (x 2 ,y) ψ 2 (x 1 ,y) G(t) ψ -1 2,y ′ (t) dt = x 2 x 1 θ(x) dx -(x 2 -x 1 )θ(y). (3.38)
Taking absolute values in (3.36) implies that all the previous integrals are finite. The case where θ is locally integrable can be handled similarly.

Since the left-hand side of (3.38) is continuous in y (because ψ is C 1 ), the function θ is continuous. From the continuity of θ and (3.34) we deduce that G is continuous (because φ is continuous). Consequently, the left-hand side of (3.38) is a C 1 function in y, hence θ is C 1 . We deduce, again from (3.34), that G is C 1 . Our approach has been inspired by the one of [START_REF] Weso Lowski | On a functional equation related to the Matsumoto-Yor property[END_REF].

From now on, we consider the particular cases ξ = f and ξ = g. We have :

ξ 1 (u + v) -ξ 1 (u) -ξ 1 (v) = (1 -e -u )(1 -e -v )(e u+v + 1) if ξ = f 2uv if ξ = g.
Therefore J ξ (u, v) = 0. Using the definition of h, we have log h = log p X -log p Y -log(-f ′ ). Thus log h is locally integrable (f ′ is continuous). Then, relations (3.8), (3.12), Lemmas 3.6 and 3.7 imply Lemma 3.2.

Proof of Theorem 2.3

Let us assume that X and Y are independent and U and V are independent. Since f δ is equal to its inverse then X = f δ (U + V ) and Y = f δ (U)f δ (U + V ). Reasoning as in the proof of Lemma 3.1, we easily get : With ξ := f δ , we get :

F δ (u) -F δ (v) = β f δ (u) -f δ (u + v) -β f δ (v) -f δ (u + v) , u, v > 0. ( 3 
ξ 1 (u + v) -ξ 1 (u) -ξ 1 (v) = 1 δ (1 -e -u )(1 -e -v
)(e u+v + 1δ).

Consequently, we deduce from (3.39) and Lemma 3.7 that β and F δ are of class C 1 . Next, taking the u-derivative in (3.39) leads to :

F ′ δ (u) = (f ′ δ (u) -f ′ δ (u + v))β ′ f δ (u) -f δ (u + v) + f ′ δ (u + v)β ′ f δ (v) -f δ (u + v) , u, v > 0.
(3.40)

Lemma 3 . 4

 34 There exists A > 0, C ∈ R and B < 0 such that p Y (v) = e C (1e -v ) A e Bv , v > 0. (3.21) Proof of Lemma 3.4 Taking the u-derivative in (3.8) we get :

  then, taking v → 0 in (3.22) and using the above result imply that B := lim x→∞ β ′ (x) exists and

  .26) c) We now determine β. Using both (3.25) and (3.26) we get :

  (3.28) follows from the definition of k (cf Lemma (3.1)) and (3.14). b) Integrating (3.19) leads to H(s) = Ns + M log s + M log(s + 2) + I, s > 0, (3.30) where I is a constant. Recall that H(s) := log h log 1 + 2 e N s s M (s + 2) M , s > 0. (3.31) Setting x = log(1 + 2 s ) we have s = 2 e x -1 and h(x) = e I exp 2N e x -, by the definition of h (cf Lemma (3.1)) and (3.21)) we easily obtain (3.29). Plugging the expressions of the four densities (3.14), (3.21), (3.28) and (3.29) in (3.10) we obtain A = M. This ends the proof of Theorem 2.1, with A = M = b -1, B = -a and N = -c/2.

  .39)wherek := -p U p V f ′ δ , F δ := log k and β := log p Y .

The sequel of the proof of Theorem 2.3 is very similar to the one of Theorem 2.1. For this reason we just mention the main steps, without any details. a) Letting v → ∞ in (3.40) implies that A := lim x→0 xβ ′ (x) exists and

where B is the real number defined as B := lim

c) Combining (3.41) with (3.42) we deduce :

Integrating the above relation and setting v = f δ (u) we obtain :

where

) and recall that X, Y are independent and U, V are independent. Applying (3.44) with Y instead of V gives :

Then the computation of the densities of U and X is straightforward as in the proof of Theorem 2.1 and we have the desired result with A = b -1, B ′ = -λ, B = -a, A ′ = b -1.