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Abstract

Evaluating the performance of computer vision algorithms is classically done by reporting classification error or accuracy, if
the problem at hand is the classification of an object in an image, the recognition of an activity in a video or the categorization
and labeling of the image or video. If in addition the detection of an item in an image or a video, and/or its localization are
required, frequently used metrics are Recall and Precision, as well as ROC curves. These metrics give quantitative performance
values which are easy to understand and to interpret even by non-experts. However, an inherent problem is the dependency
of quantitative performance measures on the quality constraints that we need impose on the detection algorithm. In particular,
an important quality parameter of these measures is the spatial or spatio-temporal overlap between a ground-truth item and a
detected item, and this needs to be taken into account when interpreting the results.

We propose a new performance metric addressing and unifying the qualitative and quantitative aspects of the performance
measures. The performance of a detection and recognition algorithm is illustrated intuitively by performance graphs which
present quantitative performance values, like Recall, Precision and F-Score, depending on quality constraints of the detection.
In order to compare the performance of different computer vision algorithms, a representative single performance measure is
computed from the graphs, by integrating out all quality parameters. The evaluation method can be applied to different types of
activity detection and recognition algorithms. The performance metric has been tested on several activity recognition algorithms
participating in the ICPR 2012 HARL competition.

Keywords: Performance evaluation, performance metrics, activity recognition and localization, competition

1. Introduction and related work

Applications such as video surveillance, robotics, source se-
lection, video indexing often require the recognition of ac-
tions and activities based on the motion of different actors
in a video, for instance, people or vehicles. Certain applica-
tions may require assigning activities to one of the predefined
classes, while others may focus on the detection of abnormal

or infrequent unusual activities. This task is inherently more
difficult than more traditional tasks like object recognition in
static images, for a number of reasons. Activity recognition
requires space-time segmentation and extraction of motion in-
formation from the video in addition to the color and texture
information. Second, while object appearances in static scenes
also vary under imaging conditions such as viewpoint, occlu-
sion, illumination, the variability in the temporal component of
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human actions is even greater, as camera motion, action length,
subject appearance and style must also be taken into account.
Finally, the characteristics of human behavior are less well un-
derstood.

Early work in this area had focused on classification of hu-
man activities, and the first works classified videos where one
subject performed a single type of action. More recently, re-
search has focused on more realistic and therefore challenging
problems involving complex activities, including interactions
with objects and/or containing multiple people and multiple
activities. Detecting and localizing activities have therefore
become as important as their classification. Evaluating detec-
tion and localization performance is inherently not straightfor-
ward and goes beyond simple measures like classification ac-
curacy.

Indeed, evaluation of algorithms for the detection and lo-
calization of acting subject(s) within a scene is a non-trivial
task. Typically, a detection result is evaluated by comparing
the spatial support of the detected entity (a bounding box or a
list of bounding boxes corresponding to a region in space-time)
with its ground-truth space-time support. The commonly used
measures, Recall, Precision and F-Score, must be computed in
terms of the overlap proportions of these two supports. How-
ever, these measures have a serious limitation: depending on
the way they are calculated, they either convey information
on (i) the correctly detected proportions of the spatial support
of the entity of interest, i.e., a qualitative evaluation, or (ii)
the correctly detected proportion of the set of entities, i.e., a
number of entities, a quantitative evaluation measure. In other
words, quantitative measures relate to the recall and precision
figures of activities; qualitative measures relate to how reliably
activities are detected, how much of their spatial/temporal sup-
ports are recovered. It is easy to see that (ii) depends on (i), as
the amount of correctly recognized entities depends on the de-
tection quality we require for a recognition to be considered as
correct. This paper addresses these issues.

The key contributions of the paper are the following:

• A new evaluation procedure is proposed for action local-
ization which separately measures detection quality and
detection quantity, and which identifies the dependency
between these two concepts.

• Performance graphs are introduced that show the changes
in quantity as a function of quality. The usefulness of
these graphs to characterize the behavior of detection and
localization algorithms is shown over recent algorithms.

Figure 1: Samples frames from one of the videos of the LIRIS / ICPR HARL
2012 dataset, as shot from a camera mounted on a mobile robot. This ex-
ample contains 3 actions : 2 discussion actions (one on the blackboard, one
between two sitting people), and one person typing on a keyboard. Clutter-
ing motion is produced by other people in the background (last row).

• A single performance measure is proposed, which inte-
grates out quality constraints and which enables the rank-
ing of different algorithms.

• Soft upper bounds for the ranking measure and for the
performance graphs are estimated from experimental data
containing multiple annotations.

• Experiments show that the ranking measure is robust to
annotator noise, that is variations among different anno-
tators, while keeping a high discriminative power.

• The LIRIS human activities dataset is introduced. It has
been designed specifically for the problem of recogniz-
ing complex human actions from depth data in a realis-
tic surveillance setting and in an office environment. It
has already been used for the ICPR 2012 human activ-
ities recognition and localization competition1 (HARL).
Figure 1 shows some example frames from this dataset.

