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Introduction

Let (Y n ) n≥1 be independent random matrices taking values in G := GL d (R), d ≥ 2 (the group of invertible d-dimensional real matrices), with common distribution µ. Let

• be the euclidean norm on R d . We wish to study the asymptotic behaviour of (log Y n • • • Y 1 ) n≥1 , where for every g ∈ GL d (R), g := sup x, x =1 gx .

We shall say that µ has a (polynomial) moment of order p ≥ 1, if

G (log N (g)) p µ(dg) < ∞ , (1) 
where N (g) := max( g , g -1 ).

It follows from Furstenberg and Kesten [START_REF] Furstenberg | Products of random matrices[END_REF] that, as soon as µ admits a moment of order 1,

lim n→+∞ 1 n log Y n • • • Y 1 = λ µ P-a.s. ,
where

λ µ := lim n→+∞ n -1 E(log Y n • • • Y 1 )
is the so-called first Lyapounov exponent.

If moreover, no proper subspace of R d is invariant by the closed semi-group generated by the support of µ, then (see for instance Proposition 7.2 page 72 in [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]), for every x ∈ R d -{0}, [START_REF] Bahr | Inequalities for the r-th absolute moment of a sum of random variables, 1 ≤ r ≤ 2[END_REF] lim

n→+∞ 1 n log Y n • • • Y 1 x = λ µ P-a.s. ,
Our goal is to study the rate in the above convergences, assuming higher moments (and stronger algebraic conditions), as well as the Central Limit Theorem (CLT) or the Law of the Iterated Logarithm (LIL), and the rates of convergence in those limit theorems.

The CLT question benefited from several papers under an exponential moment, i.e.

elegant but somewhat tricky argument, they provide an explicit martingale-coboundary decomposition adapted to the problem. Moreover, as intermediary steps, they proved a result about complete convergence as well as an integrability property with respect to the invariant probability measure on X := P d-1 (R) (the projective space of R d ), see the next section for further details and definitions. Let us mention here that most of the results of [START_REF] Benoist | Central limit theorem for linear groups[END_REF] hold for linear groups on any local field.

Rates in the CLT under polynomial moments have been announced in Jan [START_REF] Jan | Vitesse de convergence dans le TCL pour des chaînes de Markov et certains processus associés des systèmes dynamiques[END_REF] (with proof in [START_REF] Jan | Vitesse de convergence dans le TCL pour des processus associés à des systèmes dynamiques ou des produits de matrices aléatoires[END_REF]) and the CLT has been proved in the PhD thesis of the third author [START_REF] Jan | Vitesse de convergence dans le TCL pour des processus associés à des systèmes dynamiques ou des produits de matrices aléatoires[END_REF] under a moment of order 2 + ε, for any ε > 0. His method of proof is also based on martingale approximation, but relies on estimates that seem more suitable to obtain precise rates of convergence (in the CLT and the strong invariance principle) than the approach of Benoist and Quint, at least in the case of GL d (R).

In Section 2 below, we give our main results for the sequence (log

Y n • • • Y 1 x ) n≥0
and any starting point x ∈ R d -{0}. We follow the approach described in Jan's PhD thesis [START_REF] Jan | Vitesse de convergence dans le TCL pour des processus associés à des systèmes dynamiques ou des produits de matrices aléatoires[END_REF] (refining some of his computations), combined with recent or new results about rates in the strong invariance principle and rates in the CLT (see Section 3). At the very end of the paper (cf. Section 8), we also borrow one main argument from Benoist and Quint [START_REF] Benoist | Central limit theorem for linear groups[END_REF], to prove that the rates of convergence in the CLT apply to the sequence (log Y n • • • Y 1 ) n≥1 , and to obtain some results for the sequence of matrix coefficients (log | Y n • • • Y 1 x, y |) n≥1 . In the same final section, we also briefly explain how to weaken the assumption of proximality (see the next section for the definition) by using another argument from [START_REF] Benoist | Central limit theorem for linear groups[END_REF].

Results

Let G := GL d (R), d ≥ 2, endowed with its Borel σ-algebra B(G). Let X := P d-1 (R) be the projective space of R d -{0}, and write x as the projection of x ∈ R d -{0} to X. Then G acts continuously on X in a natural way : g • x = gx.

Let µ be a probability measure on B(G). Denote by Γ µ the closed semi-group generated by the support of µ. Assume that µ is strongly irreducible, i.e. that no proper finite union of subspaces of R d are invariant by Γ µ and that it is proximal, i.e. that there exists a matrix in Γ µ admiting a unique (with multiplicity one) eigenvalue with maximum modulus.

For such a measure µ, it is known that there exists a unique invariant measure ν on B(X) (see for instance Theorem 3.1 of [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]) in the following sense: for any continuous and bounded function h from X to R

X h(x)ν(dx) = G X h(g • x)µ(dg)ν(dx) .
We consider the left random walk of law µ on X. Let us recall its construction.

Let Ω := X × G N * and F := B(X) ⊗ B(G) ⊗N * , where N * = {1, 2, . . .}. For every probability measure τ on B(X), we define P τ := τ ⊗ µ ⊗N * . As usual we note P x := P δ x , for every x ∈ X. Define the coordinate process (Y n ) n∈N (N = {0, 1, . . .}), i.e. Y 0 ((x, g 1 , g 2 , . . .)) = x and for every n ∈ N * , Y n ((x, g 1 , g 2 , . . .)) = g n , and then F n , the σ-algebra generated by {Y 0 , . . . , Y n }.

Finally, define a measurable transformation η on Ω by η((x, g 1 , g 2 , . . .)) = (g 1 • x, g 2 , g 3 , . . .) .

The left random walk of law µ is the process (W n ) n∈N , defined by W 0 := Y 0 and for every n ∈ N * , W n = W 0 • η n . Hence, it is a Markov chain defined by the recursive equation

W n = Y n W n-1 for n ∈ N * .
Recall that for every probability measure P τ , Y 0 is a random variable with law τ independent from the sequence (Y n ) n∈N * of independent and identically distributed (iid) random variables. Recall also that P ν is η-invariant hence, under P ν , (W n ) n∈N is identically distributed with common marginal distribution ν. Moreover, since ν is the unique µ-invariant probability, then (Ω, F, P ν , η) is ergodic (see e.g. Proposition 1.14 page 36 of [START_REF] Benoist | Random walks on reductive groups manuscript[END_REF]).

We want to study the process (X n ) n∈N * given by X n := σ(Y n , W n-1 ) for every n ∈ N * , where for every g ∈ G and every x ∈ X,

σ(g, x) = log g • x x .
Let us denote A 0 = Id and, for every

n ∈ N * , A n := Y n • • • Y 1 , so that X n = σ(Y n , A n-1 W 0 ). Let S n := X 1 + • • • + X n , and note that S n = log A n W * 0 , where W * 0 is an element of R d such that W * 0 = W 0 and W * 0 = 1. Finally, let B n = S [nt] -[nt]λ µ √ n - (nt -[nt]) √ n (X [nt]+1 -λ µ ), t ∈ [0, 1]
be the partial sum process with values in the space C([0, 1]) of continuous functions on [0, 1] equipped with the uniform metric.

As usual in the Markov chain setting, we denote by X n,x the random variable X n for which W 0 = x. Let also S n,x be the corresponding partial sum, and B n,x be the corresponding process. Note that S n,x = log A n x if x = 1.

Note that the distribution of the sequence (X n,x ) n∈N * is the same for any probability P τ on Ω (in fact (X n,x ) n∈N * is a function of x and (Y n ) n∈N * , so that its distribution depends only on x and µ). Hence, we shall write "P-almost surely" (P-a.s.) instead of "P τ -almost surely", and E(•) instead of E τ (•), for all the quantities involving the sequence (X n,x ) n∈N * (and more generally for all the quantities involving only the sequence (Y n ) n∈N * ). With these notations, for any positive and measurable function f ,

E(f (X n,x )) = E x (f (X n )) = E(f (X n )|W 0 = x) .
Our study will only require polynomial moments for µ. As already mentionned, when µ has a moment of order 1, the strong law of large numbers (2) holds for any starting point. Moreover, one can identify the limit λ µ via the ergodic theorem for strictly stationary sequences. It follows that, for every x ∈ X,

S n,x n -→ n→+∞ λ µ = G X
σ(g, u)µ(dg)ν(du) P-a.s., see for instance Corollary 3.4 page 54 of [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF] or Theorem 3.28 of [START_REF] Benoist | Random walks on reductive groups manuscript[END_REF]. Our goal is to strengthen that strong law of large numbers when higher moments are assumed.

As already mentionned, in the next theorem, item (ii) has been obtained by Benoist and Quint [START_REF] Benoist | Central limit theorem for linear groups[END_REF]. As observed in the introduction of [START_REF] Benoist | Central limit theorem for linear groups[END_REF], their method also allow to prove item (ii) of the next theorem when p = 2.

Theorem 1. Let µ be a proximal and strongly irreducible probability measure on B(G).

Assume that µ has a moment of order p ≥ 1.

