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In 1998, Allouche, Peyrière, Wen and Wen considered the Thue-Morse sequence, and proved that all the Hankel determinants of the period-doubling sequence are odd integers. We speak of t-extension when the entries along the diagonal in the Hankel determinant are all multiplied by t. We prove that the t-extension of each Hankel determinant of the period-doubling sequence is a polynomial in t, whose leading coefficient is the only one to be an odd integer. Our proof makes use of the combinatorial set-up developed by Bugeaud and Han, which appears to be very suitable for this study, as the parameter t counts the number of fixed points of a permutation. Finally, we prove that all the t-extensions of the Hankel determinants of the regular paperfolding sequence are polynomials in t of degree less than or equal to 3.

Introduction

The Thue-Morse sequence (or the infinite Thue-Morse word, the Thue-Morse morphism) is widely studied in Theoretical Computer Science (see, for example, [START_REF] Moshe | On the subword complexity of Thue-Morse polynomial extractions[END_REF][START_REF] De Luca | Some combinatorial properties of the Thue-Morse sequence and a problem in semigroups[END_REF][START_REF] Séébold | On some generalizations of the Thue-Morse morphism[END_REF]) and has many applications in different fields. In 1998, Allouche, Peyrière, Wen and Wen considered the Thue-Morse sequence, and proved that all the Hankel determinants of the period-doubling sequence (which is derived from the Thue-Morse sequence) are odd integers [START_REF] Allouche | Hankel determinants of the Thue-Morse sequence[END_REF]. This result allowed Bugeaud [START_REF] Bugeaud | On the rational approximation to the Thue-Morse-Mahler numbers[END_REF] to prove that the irrationality exponents of the Thue-Morse-Mahler numbers are exactly 2.

In the present paper we are interested in trying to understand better why the late determinants are odd integers. We speak of t-extension when the entries along the diagonal in the Hankel determinant are all multiplied by t. We prove that the t-extension of each Hankel determinant of the period-doubling sequence is a polynomial in t, whose leading coefficient is the only one to be an odd integer. Clearly, our result generalizes the APWW theorem. The proof makes use of the combinatorial set-up developed by Bugeaud and Han [START_REF] Bugeaud | A combinatorial proof of the non-vanishing of Hankel determinants of the Thue-Morse sequence[END_REF].

The t-extension of the Hankel determinants introduced in the paper is a new concept for studying the automatic sequences. As another example, we prove that all the t-extensions of the Hankel determinants of the regular paperfolding sequence are polynomials in t of degree less than or equal to 3.

Hankel determinant is a very classical mathematical subject widely studied in Linear Algebra, Combinatorics, Number Theory and Algorithmics (see, for example, [START_REF] Ch | Advanced determinant calculus[END_REF][START_REF] Wimp | Hankel determinants of some polynomials arising in combinatorial analysis[END_REF][START_REF] Layman | The Hankel transform and some of its properties[END_REF][START_REF] Eğecioğlu | Evaluation of a special Hankel determinant of binomial coefficients[END_REF][START_REF] Eğecioğlu | A prime sensitive Hankel determinant of Jacobi symbol enumerators[END_REF]). Let x be an indeterminate. We identify each sequence c = (c 0 , c 1 , c 2 , . . .) with its generating function

C = C(x) = c 0 + c 1 x + c 2 x 2 + • • •
In general, the constant term c 0 will be equal to 1. For k ≥ 1 and p ≥ 0 let (1)

H p k (C) = H p k (c) := c p c p+1 • • • c p+k-1 c p+1 c p+2 • • • c p+k . . . . . . . . . . . . c p+k-1 c p+k • • • c p+2k-2
be the (p, k)-order Hankel determinant of the series C(x) or of the sequence c = (c 0 , c 1 , c 2 , . . .). We write H k (C) := H 0 k (C) for short. The Thue-Morse sequence e = (1, -1, -1, 1, . . .) can be defined by the generating function

(2) P 2 (x) = ∞ k=0 e k x k = ∞ k=0 (1 -x 2 k ).
Then, the period-doubling sequence d = (1, 0, 1, 1, 1, 0, . . .) is derived from the Thue-Morse sequence by defining

(3)

d k = 1 2 |e k -e k+1 | (k ≥ 0).
The result obtained by Allouche, Peyrière, Wen and Wen can be stated as follows [START_REF] Allouche | Hankel determinants of the Thue-Morse sequence[END_REF].