• We briefly describe the entry algorithms in the ICPR 2012

1http://liris.cnrs.fr/harl2012
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HARL competition and we report the evaluation results
of the proposed performance metric2 over these entries,
as well as over other baseline algorithms.

The rest of this section describes existing related metrics in
the literature for activity recognition and the datasets which
employ them. In Section 2, our main contributions, namely,
the performance metric and the performance graphs are in-
troduced. Section 3 describes the LIRIS / ICPR 2012 HARL
dataset, and section 4 illustrates the application of the proposed
evaluation metric to the competition entries. Section 5 con-
cludes.

1.1. Related metrics and datasets
Standardized performance metrics and datasets are invaluable
for experimental assessment and performance comparisons of
different algorithms, to guide the selection of proper solutions
in practical applications. Much work has been done in an effort
to generate a standard testbed for action detection and recog-
nition systems.

Metrics — Arguably the most widely used measures for
performance comparison of algorithms and datasets in the
computer vision community are (i) Accuracy, as calculated
from a confusion matrix, and (ii) Precision, Recall and the
resulting F-measure. The former is only applicable to pure
classification problems where detection and localization do
not come into play. The latter measure both detection and
recognition performance, and indirectly the localization per-
formance. However they depend on certain quality constraints
where a given detection must be sufficiently reliable in order
to be taken into account.

A measure related to the Precision, Recall and F-measure
class is Receiver Operating Characteristics (ROC) curves.
These curves plot the true positive rate (related to Recall) ver-
sus the false alarm rate (related to Precision) parametrically
as a function of the detection threshold. While these curves
are very useful to illustrate the behavior of a method’s perfor-
mance over a range of operating parameters, they have two
limitations. First, they can only be applied in cases where the
evaluated methods can be controlled in some way, or when a
confidence measure is available for each detection. Second,
ROCs are applicable to binary decision problems.

Examples of cases where accuracy was used to reflect clas-
sification performance are the early datasets, such as KTH

2The term metric used in the context of performance evaluation is only
loosely related to the mathematical meaning of the term metric. In particular,
the triangular inequality is not supposed to hold for metrics in this context.

[1], Weizmann [2], Hollywood [3], Hollywood-2 [4], Olympic
Sports [5] and others. In these datasets, each video corre-
sponds to a single action from some class, which needs to be
recognized.

Criteria of the Precision, Recall, F-measure variety measure
correct detection performance (the number of items detected)
in terms of Recall, and false alarm rate (the clutter generated
by imprecise detection. )

The earliest attempts for standardized performance evalua-
tion were the Video Analysis and Content Extraction project
(VACE) [6] and the Performance Evaluation of Tracking and
Surveillance workshop series (PETS) [7]. The aim of VACE
project was detecting and tracking text, faces and vehicles in
video sequences, where two performance metrics were used
[8]: a spatial frame-level measure and a spatio-temporal mea-
sure, based on the overlap between the detected object and the
ground truth in the space and spatio-temporal domains, respec-
tively. The PETS workshop series focused on object track-
ing as well as event recognition and crowd analysis. Perfor-
mance metrics were defined in terms of the number of frames
in which the object was tracked, the overlap between bound-
ing boxes and the average chamfer distance. In the same vein,
the TRECVid series [9] proposed an evaluation protocol based
on temporal alignment and the two measures, called Detection
Cost Rate (DCR) and Detection Error Tradeoff (DET). While
DCR was defined as a linear combination of missed detections
and false alarms, the temporal alignment relied on the Hungar-
ian algorithm to find a one-to-one mapping between the system
output and ground truth. The ETISEO project (Evaluation du
Traitement et de l’Interpretation de Sequences Video) evalu-
ated the results with several criteria amongst which were object
localization, object shape quality, tracking time, object ID per-
sistence and object ID confusion. The results were given in the
form of ROC curves. In the CLEAR project [10], the metrics
used in VACE were improved by splitting accuracy and local-
ization error into two separate measures for a detailed failure
analysis. Finally, a recent survey on the performance evalua-
tion of vision based human activity recognition can be found
in [11].

An interesting special case are action similarity based met-
rics, a principle introduced for the ASLAN dataset in [12]. In-
stead of assigning each activity to one of a (possibly large) set
of classes, pairs of activities taken and classified as same or not
same. This approach has several advantages: the ambiguity in-
herent in partitioning a set into multiple classes is addressed;
the test set can contain actions which are very different from
the ones in the training set; and, finally, similarity search is an
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application in itself, for instance in retrieval scenarios. On the
other hand, the recognition of a specific activity class may be
required for certain applications, as for instance surveillance
and user interfaces. A classification problem can of course be
solved through similarity learning, as done in [12]. However,
depending on the specific task, no clear winner can be declared
between direct classification and classification through similar-
ity learning.