(

i) If 1 ≤ p < 2 then, for every x ∈ X, S n,x -nλ µ n 1/p -→ n→+∞ 0 P-a.s.. (ii) If p = 2 then n -1 E ν ((S n -nλ µ ) 2 ) -→ σ 2
as n → ∞, and, for any continuous and bounded function ϕ from C([0, 1]) (equipped with the sup norm) to R,

lim n→∞ sup x∈X E(ϕ(B n,x )) -ϕ(σ̟)w(d̟) = 0 ,
where w is the distribution of a standard Wiener process. (iii) If 2 ≤ p < 4 then, for every (fixed) x ∈ X, one can redefine (S n,x ) n≥1 without changing its distribution on a (richer) probability space on which there exists iid random variables (W n ) n≥1 with common distribution N (0, σ 2 ), such that,

S n,x -nλ µ - n i=1 W i = o(r n ) P-a.s. ,
where r n = √ n log log n when p = 2 and r n = n 1/p √ log n when 2 < p < 4. (iv) If p = 4 then, for every (fixed) x ∈ X, one can redefine (S n,x ) n≥1 without changing its distribution on a (richer) probability space on which there exists iid random variables (W n ) n≥1 with common distribution N (0, σ 2 ), such that,

S n,x -nλ µ - n i=1 W i = O n 1/4 log n (log log n) 1/4
P-a.s. .

Remark.

Let us recall the famous result by Komlós, Major and Tusnády [START_REF] Komlós | An approximation of partial sums of independent RV's, and the sample DF[END_REF]. Let (V n ) n∈N be iid variables in L p , p > 2. Then, extending the probability space if necessary, it is possible to construct iid random variables (Z n ) n≥1 with common distribution N (0, Var(X 1 )) such that n i=1

(V i -E(V i )) - n i=1 Z i = o n 1/p a.s. .
Hence, for p ∈ (2, 4], our results are close to the iid situation. The logarithmic loss seems to be difficult to avoid with our approach based on martingale approximation.

Remark. It follows from Theorem 4.11 c) of [START_REF] Benoist | Central limit theorem for linear groups[END_REF] that σ = 0 when Γ µ has unbounded image in P GL(V ).

The proof of Theorem 1 will result from general limit theorems under projective conditions. When 1 < p < 2 those results are new and when p > 2, the obtained rates slightly improve previous results (see for instance [START_REF] Dedecker | Rates of convergence in the strong invariance principle under projective criteria[END_REF]).

We also obtain rates of convergence for Wasserstein's distances in the central limit theorem. Let us first recall the definition of these minimal distances. Let L(ν 1 , ν 2 ) be the set of the probability laws on R 2 with marginals ν 1 and ν 2 . The Wasserstein distances of order r between ν 1 and ν 2 are defined as follows:

W r (ν 1 , ν 2 ) =          inf |x -y| r P (dx, dy) : P ∈ L(µ, ν) if 0 < r < 1 inf |x -y| r P (dx, dy) 1/r : P ∈ L(µ, ν) if r ≥ 1 .
It is well known that, for r ∈ (0, 1],

W r (ν 1 , ν 2 ) = sup {ν 1 (f ) -ν 2 (f ) : f ∈ Λ r } ,
where Λ r is the set of r-Hölder functions such that |f (x)f (y)| ≤ |x -y| r for any reals x, y. For r ≥ 1, one has

W r (ν 1 , ν 2 ) = 1 0 |F -1 1 (u) -F -1 2 (u)| r du 1/r
, where F 1 and F 2 are the respective distribution functions of ν 1 and ν 2 , and F -1 1 and F -1 2 are their generalized inverse. We obtain Theorem 2. Let µ be a proximal and strongly irreducible probability measure on B(G). For any x ∈ X, denote by ν n,x the distribution of n -1/2 (S n,xnλ µ ). Let also G σ be the normal distribution with mean zero and variance σ 2 given in Theorem 1(ii) (provided µ has a moment of ordrer 2).

(i) Assume that µ has a moment of order p ∈ (2, 3). Then, for any r ∈ [p -2, p], (1,r) .

sup x∈X W r (ν n,x , G σ ) = O n -(p-2)/2 max
(ii) Assume that µ has a moment of order 3. Then, for any r in [START_REF] Alsmeyer | Convergence rates in the law of large numbers for martingales[END_REF][START_REF] Benoist | Random walks on reductive groups manuscript[END_REF],

sup x∈X W r (ν n,x , G σ ) = O n -1/2r
, and for r = 1,

W 1 (ν n,x , G σ ) = O n -1/2 log n . (3) sup x∈X 
Remark. Except for p = 3, r = 1, the rates given in Theorem 2 are consistent with the iid case, in the following sense: let (V i ) i≥1 be a sequence of iid random variables, where the V i 's are centered and have a moment of order p ∈ (2, 3). Let ν n be the distribution of

n -1/2 (V 1 + • • • + V n ).
Then the rates given in Theorem 2 hold for ν n instead of ν n,x and σ 2 = E(V 2 1 ). Moreover, these are the best known rates under the stated conditions (see the introduction of the paper [START_REF] Dedecker | Rates of convergence for minimal distances in the central limit theorem under projective criteria[END_REF]). For p = 3, r = 1 the rate in the iid case is O(n -1/2 ), so there is a loss of order log n in (3). Remark. Starting from Remark 2.3 of [START_REF] Dedecker | Rates of convergence for minimal distances in the central limit theorem under projective criteria[END_REF], we derive from Theorem 2 the following rates of convergence in the Berry-Esseen theorem: If µ has a moment of order p ∈ (2, 3), then sup

x∈X sup t∈R P n -1/2 (S n,x -nλ µ ) ≤ t -φ σ (t) ≤ O n -(p-2)/2(p-1)
, where φ σ is the distribution function of G σ . If µ has a moment of order 3, then

sup x∈X sup t∈R P n -1/2 (S n,x -nλ µ ) ≤ t -φ σ (t) ≤ O n -1/4 log n .
Note that, when µ has moments of any order, Jan [START_REF] Jan | Vitesse de convergence dans le TCL pour des processus associés à des systèmes dynamiques ou des produits de matrices aléatoires[END_REF] obtained the rate O(n -a ) for any a < 1/2 in the Berry-Esseen theorem.

Auxiliary results on the cocycle

In all this section µ is a proximal and strongly irreducible probability measure on B(G). Let Xk = X kλ µ and Xk,x = X k,xλ µ . For p ≥ 1, let • p,τ be the L p -norm with respect to the probability P τ on Ω. For the quantities involving X k,x , we shall write • p instead of • p,τ , in accordance with the notations of Section 2.

The proofs of Theorem 1 and Theorem 2 will make use of general results for stationary sequences under projective conditions, i.e. conditions relying on the quantities

E( Xn |W 0 ) p,ν for p ≥ 1 and E( Xn Xk |W 0 ) -E ν ( Xn Xk ) p/2,ν for p ≥ 2.
Those quantities were already studied in [START_REF] Jan | Vitesse de convergence dans le TCL pour des processus associés à des systèmes dynamiques ou des produits de matrices aléatoires[END_REF], where polynomial rates of convergence (to 0) were obtained. By refining the arguments of [START_REF] Jan | Vitesse de convergence dans le TCL pour des processus associés à des systèmes dynamiques ou des produits de matrices aléatoires[END_REF] we obtain the following improvements.

Proposition 3. Assume that µ has a moment of order p > 1. Then, for q ∈ [1, p), (4) 
∞ k=1 k p-q-1 sup x,y∈X E (|X k,x -X k,y | q ) < ∞ .
and for q ∈ (0, 1],

(5)

∞ k=1 k p-2 sup x,y∈X E (|X k,x -X k,y | q ) < ∞ . Remark. Since E(X k,x ) = E x (X k ) = E(X k |W 0 = x), and since E ν (X k ) = λ µ , we easily infer from (4) that (6) k≥1 k p-2 sup x∈X |E x (X k ) -λ µ | < ∞ .
In particular, using that p + 1/p > 2 whenever p > 1, it follows from ( 6) that

(7) k≥1 k -1/p sup x∈X |E x (X k ) -λ µ | < ∞ .
Remark. Let us notice that the third author [START_REF] Jan | Vitesse de convergence dans le TCL pour des processus associés à des systèmes dynamiques ou des produits de matrices aléatoires[END_REF] proved that for every p ≥ 2 and every α ∈ [0, 1), there exists

C p,α such that sup x,y∈X E(|X k,x -X k,y |) ≤ Cp,α k p(α-1/2) .
In particular, when p = 2, using a Theorem of Maxwell and Woodroofe [START_REF] Maxwell | Central limit theorems for additive functionals of Markov chains[END_REF], that estimate is sufficient for the CLT under a second moment and even for the invariance principle (see Peligrad and Utev [START_REF] Peligrad | A new maximal inequality and invariance principle for stationary sequences[END_REF]). Hence, the full conclusion of item (ii) in Theorem 1 follows from the latter estimate.