Theorem 1. For every positive integer k the Hankel determinant H k (d) of the period-doubling sequence d is an odd integer. In other words,

H k (d) ≡ 1 (mod 2). (4) 
Coons [START_REF] Coons | On the rational approximation of the sum of the reciprocals of the Fermat numbers[END_REF] considered the series

(5) G 0,0 (x) := ∞ n=0 x 2 n -1 1 -x 2 n
and proved that all the Hankel determinants H k (G 0,0 ) of the power series G 0,0 (x) are odd integers. As shown in [START_REF] Bugeaud | A combinatorial proof of the non-vanishing of Hankel determinants of the Thue-Morse sequence[END_REF], Coons's result is essentially equivalent to Theorem 1.

Let t be a parameter. We speak of t-extension when the entries along the diagonal in the (p, k)-order Hankel determinant are all multiplied by t. In other words, we define the t-Hankel determinant of the formal power series

C(x) = c 0 + c 1 x + c 2 x 2 + • • • (or of the sequence c = (c 0 , c 1 , c 2 . . .)) by (6) H p k (c, t) := H p k (C, t) := c p t c p+1 • • • c p+k-1 c p+1 c p+2 t • • • c p+k . . . . . . . . . . . . c p+k-1 c p+k • • • c p+2k-2 t .
Obviously, the above t-Hankel determinant ( 6) is a polynomial in t of degree less than or equal to k, which is equal to the traditional Hankel determinant (1) when t = 1. Again, we write H k (C, t) := H 0 k (C, t). Our main result is stated as follows.

Theorem 2. For every positive integer k the t-Hankel determinant H k (d, t) of the period-doubling sequence d is a polynomial in t of degree k, whose leading coefficient is the only one to be an odd integer. In other words, [START_REF] Coons | On the rational approximation of the sum of the reciprocals of the Fermat numbers[END_REF] H k (d, t) ≡ t k (mod 2).

In the following table we reproduce the first few values of the t-Hankel determinants of the period-doubling sequence d. We see that all the coefficients are even integers, except the coefficient of t k . When t = 1 we recover Theorem 1.

k H k (d, t) H k (d, t) (mod 2) H k (d, 1) 0 1 1 1 1 t t 1 2 t 2 t 2 1 3 t 3 -2t t 3 -1 4 t 4 -4t 2 t 4 -3 5 t 5 -6t 3 + 2t 2 + 4t t 5 1 6 t 6 -8t 4 + 4t 3 + 12t 2 -8t t 6 1 7 t 7 -12t 5 + 10t 4 + 24t 3 -24t 2 t 7 -1 8 t 8 -16t 6 + 16t 5 + 48t 4 -64t 3 t 8 - 15 
Actually, Theorem 1 has three proofs. The first one is due to Allouche, Peyrière, Wen and Wen by using determinant manipulation [START_REF] Allouche | Hankel determinants of the Thue-Morse sequence[END_REF], which consists of proving sixteen recurrence relations between determinants. The second one is a combinatorial proof derived by Bugeaud and Han [START_REF] Bugeaud | A combinatorial proof of the non-vanishing of Hankel determinants of the Thue-Morse sequence[END_REF]. The third proof is very short by using the Jacobi continued fraction algebra [START_REF] Han | Hankel determinant calculus for the Thue-Morse and related sequences[END_REF]. For proving Theorem 2 it seems the method used in the second proof is more suitable, as the parameter t counts the number of fixed points of permutations (see Equation ( 23)).

Some basic notations and properties on permutations and involutions are collected in Section 2, including the statement of the key combinatorial result, namely, Theorem 5. The proof of the main result (Theorem 2) is found in Section 3, after proving Theorem 5.