For completeness we also mention a class of related prob-
lems, namely detection and recognition of continuous activi-
ties. Here, the unit of evaluation is the unsegmented whole
video, in which continuous streams of activities can occur.
Evaluation of this variant needs metrics adapted to the prob-
lem. In [13], a measure is proposed based on alignment. It
introduces six different error types: insertion, deletion, merge,
fragmentation, underfill and overfill. These errors are consoli-
dated into a segment error table, which can also be visualized
in a diagram as a percentage of the total duration [14]. An im-
provement of this diagrams makes the performance measures
invariant to class skew, as different activities by nature can
have different duration times [15]. In [16], several measures
are calculated on different levels: frame-level, event-level and
segment-level. In [17] Recall, Precision and F-Score are cal-
culated from lower level error measures like substitution, oc-
currence, timing and segmentation. However, these error met-
rics focus on temporal aspects ignoring the spatial location of
activities.

All the metrics described above necessarily need somehow
to integrate the detection quality measures, which are in our
case determined through spatial/temporal overlap of action
bounding boxes, to obtain informed quantitative measures of
the number of actions detected.

Datasets — Human activity recognition in videos has a
wide range of application areas such as biometrics, content-
based video analysis, security and surveillance, human-
computer interaction, forensics, and ambient intelligence.
These different focuses have spawned several different types of
datasets. The available datasets have been extensively studied
in a recent survey [18]. Here, we only recall the most promi-
nent ones.

The earliest datasets have focused on simple periodic ac-
tions, e.g., running, walking, boxing, hand-clapping etc. with
usually uniform background and static camera. Each video se-
quence included a single person performing only one action.
Typical examples are the KTH dataset [1] and the Weizmann
dataset [2]. Presently, these datasets seem to be saturated in
that the performances of the most recent methods reached or

approach 100% accuracy. More complex actions and clut-
tered and dynamic backgrounds are part of the CAVIAR [19],
ETISEO [20], UIUC [21] and MSR [22] action datasets, where
the recordings took place in shopping centers, hallways, metro
stations or in streets.

More realistic datasets include videos of a series of actions
or concurrent actions performed by one or more person. These
activities or events are closer to the ones in real-world scenes
and are generally collected for surveillance purposes. In this
context, sample datasets that focus person-person interaction
are CAVIAR [19], BEHAVE [23], CASIA [24], i3DPost [25],
TV Human Interactions [26], UT-Interaction [27], VideoWeb
[28] datasets. Several datasets feature crowd behavior, for in-
stance PETS 2009 [29], ETISEO [20], or group activities, for
instance BEHAVE [23] and Collective Activity [30]. Person-
object interactions were addressed by CASIA [24], where the
object can be a car, door, telephone, baggage etc. Finally, daily
activities in a natural kitchen environment are dealt by the Uni-
versity of Rochester Activities of Daily Living Dataset [31] and
the relatively more challenging TUM Kitchen [32] dataset.

Multi-view datasets include several simultaneous views
for each scene: BEHAVE [23], CASIA [24], CAVIAR [19],
ETISEO, [20], IXMAS [33], i3DPost [25], MuHaVi [34], UCF-
ARG [35], VideoWeb [28] and Multiple Cameras Fall [36].
Aerial views are handled by UCF Aerial [37] and UCF-
ARG [35].

Many datasets can be defined as “controlled” in that they
are collected within the framework of a defined experimen-
tal setup. Uncontrolled databases, on the other hand, are
collected without any constraints, and they are appropriately
called sometimes “actions in the wild”. Recently, datasets
collected from Youtube, dailymotion and broadcast television
channels, and movies have aroused a lot of interest. First, be-
cause they provide more realistic and challenging scenes, and
second, due to the huge amount of web sources in contrast to
the laborious process of building controlled databases. These
datasets exhibit much larger variability as compared to the con-
trolled datasets in their background, camera view angle, cam-
era motion, resolution, illumination, environmental conditions,
etc. and also include confounding factors such as randomness
in the action rate, style, posture and clothing of the subjects.
Prominent examples of wild datasets are ASLAN [12], BE-
HAVE [23], HMDB51 [38], Hollywood [3], Hollywood-2 [4],
Olympic Sports [5], TV Human Interaction [26], UCF Youtube
[39], UCF Sports, UCF 50 [40] and UCF 101 [41].

The recent introduction of low-cost depth cameras, e.g., Mi-
crosoft Kinect, Asus Xtion, Primesense Carmine and Capri,

4



has created wide spread interest in activity recognition from
depth sequences. Depth data potentially mitigates the limi-
tations encountered in the presence of uncontrolled lighting,
camera view variations, camera motion and complex colored
backgrounds etc. Processing data in 3D also makes alterna-
tive representations possible, based on depth maps or point
clouds. The downside is that the current technology only al-
lows detecting objects within a short distance to the depth
sensor, i.e., it is reliable within 3-4 meters. There is a con-
siderable amount of publicly available 3D datasets, so-called
“RGB-D” or “multi-modal” datasets, in the literature. Among
these one can mention MSR Gesture 3D [42], MSRC-12 Kinect
Gesture Dataset [43] and the ChaLearn Gesture Dataset [44].
The latter focuses on gesture recognition and body sign lan-
guage understanding. Basic actions such as jumping, hand
clapping, stand up etc. are handled in the Berkeley Multimodal
Human Action Database (MHAD) [45] as well as in the Flo-
rence3D Dataset [46]. The recognition of daily activities is
addressed in the Cornell Human Activities dataset [47], the
RGBD-HuDaAct dataset [48] and the MSR Daily Activity 3D
dataset [42]. Finally, person-person interactions are provided
in the SBU-Kinect-Interaction dataset [49].