We shall also need the following controls. Proposition 4. Assume that µ has a moment of order p > 2. Then (8)

k≥1 k p-3 sup x,y∈X E X2 k,x -X2 k,y < ∞ ,
and for every γ < p -3 + 1/p,

k≥1 k γ sup x,y∈X sup k≤j<i≤2k E Xi,x Xj,x -Xi,y Xj,x < ∞ . (9) 
Remark. As in the previous remark, we easily infer that (10)

k≥1 k p-3 sup x∈X E x X2 k -E ν X2 k < ∞ ,
and for every γ < p -

3 + 1/p, ( 11 
) k≥1 k γ sup x∈X sup k≤j<i≤2k E x Xi Xj -E ν Xi Xj < ∞ .
The proof of Propositions 3 and 4 are based on two auxiliary lemmas. The first one gives the regularity of the cocycle σ with respect to a suitable metric, that we introduce right now. For x, y ∈ X, define

d(x, y) := x ∧ y x y ,
where ∧ stands for the exterior product, see e.g. [6, page 61] for the definition and some properties. Then, d is a metric on X.

For every q > 0, define a non decreasing, concave function H q on [0, 1] by H q (0) = 0 and for every x ∈ (0, 1], H q (x) = log(xe -q-1 )

-q .

The next lemma may be seen as a version of Lemma 17 of Jan [START_REF] Jan | Vitesse de convergence dans le TCL pour des processus associés à des systèmes dynamiques ou des produits de matrices aléatoires[END_REF].

Lemma 5. For every κ > 1, there exists C κ > 0 such that for every g ∈ G and every x, y ∈ X,

(12) |σ(g, x) -σ(g, y)| ≤ C κ (1 + log N (g)) κ H κ-1 (d(x, y)) .
Proof. By Lemma 12.2 of [START_REF] Benoist | Random walks on reductive groups manuscript[END_REF], there exists C > 0 such that for every x, y ∈ X,

(13) |σ(g, x) -σ(g, y)| ≤ CN (g)d(x, y) .
Now, it is not hard to prove that (notice that g -1 -1 ≤ x -1 gx ≤ g for every g ∈ G and every x ∈ R d -{0}), for every x ∈ X and every g ∈ G, [START_REF] Guivarc | Frontière de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF] σ(g, x) ≤ log(N (g)) .

Assume that d(x, y) ≤ 1/N (g). Using that t → t(H κ-1 (t)) -1 is non decreasing on (0, e] and that N (g) ≥ 1, we have

N (g)d(x, y) ≤ H κ-1 (d(x, y)) H κ-1 (N (g) -1
) .

Hence, by ( 13),

(15) |σ(g, x) -σ(g, y)| ≤ CH κ-1 (N (g) -1 ) H κ-1 (d(x, y)) ≤ C(κ + log N (g)) κ-1 H κ-1 (d(x, y)) .
Assume now that d(x, y) > 1/N (g). By ( 14), ( 16)

|σ(g, x) -σ(g, y)| ≤ log N (g)H κ-1 (N (g) -1 ) H κ-1 (N (g) -1 ) ≤ (κ + log(N (g)) κ H κ-1 (d(x, y)) .
Combining ( 15) and ( 16), we see that ( 12) holds.

The next lemma is a result about complete convergence that may be derived from Proposition 4.1 of Benoist and Quint [START_REF] Benoist | Central limit theorem for linear groups[END_REF]. A different proof is given in Section 7. Lemma 6. Assume that µ has a moment of order p > 1. Then, there exists ℓ > 0, such that

(17) k≥1 k p-2 max k≤j≤2k sup x,y∈X,x =y P (log (d(A j-1 • x, A j-1 • y)) ≥ -ℓk) < ∞ .
Proof of Proposition 3. Let x, y ∈ X. Let ℓ > 0 be as in Lemma 6. We start from the elementary inequality:

If A = {log N (Y k ) ≥ k} and B = {log d(A k-1 •x, A k-1 •y) ≥ -ℓk}, (18) |X k,x -X k,y | ≤ |σ(Y k , A k-1 x) -σ(Y k , A k-1 y)|1 A + |σ(Y k , A k-1 x) -σ(Y k , A k-1 y)|1 B + |σ(Y k , A k-1 x) -σ(Y k , A k-1 y)|1 {A c ∩B c } .
Using ( 14) and ( 12) (with κ = (p + q)/q), we infer from [START_REF] Jan | Vitesse de convergence dans le TCL pour des chaînes de Markov et certains processus associés des systèmes dynamiques[END_REF] that

E (|X k,x -X k,y | q ) ≤ CE (| log N (Y k )| q 1 A ) + CE (|log N (Y k )| q 1 B ) + C (1 + (log N (Y k )) p+q k p 1 A c 1 ,
for some positive constant C, and consequently

(19) E(|X k,x -X k,y | q ) ≤ C {log N (g)≥k} (log N (g)) q µ(dg) + CP(log d(A k-1 • x, A k-1 • y) ≥ -ℓk) G (log N (g)) q µ(dg) + C {log N (g)<k} (log N (g)) p+q k p µ(dg) .
Now, for q ∈ (0, p) there exist two positive constants K and L such that (20)

k≥1 k p-q-1 {log N (g)≥k} (log N (g)) q µ(dg) ≤ K G (log N ) p dµ < ∞ , and (21) 
k≥1 k p-q-1 {log N (g)<k} (log N (g)) p+q k p µ(dg) ≤ L G (log N ) p dµ < ∞ .
In the case where q ∈ [1, p), since pq -1 ≤ p -2, we infer from ( 19), ( 20), ( 21) and ( 17) that (4) holds. In the case where q ≤ 1, since pq -1 ≥ p -2, the condition ( 17) implies [START_REF] Berkes | Komlós-Major-Tusnády approximation under dependence[END_REF]. This completes the proof of Proposition 3.

Proof of Proposition 4. Let us first prove [START_REF] Cuny | Limit theorems under the Maxwell-Woodroofe condition in Banach spaces[END_REF]. Using ( 14), we see that

X2 k,x -X2 k,y ≤ 2(log N (Y k ) + |λ µ |)|σ(Y k , A k-1 • x) -σ(Y k , A k-1 • y)|
Proceeding as in ( 18) and ( 19), we obtain that

E X2 k,x -X2 k,y ≤ C {log N (g)≥k} log N (g)(log N (g) + |λ µ |) µ(dg) + CP(log d(A k-1 • x, A k-1 • y) ≥ -ℓk) log N (g)(log N (g) + |λ µ |) µ(dg) + C {log N (g)<k} (log N (g)) p (log N (g) + |λ µ |) k p-1 µ(dg) ,
for some positive constant C. We conclude as in Proposition 3 (using similar arguments as in ( 20) and ( 21)).

Let us prove [START_REF] Cuny | Strong invariance principles with rate for "reverse" martingale differences and applications[END_REF]. Let 2k ≥ i > j ≥ k. We start from the simple decomposition

Xi,x Xj,x -Xi,y Xj,y = Xi,x (σ(Y j , A j-1 • x) -σ(Y j , A j-1 • y)) + (σ(Y i , A i-1 • x) -σ(Y i , A i-1 • y)) Xj,y := W i,j + Z i,j .
Using ( 14), ( 12) (with κ = p) and independence, and proceeding as in ( 18) and ( 19), we obtain that

E(|W i,j |) ≤ (|λ µ | + log N 1,µ ) {log N (g)≥j} log N (g) µ(dg) + log N 1,µ (|λ µ | + log N 1,µ ) P (log d(A j-1 • x, A j-1 • y) ≥ -ℓj/2) + C (|λ µ | + log N 1,µ ) {log N (g)<j} (log N (g)) p+1 j p µ(dg) , and 
E ν (|Z i,j |) ≤ (|λ µ | + log N 1,µ ) {log N (g)≥k} log N (g) µ(dg) + log N 1,µ E (|λ µ | + log(N (Y j )) 1 {log d(A i-1 •x,A i-1 •y)≥-iℓ/2} + C (|λ µ | + log N 1,µ ) {log N (g)<k} (log N (g)) p+1 k p µ(dg) , for some positive constant C. Let γ < p -3 + 1/p. It suffices to prove that k≥1 k γ max k≤j<i≤2k E log(N (Y j )) 1 {log d(A i-1 •x,A i-1 •y)≥-iℓ/2} < ∞ .
Using the Hölder inequality, it is enough to prove that

k≥1 k γ max k≤i≤2k (P(log d(A i-1 • x, A i-1 • y) ≥ -iℓ/2)) (p-1)/p < ∞ .
Using the Hölder inequality again it suffices to find δ > 1 such that

k≥1 k δ/(p-1) k γp/(p-1) max k≤i≤2k (P(log d(A i-1 • x, A i-1 • y) ≥ -iℓ/2)) .
By Lemma 6, it suffices to find δ > 1, such that δ/(p -1) + γp/(p -1) ≤ p -2. in particular, it suffices that (p -2)(p -1)γp > 1, which holds by assumption.