The regular paperfolding sequence r = (1, 1, 0, 1, 1, 0, 0, . . .) can be defined by the generating function [START_REF] Allouche | Automates finis en théorie des nombres[END_REF][START_REF] Allouche | Automatic sequences. Theory, Applications, Generalizations[END_REF] 

(8) G 0,2 (x) = n≥0 r n x n = ∞ n=0 x 2 n -1 1 -x 2 n+2 .
Coons and Vrbik conjectured [START_REF] Coons | An irrationality measure for regular paperfolding numbers[END_REF] and Guo, Wu and Wen [START_REF] Guo | On the irrationality exponent of the regular paperfolding numbers[END_REF] proved the following result.

Theorem 3. The parities of the Hankel determinants of the regular paperfolding sequence r are periodic of period 10. More precisely, we have

(9) (H k (r) (mod 2)) k≥0 = (1, 1, 1, 0, 0, 1, 0, 0, 1, 1) ω ,
where u ω is the infinite sequence obtained by repeating u an infinity of times (see, for example, [18, p.14]).

Our second result is stated next.

Theorem 4. For every positive integer k the t-Hankel determinant H k (r, t) of the regular paperfolding sequence r is a polynomial in t of degree less than or equal to 3.

Theorem 4 is proved in Section 4. In the following table we reproduce the first few values of the t-Hankel determinants of the regular paperfolding sequence r. We see that all the H k (r, t)'s are polynomials of degree less than or equal to 3.

k H k (r, t) k H k (r, t) 0 1 5 -t 3 + 2t 2 + 2t -2 1 t 6 2t 2 -2t -4 2 -1 7 3t 3 -6t 2 -7t + 6 3 -2t 8 -9t 2 + 12t + 16 4 -t 2 + 2t + 1 9 -15t 3 + 20t 2 + 46t -40
As earlier mentioned, Theorem 2 is a t-extension of Theorem 1. However, Theorem 3 cannot be obtained from Theorem 4 by specializing t = 1. The following problem remains unsolved.

Problem. Find a true t-extension of Theorem 3. In other words, find a property of the t-Hankel determinants of the regular paperfolding sequence, which implies relation (9) when t = 1.

Permutations and involutions

A combinatorial set-up, based on permutations and involutions, for studying the Hankel determinants of the period-doubling sequence was introduced in [START_REF] Bugeaud | A combinatorial proof of the non-vanishing of Hankel determinants of the Thue-Morse sequence[END_REF]. We propose a refinement of such a combinatorial set-up for studying t-Hankel determinants. The following infinite sets of integers play an important role. For each infinite set A let A| m be the finite set composed of the smallest m integers in A.

N = N = {0, 1, 2, 3, . . .}, J = {(2n + 1)2 2k -1 | n, k ∈ N} = {0, 2, 3, 4, 6, 8, 10, 11, 12, 14, . . .}, J * = {(2n + 1)2 2k -1 | n, k ∈ N, k > 0} = {3, 11, 15, 19, 27, 35, . . .}, K = N \ J = {(2n + 1)2 2k+1 -1 | n, k ∈ N} = {1, 5, 7, 9, 13, 17, . . .}, L = N \ J * = K ∪ {2n | n ∈ N} = {0, 1, 2,
Let S m = S {0,1,...,m-1} be the set of all permutations on N| m . A permutation is represented by the product of its disjoint cycles. For example, the permutation σ = (0, 5)(1)(2, 6, 3)(4, 8)( 7) is an element from S 9 . An involution is a permutation σ such that σ = σ -1 . Equivalently, a permutation σ is an involution if each cycle of σ is either a fixed point (b) or a transposition (c, d). For instance, σ = (0, 5)(1)(2, 6)(3)(4, 8)(7) ∈ S 9 is an involution.

Definition 1. For each set B, a transposition (c, d) is said "in B" if c + d ∈ B. In this case, we write (c, d) ∈ B.
Definition 2. For a non-negative integer k and two sets of positive integers A, B such that A is finite, let µ(A, k, B) be the number of involutions σ in S A having exactly k transpositions such that all transpositions of σ are in B.