Up to our knowledge, only two datasets exist, which con-
tain spatial annotations in form of bounding boxes, and which
are activity recognition datasets (as opposed to object track-
ing datasets with event detection components, like the afore
mentioned PETS [7] series and others). These two datasets are
the Hollywood Localization Dataset (HLD [50] and the Cof-
fee and Cigarettes Dataset (CC) [51]. They both contain the
starting and end frame number, as well as a single bounding
box for a single frame of each activity. For the HLD it is the
middle frame, whereas for the CC dataset it is the frame where
the hand touches the head in the drinking and smoking activ-
ities. The limited spatial information is sufficient for the ac-
tivities targeted by the two datasets. However, in our targeted
and more complex scenarios, people move and the camera may
move. In this configuration, continuous localization is impor-
tant.

The LIRIS Human Activities dataset described in this paper
addresses and combines several issues, providing a realistic
and complex dataset featuring the following aspects and de-
grees of difficulty: (i) multi-modality, since both RGB and D
channels are available; (ii) human-human interactions, human-
object interactions and human-human-object interactions; (iii)
a moving camera installed on a mobile robot; (iv) similar ac-
tion classes which require integration of context; (v) full lo-
calization information with bounding boxes available for each

individual frame of each activity.

2. The performance metric

We propose a new performance metric for algorithms that de-
tect and recognize complex activities in realistic environments.
The goals of these algorithms are:

• To detect relevant human behavior in midst of motion
clutter originating from unrelated background activity,
e.g., other people walking past the scene or other irrel-
evant actions;

• To recognize detected actions among the given action
classes;

• To localize actions temporally and spatially;

• To be able to manage multiple actions in the scene occur-
ring in parallel in space and in time.

The ground truth data has been annotated by marking labeled
bounding boxes in each frame of each action. In particular, we
assume that the ground truth annotation has segmented action
occurrences, grouping all frames and bounding boxes of any
one action. In other words, an action consists of a list of bound-
ing boxes, where each bounding box corresponds to a frame.
Actions consist of consecutive frames, and no frame drops are
allowed in the sequence. Detection results are assumed to be
in the same format. This makes it possible to provide more
meaningful Recall and Precision values — indeed, a Recall of
90% is easier to interpret if it precisely tells us that 90% of the
actions have been correctly detected.

Without this segmentation, performance measures would
need to be computed on frame level and therefore would be
ambiguous. In absence of segmented activities, the example of
a Recall of 90% on frame level could be interpreted as anything
of the following possibilities :

• 90% of the action bounding boxes have been correctly
detected on 100% of the activities; a very unlikely case;

• 100% of the action bounding boxes have been correctly
detected on 90% of the activities, a very unlikely case;

• a mixture between the first two cases; this is the general
case.

The goal of the evaluation scheme is to measure a match be-
tween the annotated ground-truth and the outcome of an algo-
rithm, i.e., between:
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• A list G of ground truth actions Gv,a, where Gv,a corre-
sponds to the ath action in the vth video and where each
action consists of a set of bounding boxes Gv,ab marked
with one and the same class.

• A list D of detected actions Dv,a, where Dv,a corre-
sponds to the ath action in the vth video and where each
action consists of a set of bounding boxes Dv,a

b marked
with one and the same class.

The objective is to measure the degree of similarity between
the two lists. The measure should penalize two aspects, first,
information loss, which occurs if whole actions or their spa-
tial or temporal parts of actions have not been detected, and
second, information clutter due to false alarms or bounding
box detections which are in excess of the ground-truth. The
proposed measure is inspired by a similarity measure used for
object recognition in images [52], and is designed to satisfy
the following goals:

1. The metric should provide a quantitative evaluation: it
should indicate how many actions have been detected cor-
rectly, and how many false alarms have been created.

2. The metric should provide an indication of the quality of
detection and should be easily interpretable.

The two goals, namely, to be able to determine the number of
actions in the scene, and to be able to measure their detection
quality are interrelated. Indeed, the number of actions we con-
sider as detected depends on the quality threshold which we
impose for any action in order to be considered as detected.
A natural way to combine these two goals is first described
briefly below, and then formalized in more detail in the rest of
this section:

The traditional measures, Precision and Recall, quantitative
measures of detection performance, form the basis of the pro-
posed metric. In our formulation, we employ these measures
with two types of threshold that gauge the amount of overlap
between a ground truth action and a detected action:

1. A threshold on pixel-level recall, which specifies the
amount of overlap between the area of detected action and
the area of the ground-truth action;

2. A threshold on pixel-level precision, which specifies how
much spurious detected area (not part of the ground truth)
is allowed.

The plots of precision and recall, which depend upon the qual-
ity parameters, i.e., the thresholds, visually describe the inter-
relationship of quantitative and qualitative aspects of an algo-
rithm. These are similar to the performance graphs used in
[52], which relate Recall and Precision to quality thresholds.