General results under projective conditions

In this section, we state general results under projective conditions, that will be needed to prove versions of Theorems 1 and 2 in stationary regime. Proposition 7 is new and is somewhat optimal. Proposition 8 slightly improves previous results. Proposition 9 is taken from Dedecker, Merlevède and Rio [START_REF] Dedecker | Rates of convergence for minimal distances in the central limit theorem under projective criteria[END_REF]. Finally Proposition 10 is a new moment inequality, in the spirit of von Bahr and Esseen [START_REF] Bahr | Inequalities for the r-th absolute moment of a sum of random variables, 1 ≤ r ≤ 2[END_REF], that will be useful to prove that the results hold for any starting points.

The proofs of Propositions 7, 8 and 10 are given in Section 7.

We shall state Propositions 7 and 8 in presence of an invertible measure preserving transformation, since Proposition 9 has been proved in that situation. This will be enough for our purpose.

Let (Ω, F, P) be a probability space and θ be an invertible measure preserving transformation. Let G 0 ⊂ F be a σ-algebra, such that

G 0 ⊂ θ -1 (G 0 ). For every n ∈ Z define G n := θ -n (G 0 ).
For every Z ∈ L p (Ω, F, P), we consider the following maximal functions

M p (Z, θ) := sup n≥1 n-1 k=0 Z • θ k n 1/p , if 1 ≤ p < 2. ( 22 
)
Write also

T n := Z + • • • + Z • θ n-1
, and, for any real-valued random variable V and p ≥ 1, let V p,∞ = sup t>0 t (P(|V | > t)) 1/p . Proposition 7. Let 1 < p < 2. Let Z ∈ L p (Ω, G 0 , P) be such that

(23) n≥1 E(T n |G 0 ) p n 1+1/p < ∞ .
There exists a constant C p > 0, depending only on p such that

(24) M p (Z) p,∞ ≤ C p   Z p + n≥1 E(T n |G 0 ) p n 1+1/p   . Moreover, (25) 
T n = o n 1/p P-a.s.

and, there exists K > 0 such that for every positive integer d,

max 1≤i≤2 d |T i | p ≤ K p -1 2 d/p Z p + d k=0 2 -k/p E(T 2 k |G -2 k ) p . ( 26 
)
Remarks. An inequality similar to [START_REF] Rio | Inequalities for sums of dependent random variables under projective conditions[END_REF] is given in Theorem 3 of [START_REF] Wu | Moderate deviations for stationary processes[END_REF]. It is not hard to prove that (23) holds as soon as [START_REF] Shao | Almost sure invariance principles for mixing sequences of random variables[END_REF] n≥1

E(Z • θ n |G 0 ) p n 1/p < ∞ .
Condition (23) may be seen as an L p -analogue of the so-called Maxwell-Woodroofe condition [START_REF] Maxwell | Central limit theorems for additive functionals of Markov chains[END_REF]. As in the papers [START_REF] Peligrad | A new maximal inequality and invariance principle for stationary sequences[END_REF], [START_REF] Peligrad | A maximal Lp-inequality for stationary sequences and its applications[END_REF] or [START_REF] Cuny | Limit theorems under the Maxwell-Woodroofe condition in Banach spaces[END_REF] (see Section D.3), it can be shown that ( 23) is somewhat optimal for (25).

Proposition 8. Let 2 ≤ p ≤ 4 and assume that θ is ergodic if p = 2. Let Z ∈ L p (Ω, G 0 , P) be such that

(28) n≥1 E(Z • θ n |G 0 ) p < ∞ , for p ∈ [2, 4), and (29) 
n≥1 log(n) E(Z • θ n |G 0 ) p < ∞ , for p = 4.
If p ∈ [START_REF] Bahr | Inequalities for the r-th absolute moment of a sum of random variables, 1 ≤ r ≤ 2[END_REF][START_REF] Benoist | Central limit theorem for linear groups[END_REF], assume also that

n≥1 E(T 2 n |G 0 ) -E(T 2 n ) p/2 n 1+2/p < ∞ .
Then E(T 2 n )/n -→ σ 2 as n → ∞, and (i) If 2 ≤ p < 4, one can redefine (T n ) n≥1 without changing its distribution on a (richer) probability space on which there exists iid random variables (W n ) n≥1 with common distribution N (0, σ 2 ), such that

(30) T n - n i=1 W i = o(r n ) P-a.s. ,
where r n = √ n log log n when p = 2 and r n = n 1/p √ log n when 2 < p < 4. (ii) If p = 4, one can redefine (T n ) n≥1 without changing its distribution on a (richer) probability space on which there exists iid random variables (W n ) n≥1 with common distribution N (0, σ 2 ), such that

(31) T n - n i=1 W i = O n 1/4 log n (log log n) 1/4 P-a.s. . Remark. The condition n≥1 E(Z • θ n |G 0 ) p < ∞ ensures a martingale-coboundary decomposition.
It is possible to weaken this condition as done for instance in [START_REF] Dedecker | Rates of convergence in the strong invariance principle under projective criteria[END_REF]. Since in our application the condition n≥1 E(Z • θ n |G 0 ) p < ∞ is satisfied, we do not state those refinements.

Proposition 9. Let 2 < p ≤ 3. Let Z ∈ L p (Ω, G 0 , P) be such that n≥1 E(Z • θ n |G 0 ) p < ∞ , for p ∈ (2, 3), and 
n≥1 log(n) E(Z • θ n |G 0 ) 3 < ∞ , for p = 3.
Assume also that

n≥1 E(T 2 n |G 0 ) -E(T 2 n ) p/2 n 3-p/2
< ∞ .

Then n -1 E(T 2 n ) -→ σ 2 as n → ∞, and, denoting by L n the distribution of n -1/2 T n and by G σ the normal distribution with mean zero and variance σ 2 , one has:

(i) If p ∈ (2, 3), then, for any r ∈ [p -2, p], W r (L n , G σ ) = O n -(p-2)/2 max(1,r) .
(ii) If p = 3, then, for any r ∈ (1, 3],

W r (L n , G σ ) = O n -1/2r
,

and for r = 1, W 1 (L n , G σ ) = O n -1/2 log n .
To prove Theorem 2 we shall also need the following von Bahr-Esseen type inequality. This inequality is stated in the non-starionary case: the Z i 's are real-valued random variables adapted to an increasing filtration (F i ) i≥0 , and

T n = Z 1 + • • • + Z n . Proposition 10. Let r ∈ (1, 2].
The following inequality holds:

T n r r ≤ 2 2-r n i=1 Z i r r + r n-1 i=1 E |Z i | r-1 |E(T n -T i |F i )| .
Moreover, letting T * n = max(0, T 1 , . . . , T n ),

T * n r r ≤ 4 r -1 n i=1 Z i r r + 6r r -1 n-1 i=1 E |Z i | r-1 |E(T n -T i |F i )| .

On the convergence of series

n n -(1+β) E(T 2 n |G 0 ) -E(T 2 n ) p/2
We keep the same notations as in previous section. For simplicity, if Z belongs to L 1 (Ω, F, P), we shall write Z n := Z • θ n .

We want to find conditions relying on series of the type considered in Proposition 3 such that the above series converges for a given p > 2 and a given β ∈ [1/2, 1). To do so we shall use computations as well as notations from Dedecker, Doukhan and Merlevède [START_REF] Dedecker | Rates of convergence in the strong invariance principle under projective criteria[END_REF].

For every k, m ∈ N, define

γ p (m, k) := E(Z m Z m+k |G 0 ) -E(Z m Z m+k ) p/2 γp (m) := sup m≤j<i≤2m E(Z i Z j |G 0 ) -E(Z i Z j ) p/2 .
Notice that in our definition of γp (m) we take the supremum sup m≤j<i≤2m while in [START_REF] Dedecker | Rates of convergence in the strong invariance principle under projective criteria[END_REF] they use sup i≥j≥m .