The following key result is useful for proving Theorem 2 (see Section 3). Theorem 5. For m ≥ 1 and k ≥ 0, we have

(10) µ(N| m , k, J) ≡ 1 (mod 2), if k = 0; 0 (mod 2), if k ≥ 1.
The proof of Theorem 5 is given in Section 3, with the help of several lemmas stated in the end of this section. Lemma 6. For m ≥ 1 and k ≥ 0 we have [START_REF] Eğecioğlu | Evaluation of a special Hankel determinant of binomial coefficients[END_REF] µ(N| m , k, J) = µ(P | m , k, L) and ( 12)

µ(P | m , k, J * ) = µ(Q| m , k, J * ).
Proof. We define two transformations:

β : N → P ; ℓ → 2ℓ, if ℓ is even; 2ℓ + 1,
if ℓ is odd;

δ : P → Q; ℓ → ℓ + 1, if ℓ is even; ℓ -1, if ℓ is odd.
The transformation β is a bijection of N| m onto P | m , and can be extended to the set of all involutions on N| m by applying β on every letter of the involutions. For example β((7)(0, 5), ( 

β(c)+β(d) = 2c+2d+1 = 2×((2n+1)2 2k -1)+1 = (2n+1)2 2k+1 -1 ∈ L.
The converse is proved in the same manner. Thus, equation [START_REF] Eğecioğlu | Evaluation of a special Hankel determinant of binomial coefficients[END_REF] holds. The transformation δ is a bijection of P | m onto Q| m , and can be extended to the set of all involutions on P | m by applying δ on every letter of the involutions. For example δ((15)(0, 11)(12, 7)(4)(16, 3)(8)) = ( 14)(1, 10)(13, 6)(5)(17, 2)(9). (c,d) is in J * and c, d ∈ P , then one of the integers c, d is even, the other being odd. Hence,

If the transposition

δ(c) + δ(d) = c -1 + d + 1 = c + d ∈ J * .
Thus, equation ( 12) is proved. Lemma 7. For each k ≥ 0 we have

(13) µ(N| 2n , k, J * ) ≡ 0 (mod 2), if k is odd; µ(P | n , k/2, J * ) (mod 2), if k is even.
Proof. It is easy to see that, if c + d ∈ J * , then c + d ≡ 3 (mod 4). Thus, both c and d belong either to P or to Q. Hence,

µ(N| 2n , k, J * ) = i+j=k µ(P | n , i, J * ) µ(Q| n , j, J * ) (14) = i+j=k µ(P | n , i, J * ) µ(P | n , j, J * ). ( 15 
)
The last identity holds by Lemma 6. When k = 2ℓ + 1 is odd, the right-hand side of equation ( 15) is equal to

2 ℓ i=0 µ(P | n , i, J * ) µ(P | n , 2ℓ + 1 -i, J * ) ≡ 0 (mod 2). When k = 2ℓ is even, we have i+j=2ℓ µ(P | n , i, J * ) µ(P | n , j, J * ) = 2 ℓ-1 i=0 µ(P | n , i, J * ) µ(P | n , 2ℓ -i, J * ) + µ(P | n , ℓ, J * ) µ(P | n , ℓ, J * ) ≡ µ(P | n , k/2, J * ) (mod 2).

This completes the proof.

In what follows, the notation a ≡ b means that the integers a and b are congruent modulo 2 when nothing else is specified. Lemma 8. For m ≥ 1 and k ≥ 1 we have

(16) k i=0 µ(P | m , i, J * ) m -2i 2k -2i ≡ µ(P | m , k, L) (mod 2).
Proof. Recall that µ(A, k, B) is the number of involutions σ in S A having exactly k transpositions such that all transpositions of σ are in B.

For two disjoint sets of integers B 1 and B 2 , we define

µ(A, k 1 , k 2 , B 1 , B 2 )
to be the number of involutions σ in S A having exactly k 1 transpositions in B 1 and k 2 transpositions in B 2 such that all transpositions are in

B 1 ∪ B 2 . So that µ(A, 0, k 2 , B 1 , B 2 ) = µ(A, k 2 , B 2 ).
Let i and j be two non-negative integers such that 0 ≤ i ≤ j ≤ k. Consider the set I j of involutions σ on P | m having exactly j transpositions in J * and k -j transpositions in L and no other transposition. Then, the cardinality of I j is equal to µ(P | m , j, k -j, J * , L). A marked involution with i colored transpositions is obtained from an involution σ ∈ I j by coloring i transpositions among the j transpositions in J * . Let I i,j be the set of all those marked involutions with i colored transpositions. The cardinality of I i,j is equal to j i µ(P | m , j, k -j, J * , L). Hence, the cardinality of the set of all marked involutions I i,• = I i,i +