2.1. Precision and Recall for localized activities

The first measure, Recall, describes the number of correctly
detected action occurrences with respect to the total number of
action occurrences in the dataset. The second measure, Pre-
cision, penalizes false alarms, by measuring the proportion of
correctly detected actions within the total number of detected
actions:

Recall(G,D) = Number of correctly found actions
Number of actions in the ground truth

Precision(G,D) = Number of correctly found actions
Number of found actions

(1)

where G denotes ground-truths and D detections.
In order to get a single measure, these measures are com-

bined into the traditional F-score [53]. The rationale of con-
sidering the harmonic mean of precision and recall is that the
smaller of the two performance values is emphasized:

F-Score(G,D) =
2 · Precision(G,D) · Recall(G,D)

Precision(G,D) + Recall(G,D)
(2)

In our modified version, these criteria involve thresholds that
qualifies if and when an action can be considered as detected.
Thus we can gauge how close the detected bounding boxes
need to be to the ground-truth bounding boxes, and how close
the detected temporal duration of an action need to be to the
actual duration in the ground truth. Other imperfections such
as multiple detections for a single ground truth action can sim-
ilarly be handled. An intuitive way to express Recall and Pre-
cision in terms of matched detections is as follows:

Recall(G,D) =

∑
v

∑
a

1Gv,afinds match in Dv∑
v

|Gv|

Precision(G,D) =

∑
v

∑
a

1Dv,afinds match in Gv∑
v

|Dv|

(3)

where 1ω is the indicator function returning 1 if condition ω
holds and 0 else; v is a video index and a an activity index.
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Notice that both measures search for a match in a corre-
sponding action list: Recall requires matching of each action
in the ground truth to one of the actions in the detection list,
whereas Precision requires matching of each action in the de-
tected list to one of the actions in the ground-truth list. This
is done in two steps by defining first the two functions β(a, S)
and Υ(g, d):

• For a given action a, β(a, S) gives the best match in the
set S of actions, which can be detected actions or ground-
truth actions;

• For a pair of ground-truth action g and detected action d,
Υ(g, d) determines whether the match between g and d
satisfies our criteria on geometric and temporal overlaps.
At this stage Υ can veto a match, if it is of poor quality.

The definitions in (3) can thus be refined as follows:

Recall(G,D) =

∑
v

∑
a

1Υ(Gv,a,β(Gv,a,Dv))∑
v

|Gv|

Precision(G,D) =

∑
v

∑
a

1Υ(β(Dv,a,Gv),Dv,a))∑
v

|Dv|

(4)

Qualifying the best match β(a, S) is done by maximizing the
normalized overlap O between two actions a and b over all
respective frames, where O is defined as the Sørensen-Dice
coefficient:

O(a, b) =

{
2·Area(a∩b)

Area(a)+Area(b) if Class(a) = Class(b)

0 else
(5)

Here Area(a) is the sum of the areas of the bounding boxes of
action a and ∩ is the intersection operator returning the over-
lap of two actions. The overlap is calculated framewise and
summed over all frames.

More formally, for any given video v, the following two con-
ditions hold:

∀a, a′ ∈ Gv ×Gv :β(Gv,a, Dv) 6= β(Gv,a
′
, Dv)

∀a, a′ ∈ Dv ×Dv :β(Dv,a, Gv) 6= β(Dv,a′ , Gv)
(6)

As a consequence, calculating β(a, S) maximizes normalized
overlap O as defined in (5 ) subject to constraints (6). These

constraints preclude the matching of a single groundtruth ac-
tion to multiple detected actions, and vice-versa. This max-
imization is made in a greedy way: O is calculated for all
possible pairs (Gv,a, Dv,a′) and then the maximum value is
searched, and the assignment chosen for the corresponding ac-
tions a and a′. These actions are then removed from respective
lists, and the algorithm proceeds iteratively searching for the
next best match, since the video may contain more than one
action type.

Υ(g, d) decides whether a pair of ground truth action g and
detected action d are sufficiently matched based on four crite-
ria, two of which are spatial and two are temporal. Here we
have used a simplified notation by denoting the ground-truth
action as g = Gv,a and the detected action as d = Dv,a′ . We
first describe these criteria intuitively and then formalize them
in equation (7).

A detected action d can be matched to a ground truth action
g if all of the following criteria are satisfied :

Sufficient temporal frame-wise recall — the number of
frames which are part of both actions is above an ade-
quate proportion of the number frames, i.e., a sufficiently
long duration of the action has been correctly found;

Sufficient temporal frame-wise precision — the number of
frames which are part of both actions is above an adequate
proportion of the number frames in the detected set, i.e.,
the detected excess duration is small enough;

Sufficient spatial pixel-wise recall — the size of the com-
mon areas between the bounding boxes is large enough
with respect to the size of the bounding boxes in the
ground-truth set, i.e., a sufficiently large portion of the
ground truth rectangles is correctly found. In order to ig-
nore temporal differences, this calculation is done frame
wise and includes only frames which are part of both ac-
tions, d and g;