Let γ ∈ (0, 1), be fixed for the moment. Proceeding as in (4.18) in [START_REF] Dedecker | Rates of convergence in the strong invariance principle under projective criteria[END_REF], we see that

(notice that [m γ ] + 1 ≤ 2[m γ ], for m ≥ 1) E(T 2 n |G 0 ) -E(T 2 n ) p/2 ≤ n k=1 γ p (k, 0) + 4 n m=1 [m γ ]γ p (m) + 2 n m=1 n k=[m γ ]+1 γ p (m, k) ,
with the usual convention that an empty sum equals 0. We derive that the sum

n n -(1+β) E(T 2 n |G 0 ) -E(T 2 n ) p/2
is finite provided that the following conditions hold (recall that γβ > -1):

m≥1 m -β γ p (m, 0) < ∞ , ( 32 
) n≥1 n γ-β γp (n) < ∞ , (33) n≥1 1 n 1+β n m=1 n k=[m γ ]+1 γ p (m, k) < ∞ . ( 34 
)
For every m, k ∈ N, using the notation 

Z (0) m := Z m -E(Z m |G 0 ), define γ * p (m, k) := E Z (0) m Z (0) m+k G 0 -E Z (0) m Z ( 
+ n m=1 n k=0 E(Z m |G 0 ) p E(Z m+k |G 0 ) p ≤ n m=1 n k=[m γ ]+1 m ℓ=1 P 1 Z ℓ p P 1 Z ℓ+k p + 2n m=1 E(Z m |G 0 ) p 2 .
Hence (34) holds provided that the following conditions are satisfied

n≥1 1 n 1+β 2n m=1 E(Z m |G 0 ) p 2 < ∞ , (35) n≥1 1 n 1+β n m=1 n k=[m γ ]+1 m ℓ=1 P 1 Z ℓ p P 1 Z ℓ+k p < ∞ . (36) Now, using that n k=[m γ ]+1 ≤ k≥[m γ ]+1
in the second equation, we see that

n≥1 n m=1 n k=[m γ ]+1 m ℓ=1 n -1-β P 1 Z ℓ p P 1 Z ℓ+k p ≤ C m≥1 m k=[m γ ]+1 m ℓ=1 m -β P 1 Z ℓ p P 1 Z ℓ+k p + C m≥1 k≥m+1 m ℓ=1 k -β P 1 Z ℓ p P 1 Z ℓ+k p , so that n≥1 n m=1 n k=[m γ ]+1 m ℓ=1 n -1-β P 1 Z ℓ p P 1 Z ℓ+k p ≤ C k≥1 ℓ≥1 [k 1/γ ] m=1 m -β P 1 Z ℓ p P 1 Z ℓ+k p + C k≥1 ℓ≥1 k m=1 k -β P 1 Z ℓ p P 1 Z ℓ+k p ≤ C k,ℓ≥1 k (1-β)/γ P 1 Z ℓ p P 1 Z ℓ+k p ≤ ℓ≥1 P 1 Z ℓ p k≥1 k (1-β)/γ P 1 Z k p .
Hence, (36) holds as soon as

k≥1 k (1-β)/γ P 1 Z k p ≤ C ℓ≥0 2 ℓ((1-β)/γ 2 ℓ+1 -1 k=2 ℓ P 1 Z ℓ p ≤ C ℓ≥0 2 ℓ((1-β)/γ+1-1/p   2 ℓ+1 -1 k=2 ℓ P 1 Z ℓ p p   1/p < ∞ ,
where we used Hölder for the last inequality. Applying Lemma 5.2 of [START_REF] Dedecker | Rates of convergence in the strong invariance principle under projective criteria[END_REF] with q = p we infer that (36) holds as soon as (37

) n≥1 n (1-β)/γ-1/p   k≥n E(Z k |G 0 ) p p k   1/p .
By stationarity, the sequence ( E(Z k |G 0 ) p ) k≥1 is non increasing. Hence, using that

• ℓ p ≤ • ℓ 1 , we see that (37) holds provided that ℓ≥0 2 ℓ((1-β)/γ-1/p+1)   k≥ℓ E(Z 2 k |G 0 ) p p   1/p ≤ ℓ≥0 2 ℓ((1-β)/γ-1/p+1) k≥ℓ E(Z 2 k |G 0 ) p < ∞ .
Changing the order of summation and using again that ( E(Z k |G 0 ) p ) k≥1 is non increasing, we infer that (37) holds provided that (38

) k≥1 k (1-β)/γ-1/p E(Z 2 k |G 0 ) p < ∞ .
Collecting all the above estimates and taking care of Proposition 3, we obtain the following result:

Proposition 11. Let p > 2 and β ∈ [1/2, 1). Assume that (32) and (35) hold and that there exists γ ∈ (0, 1) such that (33) and (38) hold. Then,

(39) n>0 E(T 2 n |G 0 ) -E(T 2 n ) p/2 n 1+β < ∞ .
6. Proofs of Theorems 1 and 2 6.1. Proof of Theorem 1. We first prove a version in stationary regime, i.e. under P ν . The proof makes use of Proposition 7 and Proposition 8. Those results are stated in the context of an invertible dynamical system. Let us explain how to circumvent that technical matter. Theorem 1 is a limit theorem for the process (X n ) n≥1 , which is a functional of the Markov chain ((Y n , W n-1 )) n≥1 with state space G × X and stationary distribution µ ⊗ ν. Since that Markov chain is stationary, it is well-known that, by Kolmogorov's theorem, there exists a probability P on the measurable space ( Ω, F) = ((G × X) Z , (B(G) ⊗ B(X)) ⊗Z ), invariant by the shift η on Ω, and such that the law of the coordinate process ( Vn ) n∈Z (with values in G × X ) under P is the same as the one of the process ((Y n , W n-1 )) n≥1 under P ν . In particular they both are Markov chains. Moreover, ( Ω, F , P, η) is ergodic, which is not difficult to prove.

For every n ∈ Z, define Xn := σ( V0 ) • ηn -Ê(σ( V0 )) and Ĝn := σ{ Xk : k ≤ n}. Then, using the Markov property one can prove easily that for every p ≥ 1, and every

m ≥ n ≥ 1, Ê( Xn | Ĝ0 ) p = E ν ( Xn | X0 ) p ≤ sup x,y∈X E (|X n,x -X n,y |) , (40) Ê( Xn X m | Ĝ0 ) -Ê( Xn X m ) p = E ν ( Xn Xm | X0 ) -E ν ( Xn Xm )) p (41) ≤ sup
x,y∈X E Xn,x Xm,x -Xn,y Xm,y . Then, we infer that

Let us prove (i). Let us apply

S n -nλ µ = o n 1/p P ν -a.s.
or equivalently that for ν-almost every x ∈ X, S n,xnλ µ = o n 1/p P-a.s.

In particular, there exists y ∈ R d with y = 1 such that log A n ynλ µ = o n 1/p P-a.s.

Let x ∈ R d be such that x = 1. By Proposition 3.2 page 52 of [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF], there exists a random variable C satisfying C(ω) > 0 for P-almost every ω ∈ Ω, and such that, for every n ∈ N,

(42) C ≤ A n x A n ≤ 1 .
Applying this inequality with x = y, we infer that log A nnλ µ = o n 1/p P-a.s.

and then that for every

x ∈ R d such that x = 1, log A n x -nλ µ = o n 1/p P-a.s.
Let us prove items (iii) and (iv). Let us apply Proposition 8 with Z = X1 . Then clearly, the conclusion of Proposition 8 will hold for Z = X1 and, arguing as above, items (iii) and (iv) of Theorem 1 will follow from Lemma 4.1 of Berkes, Liu and Wu [START_REF] Berkes | Komlós-Major-Tusnády approximation under dependence[END_REF].

Notice first that by ( 40) and ( 6), ( 28) (or (29)) holds. Hence, it remains to check (39) with β = 2/p, which follows from Proposition 12 below. Proposition 12. Let p > 2 and β ∈ [1/2, 1). Take Z := X1 . Then, (39) holds if β > 3p. For instance, one may take β = 2p/2 when 2 < p ≤ 3 and β = 2/p when 2 < p ≤ 4.

Proof of Proposition 12. Let β > 3p (with β ≥ 1/2). Using ( 6) and (40), we see that (35) is satisfied, since β > 0. Using, ( 6), ( 8) and ( 9) combined with (40) and (41), we infer that (39) holds if

-β ≤ p -3 ; (43) γ -β ≤ p -3 + 1/p ; (44) (1 -β)/γ -1/p ≤ p -2 . (45)
Now, (43) holds by assumption and then (44) holds with γ = 1/p. It is then not difficult to prove that (45) also holds with γ = 1/p.

Let us prove item (ii). By Proposition 3, we have

n≥1 X |E u (X n ) -λ µ | 2 ν(du) 1/2 < ∞ .
It is well-known then that Gordin's method applies, i.e. that we have a martingalecoboundary decomposition (with respect to P ν ), and the martingale has stationary and ergodic increments. Hence we have the weak invariance principle under P ν (see [START_REF] Heyde | On the central limit theorem and iterated logarithm law for stationary processes[END_REF]) meaning that, for any continuous and bounded function ϕ from C([0, 1]) to R,

(46) lim n→∞ E ν (ϕ(B n )) -ϕ(σ̟)w(d̟) = 0 ,
where w is the distribution of a standard Wiener process. Assume now that (ii) does not hold. Then, there exists a continuous and bounded function ϕ 0 from C([0, 1]) to R, and a sequence x n of elements of X such that Putting together ( 46) and ( 48), we infer that B n,xn converges in distribution to σW , where W is a standard Wiener process. This is in contradiction with (47), which completes the proof of (ii). It remains to prove the following lemma (note that the first assertion has already been proved in [START_REF] Jan | Vitesse de convergence dans le TCL pour des processus associés à des systèmes dynamiques ou des produits de matrices aléatoires[END_REF] when p > 2).