I i,i+1 + • • • + I i,k
, where the plus sign "+" means the disjoint union, is equal to [START_REF] Moshe | On the subword complexity of Thue-Morse polynomial extractions[END_REF] 

k j=i j i µ(P | m , j, k -j, J * , L).
On the other hand, the marked involutions in I i,• can be enumerated as follows. Consider the involutions on P | m that have exactly i transpositions in J * , which are said to be colored. There are µ(P | m , i, J * ) such involutions. Then randomly choose 2k -2i letters from the remaining m -2i original fixed points on P | m , to generate another k -i transpositions, which are either in J * or in L. We get a marked involution which has exactly i + (k -i) = k transpositions. Hence, the cardinality of the set I i,• is equal to ( 18)

µ(P | m , i, J * ) m -2i 2k -2i (2k -2i -1)(2k -2i -3) • • • 3 • 1.
Hence, the two quantities ( 17) and ( 18) are equal. We have successively

k i=0 µ(P | m , i, J * ) m -2i 2k -2i ≡ k i=0 µ(P | m , i, J * )[ m -2i 2k -2i (2k -2i -1)(2k -2i -3) • • • (3)(1)] = k i=0 k j=i j i µ(P | m , j, k -j, J * , L) = k j=0 ( j i=0 j i )µ(P | m , j, k -j, J * , L) = k j=0 2 j µ(P | m , j, k -j, J * , L) ≡µ(P | m , 0, k, J * , L) =µ(P | m , k, L).
This completes the proof.

Remark. The only property on L and J * actually required for the proof of Lemma 8 is that they are complementary. In other words, we have the following more general statement ( 1 ). Lemma 9. For any finite set A ⊂ N, any set B ⊂ N and any positive integer k ≥ 1 we have

k i=0 µ(A, i, B) #A -2i 2k -2i ≡ µ(A, k, N \ B) (mod 2),
where #A denotes the cardinality of the set A.

Proofs of Theorems 5 and 2

Firstly, we establish two lemmas about congruences for binomial coefficients.

Lemma 10. For n, k ≥ 0 we have

(19) i+j=k n 2i n 2j ≡ 0 (mod 2), if k is odd; n k (mod 2), if k is even. Proof. If k = 2ℓ + 1 is odd, then i+j=2ℓ+1 n 2i n 2j = 2 ℓ i=0 n 2i n 4ℓ + 2 -2i ≡ 0 (mod 2). If k = 2ℓ is even, then i+j=2ℓ n 2i n 2j = 2 ℓ-1 i=0 n 2i n 4ℓ -2i + n 2ℓ n 2ℓ ≡ n k (mod 2).
This completes the proof.

Lemma 11. For n, m, k ≥ 0 such that n + m is odd, we have

i+j=k n 2i

m 2j ≡ n + m 2k (mod 2).
Proof. We have

n + m 2k = i+j=2k n i m j [Vandermonde's identity] = i+j=k n 2i m 2j + i+j=k-1 n 2i + 1 m 2j + 1 .
Since 2a 2b+1 is even for any positive integers a and b [START_REF] Lucas | Sur les congruences des nombres eulériens et les coefficients différentiels des functions trigonométriques suivant un module premier[END_REF],

(21) n 2i + 1 m 2j + 1 ≡ 0 (mod 2),
if n or m is even. This is true because n + m is odd. Equation ( 20) holds.

Secondly, we prove Theorem 5 by induction.

Proof of Theorem 5. When k = 0, the quantity µ(N| m , k, J) counts the involutions σ without any transposition. It means that every letter of σ is a fixed point, so that µ(N| m , 0, J) = 1.