Sufficient spatial pixel-wise precision — the size of com-
mon areas between the bounding boxes is large enough
with respect to the size of the bounding boxes in the de-
tected set, i.e., the space detected in excess is sufficiently
small. In order to ignore temporal differences, this calcu-
lation is done frame wise and includes only frames which
are part of both actions, d and g;

Correct classification — d and g have the same action class.
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We denote by d|g the set of bounding boxes of the detection
action d restricted to the frames which are also part of ground-
truth action g. Then, the above criteria can be expressed as

Υ(g, d) =



Area(g∩d)
Area(g|d) > tsr and

Area(g∩d)
Area(d|g) > tsp and

NoFrames(g∩d)
NoFrames(g) > ttr and

NoFrames(g∩d)
NoFrames(d) > ttp and

Class(g) = Class(d)



(7)

where NoFrames(a) is the number of frames in set a. The
decision whether the two actions g and d are correctly matched
depends therefore on the threshold values tsr, tsp, ttr, ttp,
which threshold, respectively, spatial pixel-wise recall, spatial
pixel-wise precision, temporal frame-wise recall, and temporal
frame-wise precision.

2.2. Quantity/Quality plots

We had put forward the necessity to consider the quality of
detection with respect to the quantity of detection, as an inher-
ent property of any method to assess algorithms. In our work,
the quantity-quality interrelationship manifests itself through
the dependence of Recall and Precision on the thresholds
tsr, tsp, ttr and ttp. For this reason, an integral part of the
proposed performance evaluation framework is a set of graphs
which illustrate this dependence, similar to the graphs pro-
posed in [52].

For each algorithm to be assessed, a number of diagrams
are created, each one showing the performance as a function
of one of the quality measures, that is, dependence on one of
the thresholds. The performance graphs are produced by vary-
ing one threshold (assigned to the x-axis) in the interval [0, 1],
while the other three thresholds are kept at fixed lowest rea-
sonable values, and plotting Recall and Precision and F-Score
on the y-axis of the graphs. This results in 4 graphs containing
each 3 curves.

Figures 7 and 8 in the experimental part (section 4) show
examples of graphs obtained this way. These can be easily in-
terpreted as recognition performance versus detection quality
curves. Section 4.4 gives a more details on how to read these
diagrams based on examples of actual detection methods.

Figure 2a shows a toy example involving an action of type
Discussion covering a single frame. The ground truth bound-
ing box, in blue, is labeled “1”. Two different detection meth-
ods have been applied resulting in two bounding boxes, in red,
and labeled “2” and “3”, respectively. Since we are dealing
with a single frame, temporal thresholds cannot be applied.
The graphs for varying spatial thresholds are shown in Figures
2b and 2c, respectively. In this simple example, Recall, Preci-
sion and F-Score graphs collapse into one, since the measures
are 1 if the bounding box is considered as detected, and 0 oth-
erwise.

Since the bounding box “2” resulting from one of the meth-
ods is completely included in the ground-truth bounding box,
varying the threshold tsp (the required spatial pixel-wise preci-
sion) does not change the result: in fact, even for tsp=1, which
does not allow for any nonground-truth pixels, will consider
the bounding box to be correctly detected. Varying tsr (the re-
quired spatial pixel-wise recall), on the other hand, results in
a drop of performance at roughly tsr = 0.25. In order words,
once we require more than 1/4 of the ground truth bounding
box to be detected, the bounding box “2” is not considered
as detected anymore. This corresponds to what we observe in
Figure 2a.

Bounding box “3”, produced by the other method, has only
a small overlap with the ground truth-bounding box. Only a
small part of the ground truth bounding box is detected, and in
addition algorithm “3” produces a large spurious area. Conse-
quently, we see an early drop in performance varying any one
of the thresholds, tsr = 1 or tsp = 1.

2.3. Ranking

Ranking a set of detection algorithms according to a single
performance measure should minimize the dependence on ex-
ternal parameters of the performance metric. This can be
achieved by basing the final performance measure on an in-
tegration of the F-Score measure on the whole range of possi-
ble threshold values. In particular, four measures are created,
each one measuring the performance while varying one of the
thresholds while keeping the other ones fixed at a very low
value (generally ε = 0.1). In the following, we denote by
F (tsr, tsp, ttr, ttp) the F-Score of equation (2) depending on
the quality constraints. We get 4 integrals, each one showing
the performance sensitivity averaged over the range of thresh-
olds while three remaining variables (in both Precision or Re-
call) must satisfy a minimum of quality level, where the thresh-
old is set to a reasonably small value (we choose ε=0.1). Thus,
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Figure 2: An example of evaluation plots for a single frame taken from the
ICPR HARL competition: (a) a single frame with ground truth bounding box
(labeled “1”, in blue) and two bounding boxes corresponding, respectively,
to two respective methods (labeled “2” and “3”, in red); (b) evaluation curves
for the method, labeled “3”); (c) evaluation curves for the method, labeled
“2”).

we get:

Isr =

∫ 1

0
F (usr, tsp, ttr, ttp) dusr

Isp =

∫ 1

0
F (tsr, usp, ttr, ttp) dusp

Itr =

∫ 1

0
F (tsr, tsp, utr, ttp) dutr

Itp =

∫ 1

0
F (tsr, tsp, ttr, utp) dutp

(8)

In practice, we sample the Precision and Recall values in small
steps and find the integrals numerically. The final value used
for ranking is the mean over these four values:

IntegratedPerformance =
1

4
(Isr + Isp + Itr + Itp) (9)

This integrated performance measure relates to the areas under
the curves in the graphs described in section 2.2. In section
4 it will be experimentally shown, that this measure is quite
invariant to changes in annotation styles.