Lemma 13. Assume that µ has a moment of order p ≥ 2. Then

sup x,y, x = y =1 log A n x -log A n y 1 < ∞ , for r ∈ (1, 2], sup x,y, x = y =1 log A n x -log A n y r = O(1) if r ≤ p -1 O n (r+1-p)/r if r > p -1,
and for p ∈ [2, 3], sup x,y, x = y =1 log A n x -log A n y p = O n 1/p .
Proof of Lemma 13. For any x, y ∈ R d such that x = y = 1, one has

log A n x -log A n y = n k=1 X k,x -X k,y . Hence (49) log A n x -log A n y 1 ≤ n k=1 X k,x -X k,y 1 .
Using (49) and (4) (with q = 1 and p ≥ 2), the first assertion of Lemma 13 follows.

For the case r ∈ (1, 2], we apply Proposition 10. Let

s n (x, y) = n k=1 X k,x -X k,y . Then (50) log A n x -log A n y r r ≤ 2 n k=1 X k,x -X k,y r r + 4 n-1 k=1 |X k,x -X k,y | r-1 E(s n (x, y) -s k (x, y)|F k ) 1 .
From equality (3.9) in [START_REF] Benoist | Central limit theorem for linear groups[END_REF] (which can also be deduced from ( 6)) we infer that

(51) X k,x -X k,y = d k (x, y) + ψ(A k-1 x, A k-1 y) -ψ(A k x, A k y) ,
where d k (x, y) is F k -measurable and such that E(d k (x, y)|F k-1 ) = 0, and ψ is a bounded function (with |ψ| < M ). In particular, it follows from (51) that

|X k,x -X k,y | r-1 E(s n (x, y) -s k (x, y)|F k ) 1 ≤ 2M |X k,x -X k,y | r-1 1 , so that, by (50), (52) log A n x -log A n y r r ≤ D n k=1 X k,x -X k,y r r + |X k,x -X k,y | r-1 1 ,
for some positive constant D. Applying (4) (with p ≥ 2 and q = r) and ( 5) (with p ≥ 2 and q = r -1), we infer that

n k=1 X k,x -X k,y r r + |X k,x -X k,y | r-1 1 = O max 1, n (r+1-p) ,
and the second assertion of Lemma 13 follows from (52).

Let us prove the last assertion. Let

Z n,x,y = X n,x -X n,y and T n (x, y) = n k=1 Z k,x,y := g n (x, y, Y 1 , . . . , Y n ) .
With these notations, let Tn (x, y) = g n (x, y, Y 2 , . . . , Y n+1 ). Now, it is easy to see that T n (x, y) = Z 1,x,y + Tn-1 (Y 1 x, Y 1 y). Letting ψ p (t) = |t| p , we have

|T n (x, y)| p = Tn-1 (Y 1 x, Y 1 y) p + Z 1,x,y 1 0 ψ ′ p Tn-1 (Y 1 x, Y 1 y) + tZ 1,x,y dt . Hence |T n (x, y)| p ≤ Tn-1 (Y 1 x, Y 1 y) p + 2 p-2 |Z 1,x,y | p + p2 p-2 |Z 1,x,y | Tn-1 (Y 1 x, Y 1 y) p-1 . Let G n,p (x, y) = E (|T n (x, y)| p ).
Taking the conditional expectation with respect to Y 1 , we get

E (|T n (x, y)| p |Y 1 ) ≤ G n-1,p (Y 1 x, Y 1 y) + 2 p-2 |Z 1,x,y | p + p2 p-2 |Z 1,x,y |G n-1,p-1 (Y 1 x, Y 1 y) . Let u n = sup x,y,x =0,y =0 G n,p (x, y) and v n = sup x,y,x =0,y =0 G n,p-1 (x, y). It follows that E (|T n (x, y)| p |Y 1 ) ≤ u n-1 + 2 p-2 |Z 1,x,y | p + p2 p-2 |Z 1,x,y |v n-1 .
Taking first the expectation, and then the maximum, we get

u n ≤ u n-1 + 2 p-2 sup x,y,x =0,y =0 E (|Z 1,x,y | p ) + p2 p-2 sup x,y,x =0,y =0 E (|Z 1,x,y |) v n-1 . Since p -1 ∈ [1, 2],
we know from the second assertion of the lemma that v n = O(1) .

Consequently, there exists a positive constant C such that

u n ≤ u n-1 + C .
It follows that u n = O(n), which is the desired result, since

u n = sup x,y,x =0,y =0 n k=1 X k,x -X k,y p p = sup x,y, x = y =1 log A n x -log A n y p p .
6.2. Proof of Theorem 2. Let ν n be the distribution of n -1/2 (S nnλ µ ) under P ν .

As in the proof of Theorem 1, it is enough to apply Proposition 9 with Y = X1 . From Proposition 12 (with β = 2p/2) combined with (40) and (41), we see that the assumptions of Proposition 9 are satisfied. It follows that:

(i) If µ has a moment of order p ∈ (2, 3), then, for any r

∈ [p -2, p], W r (ν n , G σ ) = O n -(p-2)/2 max(1,r) .
(ii) If µ has a moment of order 3, then, for any r ∈ (1, 3],

W r (ν n , G σ ) = O n -1/2r
,

and for r = 1, W 1 (ν n , G σ ) = O n -1/2 log n .
Recall that W * 0 is an element of R d such that W * 0 = W 0 and W * 0 = 1. To prove the results for any starting point, we use the following elementary inequalities:

For r ≤ 1,

sup x∈X W r (ν n , ν n,x ) ≤ n -r/2 sup x, x =1 log A n x -log A n W * 0 r 1,ν . For r > 1, sup x∈X W r (ν n , ν n,x ) ≤ n -1/2 sup x, x =1 log A n x -log A n W * 0 r,ν .
From the first assertion of Lemma 13, we infer that: for r ≤ 1,

sup x∈X W r (ν n , ν n,x ) = O n -r/2 .
This proves Theorem 2 for r ∈ [p -2, 1], since in that case

sup x∈X W r (ν n , ν n,x ) = O n -(p-2)/2 .
From the last assertion of Lemma 13, we infer that: for p ∈ (2, 3],

sup x∈X W p (ν n , ν n,x ) = O n -(p-2)/2p .
This proves the result for r = p. It remains to consider the case r ∈ (1, p). We use the elementary inequality 1) .

(W r (ν n , ν n,x )) r ≤ (W 1 (ν n , ν n,x )) (p-r)/(p-1) (W p (ν n , ν n,x )) p(r-1)/(p-
It follows form the preceding upper bounds for W 1 (ν n , ν n,x ) and W p (ν n , ν n,x ) that

sup x∈X (W r (ν n , ν n,x )) r = O n -(p-2)(p-r)/2(p-1) n -(p-2)(r-1)/2(p-1) = O n -(p-2)/2 ,
which concludes the proof.

7. Proofs of the intermediate results

7.1.

Proof of Lemma 6. We first recall the following notation: for any x ∈ R d -{0} and g in G, g

• x = g • x.
Since G log N (g) µ(dg) < ∞, we may define a bounded function F 1 , by setting

F 1 (x, ȳ) = G log(d(g • x, g • ȳ)/(d(x, ȳ)))µ(dg) ∀x, ȳ ∈ X, x = ȳ .
Then, we define a cocycle as follows. For every g ∈ G and every x, ȳ ∈ X with x = ȳ, set σ 1 (g, (x, ȳ)) := log(d(g

• x, g • ȳ)/(d(x, ȳ))) -F 1 (x, ȳ). Finally, write log(d(A n x, A n ȳ)/d(x, ȳ)) = M n + R n , with R n = R n (x, ȳ) := n k=1 F 1 (A k-1 x, A k-1 ȳ) .
and

M n := n k=1 σ 1 (Y k , (A k-1 x, A k-1 ȳ)) ,
and notice that (M n ) n≥1 is a martingale in L p , since µ has a moment of order p.

Using that d(x, ȳ) ≤ 1, the proposition will be proved if we can prove that there exists ℓ > 0, such that Proof of (53). Let K > 0 be such that |F 1 | ≤ K. Let n ≥ 1 be an integer. Then |R n | ≤ 2nK and using that |e x -1 -x| ≤ x 2 e |x| for every x ∈ R, we see that, for every a > 0,

|E(e aRn ) -

1 -aE(R n )| ≤ a 2 K 2 e aK .
By Proposition 6.4 (ii) in [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF], there exists n 0 ∈ N and δ > 0, such that sup

x,ȳ∈X

E (R n 0 (x, ȳ)) ≤ -δ .
For this n 0 , we can find a 0 > 0 small enough such that sup

x,ȳ∈X E e a 0 Rn 0 (x,ȳ)) ≤ 1a 0 δ/2 := ρ < 1

Using that R (k+1)n 0 = R kn 0 + R n 0 • η kn 0 and conditioning with respect to F kn 0 , we infer that sup x,ȳ∈X E e a 0 R (k+1)n 0 (x,ȳ) ≤ sup x,ȳ∈X E e a 0 R kn 0 (x,ȳ) sup x,ȳ∈X E e a 0 Rn 0 (x,ȳ) ≤ ρ k+1 .

Hence, there exists C > 0, such that for every n ∈ N, sup x,ȳ∈X E e a 0 Rn(x,ȳ) ≤ Cρ n/n 0 .