To prove identity [START_REF] Eğecioğlu | A prime sensitive Hankel determinant of Jacobi symbol enumerators[END_REF] for k ≥ 1 proceed by induction on m. Clearly µ(N| m , k, J) ≡ 0 (mod 2) for k ≥ 1 and m = 1, 2. Notice that any transposition of type (even, even) or (odd, odd) is in J since J contains all even integers. Let k 1 + k 2 = k. An involution σ having exactly k transpositions in J can be generated from an involution τ having exactly k 1 transpositions in J * by adding k 2 transpositions in J \ J * = {2n | n ∈ N}. The latter k 2 transpositions are of type (even, even) or (odd, odd), and are easy to count by using binomial coefficients. Two cases are to be considered.

(i) When m = 2n is even and k ≥ 1 we have

µ(N| 2n , k, J) = k 1 +k 2 =k µ(N| 2n , k 1 , J * ) i+j=k 2 n -k 1 2i (2i -1)(2i -3) • • • 1 × n -k 1 2j (2j -1)(2j -3) • • • 1 ≡ k 1 +k 2 =k µ(N| 2n , k 1 , J * ) i+j=k 2 n -k 1 2i n -k 1 2j (mod 2).
If k is odd, then one of the k 1 , k 2 is odd and the other is even. By Lemma 10 and Lemma 7, µ(N| 2n , k, J) ≡ 0 (mod 2). If k = 2ℓ is even, then

µ(N| 2n , k, J) = k 1 +k 2 =2ℓ µ(N| 2n , k 1 , J * ) i+j=k 2 n -k 1 2i n -k 1 2j ≡ k 1 +k 2 =ℓ µ(N| 2n , 2k 1 , J * ) i+j=2k 2 n -2k 1 2i n -2k 1 2j [By Lemma 7] ≡ k 1 +k 2 =ℓ µ(P | n , k 1 , J * ) n -2k 1 2k 2 
[By Lemmas 7 and 10]

≡ µ(P | n , ℓ, L) [By Lemma 8] = µ(N| n , k/2, J)
[By Lemma 6] ≡ 0 (mod 2).

[By induction] (ii) When m = 2n + 1 is odd and k ≥ 1, we successively have

µ(N| 2n+1 , k, J) = k 1 +k 2 =k µ(N| 2n+1 , k 1 , J * ) i+j=k 2 n + 1 -k 1 2i (2i -1)(2i -3) • • • 1 × n -k 1 2j (2j -1)(2j -3) • • • 1 ≡ k 1 +k 2 =k µ(N| 2n+1 , k 1 , J * ) i+j=k 2 n + 1 -k 1 2i n -k 1 2j ≡ k 1 +k 2 =k µ(N| 2n+1 , k 1 , J * ) 2n + 1 -2k 1 2k 2 ,
where the last identity is obtained by using Lemma 11. As mentioned in the proof of Lemma 7, two integers c and d such that c + d ∈ J * belong either to P or to Q. If m ≡ 1 (mod 4), then N| 2n+1 = P | n+1 + Q| n (recall that the plus sign "+" means the disjoint union) and where the last identity is obtained by Lemma 6. Hence

µ(N| 2n+1 , k 1 , J * ) =
µ(N| 2n+1 , k, J) ≡ k 1 +k 2 =k r+s=k 1 µ(P | n+1 , r, J * )µ(Q| n , s, J * ) 2n + 1 -2k 1 2k 2 .
Applying Lemmas 6 and 11 to the above quantity we get

µ(N| 2n+1 , k, J) ≡ k 1 +k 2 =k r+s=k 1 µ(P | n+1 , r, J * )µ(P | n , s, J * ) × i+j=k 2 n + 1 -2r 2i n -2s 2j = r+s+i+j=k µ(P | n+1 , r, J * ) n + 1 -2r 2i µ(P | n , s, J * ) n -2s 2j = k 1 +k 2 =k r+i=k 1 µ(P | n+1 , r, J * ) n + 1 -2r 2i × s+j=k 2 µ(P | n , s, J * ) n -2s 2j ≡ k 1 +k 2 =k µ(P | n+1 , k 1 , L)µ(P | n , k 2 , L) [By Lemma 8] ≡ k 1 +k 2 =k µ(N| n+1 , k 1 , J)µ(N| n , k 2 , J).
[By Lemma 6] ≡ 0 (mod 2).

[By induction]

This completes the proof.