Confusion matrices
The goal of the proposed performance metric is to go beyond
classification, as the evaluated vision tasks also require de-
tection and localization. However, it might be interesting to
complete the traditional precision and recall measures with a
confusion matrix which illustrates the pure classification per-
formance of the evaluated methods. This can be done easily
by associating a detected action to each ground truth rectangle
using equations (5) and (7), while removing the class equality
constraint from (7). The pairs ground truth — detected actions
can be used to calculate a confusion matrix (see figure 10 for
examples).

Note that the confusion matrix ignores actions which have
not been detected, actions with no decision outcome. There-
fore, unlike in classification tasks, the recognition rate (accu-
racy) cannot be determined from its diagonal. For this reason
the confusion matrix must be accompanied by precision and
recall values.

3. The LIRIS / ICPR 2012 HARL dataset

The LIRIS human activities dataset has been designed for rec-
ognizing complex and realistic actions in a set of videos, where
each video may contain one or more actions concurrently. Ta-
ble 1 shows the list of actions to be recognized. Some of them
are interactions between two or more humans, like discussion,
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DI Discussion of two or several people HH
GI A person gives an item to a second person HH,HO
BO An item is picked up or put down

(into/from a box, drawer, desk etc.)
HO

EN A person enters or leaves an room -
ET A person tries to enter unsuccessfully -
LO A person unlocks a room and then enters -
UB A person leaves baggage unattended HO
HS Handshaking of two people HH
KB A person types on a keyboard HO
TE A person talks on a telephone HO

Table 1: The behavior classes in the dataset. Some of the actions are human-
human interactions (HH) or human-object interactions (HO).

giving an item etc. Other actions are characterized as interac-
tions between humans and objects, for instance talking on a
telephone, leaving baggage unattended etc. Note that simple
“actions” as walking and running are not part of the events to
be detected. The dataset therefore contains motion which is
not necessarily relevant for the tasks at hand.

The dataset is publicly available online on a dedicated web
site3. It is organized into two different and independent sets,
shot with two different cameras:

D1/robot-kinect The videos of this set have been shot using a
mobile robot of model Pekee II, shown in figure 3. During
the tests the robot was controlled manually through a joy-
stick. It was equipped with a consumer depth camera of
type Primesense/MS Kinect, which delivers color images
as well as 11bit depth images, both at a spatial resolution
of 640×480 pixels, at 25 frames per second (see figures
4a—c). In the proposed dataset the RGB information has
been converted to grayscale.

The Kinect module has been calibrated; the calibration in-
formation and its software are provided allowing users to
calculate the coordinates in the grayscale image for each
pixel of the corresponding depth image.

D2/fixed-camcorder The videos of this set have been
shot with a consumer camcorder (a Sony DCR-HC51)
mounted on a tripod. The camera was fixed (zero ego-
motion), the videos have been shot in a spatial resolution
of 720×576 pixels at 25 frames per second (see figure
4d).

3http://liris.cnrs.fr/voir/activities-dataset

Figure 3: The Pekee II mobile robot in our setup with the Kinect module
during the shooting of the dataset.

The two sets D1 and D2 are NOT completely independent, as
most of the D2 videos are shots from the same scenes captured
in D1 but taken from a different viewpoint.

Care has been taken to ensure that the dataset is as realistic
as possible:

• The actions have been performed by a group of 21 differ-
ent people.

• The actions have been shot from various viewpoints and
different settings to avoid the possibility of learning ac-
tions from background features.

• Correlation between camera motion and activities has
been avoided.

In order to make the dataset more challenging than previous
datasets, the actions are less focused on low-level characteris-
tics and defined more by semantics and context:

• The discussion action can take place anywhere, either by
people standing in some room or in an aisle without any
support, or in front of a whiteboard or blackboard, or by
people sitting on chairs.

• The action enter or leave a room can involve opening a
door and passing through or passing through an already
open door.
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• Three actions involve very similar motion, the difference
being the context : entering a room, unlocking a door and
then entering a room and trying to enter a room without
being able to open the door.

• The action of an item being picked up or put down
(into/from a box, drawer, desk etc.) is very similar to the
action of a person leaving a baggage unattended (drop
and leave), as both involve very similar human-object in-
teractions. The difference is mainly defined through the
context.

• We took care to use different telephones in the action
telephone conversation: classical office telephones, cell
phones, wall mounted phones.

• Actions like handshaking and giving an item can occur
before, after or in the middle of other actions like discus-
sion, typing on a keyboard etc.