Let k ≥ 1 and k ≤ j ≤ 2k and let α := | log ρ|/(2a 0 n 0 ). Then P(R j (x, ȳ) ≥ -αk) ≤ e a 0 αk E e a 0 R j (x,ȳ) ≤ Ce a 0 αk ρ k/n 0 ≤ Cρ k/(2n 0 ) , and (53) holds with ℓ = α/2.

Proof of (54). The proof makes use of a result about complete convergence for martingales that we recall below. This result represents a very small sample of the general situations treated by Alsmeyer [START_REF] Alsmeyer | Convergence rates in the law of large numbers for martingales[END_REF], and later generalized by Hao and Liu [START_REF] Hao | Convergence rates in the law of large numbers for arrays of martingale differences[END_REF].

Recall that a sequence of random variables (D n ) n≥1 is said to be dominated by a (non negative) random variable X, if there exists C > 0 such that for every x > 0,

P(|D n | > x) ≤ CP(X > x).
The next theorem follows directly from Theorem 2.2 of [START_REF] Hao | Convergence rates in the law of large numbers for arrays of martingale differences[END_REF].

Theorem 14 (Alsmeyer [START_REF] Alsmeyer | Convergence rates in the law of large numbers for martingales[END_REF], Hao and Liu [START_REF] Hao | Convergence rates in the law of large numbers for arrays of martingale differences[END_REF]). Let (D n ) n∈N be a sequence of (F n ) n∈Nmartingale differences dominated by a variable X. For every q > 1, every γ ∈ (1, 2] and every L ∈ N, there exists C > 0, such that for every n ≥ 1 and every ε > 0, (55) P max

1≤k≤n |D 1 + • • • + D k | ≥ εn ≤ nP X > εn 4(L + 1) + C (εn) qγ(L+1)/(q+L) E(|D 1 | γ |F 0 ) + • • • + E(|D n | γ |F n-1 ) q(L+1)/(q+L) q .
We apply Theorem 14 with D k := σ 1 (Y k , (A k-1 x, A k-1 ȳ)), X := 2 log N (Y 1 ), γ = min(p, 2) and q = L (to be chosen later). Notice that (D n ) n∈N is dominated by X, see for instance Lemma 5.3 page 62 of [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF].

Since E(X p ) < ∞, it is easy to check that for every δ > 0,

n≥1 n p-2 P(X > δn) < ∞ . Moreover, E(|D 1 | γ |F 0 ) + • • • + E(|D n | γ |F n-1 ) q ≤ 2n X p .
Hence, the series

n≥1 n p-2 P max 1≤k≤n |D 1 + • • • + D k | ≥ εn
converges for every ε > 0, as soon as n≥1 n p-2 n (γ-1)(q+1)/2 < ∞ , which holds provided that q > 2(p -1)/(γ -1) -1. In particular, we infer that (54) holds by taking ε = ℓ.

Since by assumption, for p ∈ [START_REF] Bahr | Inequalities for the r-th absolute moment of a sum of random variables, 1 ≤ r ≤ 2[END_REF][START_REF] Benoist | Central limit theorem for linear groups[END_REF],

n≥1 E(T 2 n |G 0 ) -E(T 2 n ) p/2 n 1+2/p < ∞ , it suffices to prove that n≥1 E(M 2 n |G 0 ) -E(T 2 n |G 0 ) p/2 n 1+2/p < ∞ .
In case p ∈ (2, 4), this can be done as to prove (5.38) in [START_REF] Dedecker | Rates of convergence for minimal distances in the central limit theorem under projective criteria[END_REF] (see the proof of Theorem 3.1 in [START_REF] Dedecker | Rates of convergence for minimal distances in the central limit theorem under projective criteria[END_REF]). In case p = 4, this can be done as to prove (5.43) in [START_REF] Dedecker | Rates of convergence for minimal distances in the central limit theorem under projective criteria[END_REF] (see the proof of Theorem 3.2 in [START_REF] Dedecker | Rates of convergence for minimal distances in the central limit theorem under projective criteria[END_REF]).

7.4. Proof of Proposition 10. We proceed as in the proof of Proposition 1 of [START_REF] Dedecker | On the functional central limit theorem for stationary processes[END_REF]. For r ∈ (1, 2], let ψ r be the function from R to R + defined by ψ r (x) = |x| r . We start from the following elementary decomposition (using the convention T 0 = 0):

|T n | r = ψ r (T n ) = n i=1 ψ r (T i ) -ψ r (T i-1 ) = n i=1 Y i 1 0 ψ ′ r (T i-1 + tY i ) dt = n i=1 Y i 1 0 ψ ′ r (T i-1 + tY i ) -ψ ′ r (T i-1 ) dt + n i=1 Y i ψ ′ r (T i-1 ) .
Consequently,

|T n | r = n i=1 Y i 1 0 ψ ′ r (T i-1 + tY i ) -ψ ′ r (T i-1 ) dt + n i=1 Y i   i-1 j=1 ψ ′ r (T j ) -ψ ′ r (T j-1 )   = n i=1 Y i 1 0 ψ ′ r (T i-1 + tY i ) -ψ ′ r (T i-1 ) dt + n-1 i=1 ψ ′ r (T i ) -ψ ′ r (T i-1 ) (T n -T i ).
Now, it is easy to check that |ψ ′ r (x)ψ ′ r (y)| ≤ r2 2-r |x -y| r-1 . Using this simple fact and taking the conditional expectation, we obtain

E (|T n | r ) ≤ 2 2-r n i=1 E(|Y i | r ) 1 0 rt r-1 dt + r2 2-r n-1 i=1 E |Y i | r-1 |E(T n -T i |F i )| ,
and the inequality is proved.

Let us prove the second inequality. We first write that

(T * n ) r = n i=1 (T * i ) r -(T * i-1 ) r . Note that for a ≥ b ≥ 0, (r -1)(a r -b r ) ≤ ra(a r-1 -b r-1 ). Hence, ( 62 
) (T * n ) r ≤ r r -1 n i=1 T * i (T * i ) r-1 -(T * i-1 ) r-1 = r r -1 n i=1 T i (T * i ) r-1 -(T * i-1 ) r-1 ,
the last equality being true because (T

* i ) r-1 -(T * i-1 ) r-1 is non zero iff T * i = T i . Now n i=1 T i (T * i ) r-1 -(T * i-1 ) r-1 = n i=1 T i (T * i ) r-1 -T i-1 (T * i-1 ) r-1 - n i=1 Z i (T * i-1 ) r-1 = T n (T * n ) r-1 - n i=1 Z i (T * i-1 ) r-1 . (63) 
Recall Young's inequality (based on the concavity of the logarithm): for any a, b ≥ 0 and any p, q > 1 such that 1/p + 1/q = 1,

ab ≤ a p p + b q q .
Hence, for x, y ≥ 0

xy r-1 ≤ 2 r-1 r x r + r -1 2r y r .
We infer that

(64) r r -1 |T n |(T * n ) r-1 ≤ 2 r-1 r -1 |T n | r + 1 2 (T * n ) r .
Combining (62), ( 63) and (64), we get that

(T * n ) r ≤ 2 r r -1 |T n | r - 2r r -1 n i=1 Z i (T * i-1 ) r-1 .
Proceeding as for the first inequality, we get that

(T * n ) r ≤ 2 r r -1 |T n | r - 2r r -1 n-1 i=1 (T * i ) r-1 -(T * i-1 ) r-1 ) (T n -T i ) .
Since, for x, y ≥ 0, |x r-1y r-1 | ≤ |x -y| r-1 , we finally get that

E ((T * n ) r ) ≤ 2 r r -1 E (|T n | r ) + 2r r -1 n-1 i=1 E |Y i | r-1 |E(T n -T i |F i )| .
Combining this inequality with the first inequality of the proposition, the result follows.

Extension of the results

In this section, we shall first explain why the results of Section 2 still hold for the sequence (log A n ) n≥1 (with obvious changes in the statements). Next, we shall briefly explain how to deal with (log | A n x, y |) n≥1 . 8.1. Matrix norm. The fact that the statements of Theorem 1 hold for log A n instead of S n,x is clear from the proof Theorem 1 (cf. Subsection 6.1). The crucial point here is Inequality (42).

Let µ n be the distribution of log A n . The fact that the statements of Theorem 2 hold for µ n instead of ν n,x requires some explanations.

Let μn be the distribution of X log S n,u ν(du) .

The first point to notice is that the statements of Theorem 2 are valid for μn instead ν n,x . This can be proved exactly as for the proof of Theorem 2, by using some easy consequences of Lemma 13, such as 8.2. Results without proximality. Proceeding as in the proof of Theorem 4.11 of [4] (using their Lemma 4.13) we infer that the results for matrix norm hold without proximality. Then, we see that the results of Theorems 1 and 2 hold also without proximality, since (42) do not require proximality but only strong irreducibility.

8.3. Matrix coefficients. We shall now explain how to derive results for matrix coefficients, i.e. for any given x, y ∈ R d with x = y = 1, we study the behaviour of (log | A n x, y |) n≥1 .