Lastly, Theorem 2 on the t-extensions of the Hankel determinants of the period-doubling sequence is proved as follows. Keep in mind the infinite set J = {(2n + 1)2 2k -1|n, k ∈ N} = {0, 2, 3, 4, 6, 8, 10, 11, 12, 14, . . .}, and the period-doubling sequence d = (1, 0, 1, 1, 1, 0, . . .) defined by:

d k = 1 2 |e k -e k+1 | (k ≥ 0).
In [START_REF] Allouche | A relative of the Thue-Morse sequence[END_REF] Allouche et al. proved the following result (see also [START_REF] Bugeaud | A combinatorial proof of the non-vanishing of Hankel determinants of the Thue-Morse sequence[END_REF]).

Lemma 12. For k ≥ 0, the integer d k is equal to 1 if, and only if, k is in J.

Proof of Theorem 2. It is well known that the Leibniz formula expresses the determinant of a square matrix A = (a ij ) i,j=0,...,k-1 in terms of permutations:

(22) det(A) = σ∈S k (-1) inv(σ) a 0,σ(0) a 1,σ(1) • • • a k-1,σ(k-1) ,
where inv(σ) is the number of inversions of σ defined by

inv(σ) = #{(i, j) | 0 ≤ i < j ≤ k -1, σ(i) > σ(j)}.
Let k be a positive integer and D(x) be the generating function of the period-doubling sequence is equal to 1 if i + σ(i) ∈ J for i = 0, 1, . . . , k -1, and is equal to 0 otherwise. Let σ be a permutation such that σ = σ -1 . We have inv(σ) = inv(σ -1 ) and fix(σ) = fix(σ -1 ). Accordingly, they have the same contribution to summation (23), and can be deleted. Hence where the sum is over the set of all involutions σ on N| k . Notice that each of the fixed points of an involution σ produces a 1 factor in the product (24) as all even numbers are in J. By (25) and Theorem 5,

D(x) = n≥0 d n x n = 1 + x 2 + x 3 + x 4 + x 6 + • • • By (22),
H k (D, t) ≡ ⌊k/2⌋ i=0 t k-2i µ(N| k , i, J) ≡ t k µ(N| k , 0, J) = t k .
This completes the proof. Notice that, for each integer m in the set R, there are unique integers n and k such that (4k + 1)2 n -1 = m. Recall the regular paperfolding sequence r = (r k ) k≥0 defined by [START_REF] Coons | An irrationality measure for regular paperfolding numbers[END_REF]. The following lemma is a well-known description of the regular paperfolding sequence (see, for example, [4, Theorem 6.5.2]). Its proof is included for the sake of completeness.

Lemma 13. For each k ≥ 0 the integer r k is equal to 1 if and only if k is in R, and is equal to 0 otherwise.

Proof. By definition of (8), we have

G 0,2 (x) = n≥0 r n x n = ∞ n=0 x 2 n -1 1 -x 2 n+2 = ∞ n=0 x 2 n -1 k≥0 (x 2 n+2 ) k = n,k≥0 x 4k•2 n +2 n -1 .
Thus the lemma holds.

  4, 5, 6, 7, 8, 9, 10, 12, . . .}, P = {k | k ≡ 0, 3 (mod 4)} = {0, 3, 4, 7, 8, 11, 12, 15, 16, . . .}, Q = {k | k ≡ 1, 2 (mod 4)} = {1, 2, 5, 6, 9, 10, 13, 14, 17, . . .}.

  ) = (15)(0, 11)(12, 7)(3)[START_REF] Lucas | Sur les congruences des nombres eulériens et les coefficients différentiels des functions trigonométriques suivant un module premier[END_REF][START_REF] Allouche | Automatic sequences. Theory, Applications, Generalizations[END_REF][START_REF] Coons | An irrationality measure for regular paperfolding numbers[END_REF]. We now claim that, for any c, d ∈ N| m , the transposition (c, d) is in J if and only if (β(c), β(d)) is in L. The proof of this claim works by distinguishing the parities of c and d: (i) if c and d are even, then β(c) = 2c and β(d) = 2d, so that β(c) + β(d) is even and is in L; (ii) if c and d are odd, then β(c) = 2c + 1 and β(d) = 2d + 1, so that β(c) + β(d) is even and is in L; (iii) if c + d ∈ J and one of the integers c, d is even, the other being odd. Then,

r+s=k 1 µ 1 µ

 11 (P | n+1 , r, J * )µ(Q| n , s, J * ). If m ≡ 3 (mod 4), then N| 2n+1 = P | n + Q| n+1 and µ(N| 2n+1 , k 1 , J * ) = r+s=k 1 µ(Q| n+1 , r, J * )µ(P | n , s, J * ) = r+s=k (P | n+1 , r, J * )µ(Q| n , s, J * ),

  the t-Hankel determinant H k (D, t) is equal to (23) σ∈S k t fix(σ) (-1) inv(σ) d 0+σ(0) d 1+σ(1) • • • d k-1+σ(k-1) ,where fix(σ) is the number of fixed points of σ defined byfix(σ) = #{i | 0 ≤ i ≤ k -1, σ(i) = i}.By Lemma 12 the product (24)d 0+σ(0) d 1+σ(1) • • • d k-1+σ(k-1)

  (25)H k (D, t) ≡ σ t fix(σ) d 0+σ(0) d 1+σ(1) • • • d k-1+σ(k-1) (mod 2),

4 .

 4 Regular paperfolding sequenceWe define the infinite setR = {(4k + 1)2 n -1 | n, k ∈ N} = {0, 1,3, 4, 7, 8, 9, 12, 15, 16, . . .}.
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Proof of Theorem 4. As discussed in Section 3, the t-Hankel determinant H k (r, t) is equal to (26) σ∈S k t fix(σ) (-1) inv(σ) r 0+σ(0) r 1+σ(1) • • • r k-1+σ(k-1) .

By Lemma 13 the product

and is equal to 0 otherwise. Recall the three representations for permutations: the one-line, twoline and product of disjoint cycles. For example, we write σ ∈ S 9 = 516280374 = 012345678 516280374 = (0, 5)(1)(2, 6, 3)(4, 8) [START_REF] Coons | On the rational approximation of the sum of the reciprocals of the Fermat numbers[END_REF].

Consider a permutation σ such that the associated product ( 27) is nonzero having at least 4 fixed points, i.e., fix(σ) ≥ 4. It is easy to see that an even number m is in R if and only if m ≡ 0 (mod 4), so that all fixed points are even. Since the number of odd integers in {0, 1, . . . , k -1} is equal to ⌊k/2⌋, there are at least 3 columns of type odd odd in the two-line representation of the permutation σ. Let i 1 j 1 , i 2 j 2 and i 3 j 3 be the first three such columns. By the Pigeonhole Principle, there are at least two numbers among j 1 , j 2 , j 3 which are congruent modulo 4. Without loss of generality, we assume that j 1 and j 2 are congruent modulo 4. (When all three numbers are congruent, we also choose j 1 and j 2 ). We define another permutation τ obtained from σ by exchanging j 1 and j 2 in the bottom line, i.e., τ = (j 1 , j 2 ) • σ. This procedure is reversible. By comparing the two permutations σ and τ we have the following properties:

(1) inv(σ) = inv(τ ) ± 1, so that (-1) inv(σ) = -(-1) inv(τ ) .

(2) i 1 + j 2 ∈ R and i 2 + j 1 ∈ R. Since i 1 + j 1 and i 2 + j 2 are in R and are even, hence must be congruent to 0 modulo 4. Consequently, i 1 + j 2 and i 2 + j 1 are congruent to 0 modulo 4 and are in R.

(3) fix(σ) = fix(τ ), i.e., no fixed point has been created. Since i 1 + j 2 , i 2 + j 1 are congruent to 0 modulo 4 (see above item) and i 1 , i 2 , j 1 , j 2 are odd integers, we have i 1 = j 2 and i 2 = j 1 .

Thus, the contributions by σ and τ in the summation (26) compensate each other. We can delete the pair {σ, τ } from the symmetry group S k . The value of the t-Hankel determinant H k (r, t) defined by (26) does not change. After deleting all the permutations such that fix(σ) ≥ 4, all remaining permutations have at most 3 fixed points. Hence, the t-Hankel determinant H k (r, t) is a polynomial in t of degree less than or equal to 3.