We were not able to extend Theorem 2 to the matrix coefficients. We only succeeded to extend Theorem 1, but under a stronger moment assumption (and it does not seem possible to get rid of the proximality assumption here). Our argument is inspired by [START_REF] Jan | Vitesse de convergence dans le TCL pour des processus associés à des systèmes dynamiques ou des produits de matrices aléatoires[END_REF]. We shall use the distance δ defined in (65) and the upper bound (66). Let 1 < p ≤ 4. Assume that µ has a moment of order p + 1. Let us explain why the results from Theorem 1 may be extended to the matrix coefficients. Actually, using similar arguments as below, one may see that a moment of order 2 is enough to derive item (ii) of Theorem 1 for the matrix coefficients. The behaviour of (log A n x ) n≥1 is described in Theorem 1.

It is obvious (using Lemma 4 of [START_REF] Berkes | Komlós-Major-Tusnády approximation under dependence[END_REF] to deal with items (iii) and(iv)) that the results of Theorem 1 will hold for the matrix coefficients if we can prove that log | A n x, y | A n x y = o(n 1/p ) P-a.s.

or, equivalently, that log δ(A n x, ȳ) = o(n 1/p ) P-a.s.

(recall that A n x = A n x). Since δ ≤ 1, we are back to prove that for every ε > 0, P-a.s., we have δ(A n x, ȳ) ≥ e -εn 1/p for all n large enough . Now, it is well-known (see e.g. Definition 4.1 page 55 and (9) page 61 of [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]), that, for any x ′ , y ′ in R d -{0},

(67) | x ′ , y ′ | x ′ y ′ = 1 -d x ′ , y ′ 2 .
Hence δ 2 (A n x, ȳ) = 1d 2 (A n x, ȳ) . Now,

1 -d 2 (A n x, ȳ) ≥ 1 -d(A n x, W n ) + d(W n , ȳ) 2 ≥ 1 -d 2 (A n x, W n ) -2d(A n x, W n )d(W n , ȳ) -d 2 (W n , ȳ) .
Since for every n ∈ N, W n has law ν, the variables (log δ(W n , ȳ)) n∈N are identically distributed in L p (Ω, F, P). In particular, it follows from the Borel-Cantelli lemma that (68)

| log δ(W n , ȳ)| = o(n 1/p ) P ν -a.s.

Hence, for every ε > 0, P ν -a.s., we have δ(W n , ȳ) ≥ e -εn 1/p for all n large enough , and using (67) again, for every ε > 0, P ν -a.s., we have (69) d(W n , ȳ) ≤ 1e -2εn 1/p for all n large enough .

As in the proof of Lemma 6, we may write

log d(A n x, W n ) d(x, W 0 ) := M n + R n ,
where (M n ) n≥1 is a (centered) martingale with increments dominated by a variable in L p+1 and (R n ) n≥1 is such that there exists ℓ > 0 such that n≥1 P(R n ≥ -ℓn) < ∞ .

It is well-known, since p + 1 ≥ 2, that (M n ) n≥1 satisfies the strong law of large numbers (actually even the law of the iterated logarithm). Hence, we have, P ν -a.s. log d(A n x, W n ) ≤ -ℓn/2 for every n large enough . Finally, we infer that, for every ε, P ν -a.s., we have 1d 2 (A n x, ȳ) ≥ 1e -ℓne -ℓn 1e -2εn 1/p -(1e -2εn 1/p ) ≥ Ce -2εn 1/p , which is exactly what we wanted to prove.
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 21 Writing P 1 (•) := E(•|G 1 ) -E ν (•|G 0 ),and combining (4.20), (4.23) and (4.24) of [10], we infer that, ℓ p P 1 Z ℓ+k p

  Proposition 7 with Z := X1 . Notice that by (40) and Proposition 3 (see the remark after it), (27) holds. It follows that X1 + • • • + Xn = o n 1/p P-a.s.

  0 (B n,xn ))ϕ 0 (σ̟)w(d̟) does not converge to 0 as n → ∞. Now, if ψ is any bounded and Lipschitz function from C([0, 1]) to R, it follows frow the first assertion of Lemma 13 below that (48) lim n→∞ |E(ψ(B n,xn )) -E ν (ψ(B n ))| = 0 .

  ,x =ȳ P (R j (x, ȳ) ≥ -2ℓk) < ∞ , ,x =ȳ P(|M j (x, ȳ)| ≥ ℓk) < ∞ .

  sup x, x =1 log A n x -X S n,u ν(du) p = O n 1/p , if µ has a moment of order p ∈ [2, 3].The next step is to replace μn by µ n . To do this, we need to introduce(65) δ(x, ȳ) := | x, y | x y .It follows from Proposition 4.5 of[START_REF] Benoist | Central limit theorem for linear groups[END_REF] that if µ has a moment of order p > 1, then(66) sup v∈XX |log(δ(u, v))| p-1 ν(du) < ∞ .Now, from[START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF] pages 52-53, we know that there exists a random variable V (ω) with values in X, such that, for any x ∈ R d such that x = 1,0 ≤ log A nlog A n x ≤ |log δ(x, V )| .Integrating this inequality, we getlog A n -X S n,u ν(du) ∞ ≤ sup v∈X X |log(δ(u, v))| ν(du) < ∞the term on right hand being finite because µ has a moment of order 2. The result easily follows.

  Let x, y ∈ R d such that x = y = 1. We have log | A n x, y | = log A n x + log y + log | A n x, y | A n x y .

7.2. Proof of Proposition 7. We first give a maximal inequality in the spirit of Proposition 2 of [START_REF] Merlevède | Rosenthal-type inequalities for the maximum of partial sums of stationary processes and examples[END_REF]. The present form is just Proposition 4.1 of [START_REF] Cuny | Limit theorems under the Maxwell-Woodroofe condition in Banach spaces[END_REF].

Proposition 15. Let X ∈ L 1 (Ω, G 0 , P). For every k ≥ 0, write

). Then, for every integer d ≥ 0, we have (with the convention -1 k=0 = 0) (56) max

In particular, there exists C > 0, such that for every p ≥ 1,

By Hopf's dominated ergodic theorem (see Corollary 2.2 page 6 of [START_REF] Krengel | Ergodic theorems[END_REF]), for every f ∈ L 1 (Ω, P) and every k ∈ N,

Then, [START_REF] Peligrad | A new maximal inequality and invariance principle for stationary sequences[END_REF] follows from Proposition 15 combined with Proposition 2.1 of [START_REF] Cuny | ASIP for martingales in 2-smooth Banach spaces[END_REF].

Let us prove [START_REF] Peligrad | A maximal Lp-inequality for stationary sequences and its applications[END_REF]. Define M W p := {Z ∈ L p (Ω, G 0 , P) :

Hence, in any case, Q is a contraction on M W p . Writing

In particular, we see that Q is mean ergodic on M W p and has no non trivial fixed point (see e.g. Theorem 1.3 p. 73 of [START_REF] Krengel | Ergodic theorems[END_REF]), i.e., (59)

Now, by [START_REF] Peligrad | A new maximal inequality and invariance principle for stationary sequences[END_REF] and the Banach principle (see Proposition C.1 of [START_REF] Cuny | ASIP for martingales in 2-smooth Banach spaces[END_REF]) it is enough to prove [START_REF] Peligrad | A maximal Lp-inequality for stationary sequences and its applications[END_REF] for a set of elements of M W p that is dense, in particular on (I

is a martingalecoboundary decomposition in L p (Ω, P). Hence [START_REF] Peligrad | A maximal Lp-inequality for stationary sequences and its applications[END_REF] holds since Y • θ n = o(n 1/p ) P-a.s.

(by the Borel Cantelli-Lemma) and by the Marcinkiewicz-Zygmund strong law of large numbers for martingales with stationary differences in L p .

It remains to prove [START_REF] Rio | Inequalities for sums of dependent random variables under projective conditions[END_REF]. We shall apply once more (56). The L p -norm of the first two terms may be estimated thanks to Proposition 10. To estimate the L p -norm of the last term in (56), we just notice that max

7.3. Proof of Proposition 8.

.

Then, we have

Since R ∈ L p (Ω, F, P) it is a standard consequence of the Borel-Cantelli lemma that n -1/p R • θ n -→ 0 P-a.s. as n tends to infinity. Hence, it suffices to prove (30) with

Since D ∈ L p , it follows from Theorem 2.1 of Shao [START_REF] Shao | Almost sure invariance principles for mixing sequences of random variables[END_REF] (see the proofs of Corollaries 2.5, 2.7 and 2.8 in Cuny and Merlevède [START_REF] Cuny | Strong invariance principles with rate for "reverse" martingale differences and applications[END_REF]) that we only have to prove that: 

When p = 2, (60) follows from the ergodic theorem. Now, by Proposition 7 (the ergodicity of θ is not required) and using orthogonality of martingale increments, (60) holds provided that

Similary, using Theorem 5.2 of [START_REF] Cuny | Limit theorems under the Maxwell-Woodroofe condition in Banach spaces[END_REF], (61) holds provided that