The acquisition conditions have not been artificially improved,
which means that the following additional difficulties are
present in the dataset :

• Non-uniform lighting and lighting changes when doors
open and close

• The Kinect camera’s gain control is rather slow compared
to other cameras. This is not the case for the Sony cam-
corder.

• The depth data delivered by the Kinect camera is dis-
turbed by transparencies like windows etc. This is due to
the data acquisition method (shape from structured light).

• The data taken with the mobile robot is subject to vibra-
tions when the robot accelerates or slows down. This
reflects realistic conditions in a mobile robotics environ-
ment.

The full data set contains 828 actions (subsets D1 and D2) by
21 different people. Each video may contain one or several
people performing one or several actions. Example images for
the different activity classes are shown in figure 5.

All actions are localized in time and space, and ground
truth bounding boxes are provided. Figure 6 shows a frame
with annotated bounding boxes in a screen shot of the anno-
tation/viewing tool provided with the dataset. Each video has
been annotated by one of 10 annotators, and then verified by a
different annotator to keep the annotations as coherent as pos-
sible.

Figure 6: The videos are annotated: each action is localized through a set of
bounding boxes over a contiguous sequence of frames.

4. Results of the ICPR 2012 HARL competition

The proposed performance metric was tested on six different
detection and recognition algorithms. Four methods corre-
spond to submissions of the ICPR 2012 HARL competition,
which was held in conjunction with the International Confer-
ence on Pattern Recognition 2012. Two additional methods
have been applied to the same dataset.

The HARL competition took place during roughly 12
months from October 2011 to October 2012. The video frames
of the competition dataset (described in section 3) were pub-
lished in October 2011 and the ground-truth annotations of the
training set were released in December 2011. The participants
had 7 months to develop and train their system. In mid July
2012 annotations of the test set were published and in Septem-
ber 2012 the results had to be submitted to the competition
committee. A special session dedicated to the HARL competi-
tion was held during the ICPR conference in November 2012.
The competition has attracted great interest: 70 teams from all
over the world registered to the competition and downloaded
the dataset, which appeared to be more difficult than existing
datasets at that time, as anticipated. The task of not only clas-
sifying, but also locating activities in space and in time is still
a hard one. Four teams finally managed to solve the problem
and to submit their results.

We distinguished the six methods in the following way: the
four participations were identified by their participation num-
bers (13, 49, 51, 59), and the two additional methods were
identified by letters A and B.
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(a) (b) (c) (d)

Figure 4: The dataset has been shot with two different cameras, Kinect camera and a color camera. (a) Kinect - grayscale image; (b) Kinect - depth image;
(c) Kinect - color coded depth image; (d) color images from the Sony camcorder.

4.1. Evaluated methods

HARL participant No. 13 (subset D2)
Participating team No. 13 came from Spain and submitted a
run for dataset D2 (Sony color frames):

Juan C. SanMiguel and Sergio Suja
Video Processing and Understanding Lab
Universidad Autonoma of Madrid, Spain

The description of the submitted method is yet undisclosed for
reasons related to protection of intellectual property rights.

HARL participant No. 49 (subset D1)
Participating team No. 49 was a collaboration between insti-
tutions in Singapore and a US university, and they submitted a
run for dataset D1 (Kinect frames):

Bingbing Ni and Yong Pei
Advanced Digital Sciences Center, Singapore
Jun Tan, Jian Dong and Shuicheng Yan
National University of Singapore, Singapore
Pierre Moulin
University of Illinois at Urbana-Champaign

The submitted method (published in [54]) uses low-level fea-
tures and mid-level features calculated on detected and tracked
people using [55] and detected objects specific to the dataset
(doors, mailboxes etc.). The following features were calcu-
lated: (i) pose and appearance information on people and on
objects; (ii) geometric contextual attributes on pairs of neigh-
boring items, where each item may be a person or an ob-
ject; (iii) scene type attributes obtained by clustering depth
histograms. These heterogeneous features were integrated
through a Bayesian network learned from the training set.

HARL Participant No. 51 (subset D2)
Participating team No. 51 came from China and submitted a
run for dataset D2 (Sony color frames):

Yonghao He, Hao Liu, Wei Sui, Shiming Xiang
and Chunhong Pan

Institute of Automation,
Chinese Academy of Sciences, Beijing

The submitted method is an adaptation of existing work in
[56]. Space-time interest points were extracted and HoG-HoF
(histogram of gradients and histogram of motion flow) fea-
tures were extracted from the local patches [57]. Then 10
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Figure 5: Example frames for various activity classes (D1/Kinect grayscale shown only)
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one-against-all SVM classifiers were trained for the 10 activity
categories. Activities were detected and localized by shifting
sub-volumes over the video and maximizing mutual informa-
tion, as in [56]. Adaptations concerned reduction of search
boundaries according to maximize mutual information and cal-
culations of proper step widths, which significantly increased
performance compared with the original brute force search.

HARL participant No. 59 (subset D1)
Participating team No. 59 came from India and was an aca-
demic / industrial collaboration. They submitted a run for
dataset D2 (Sony color frames):

Tanushyam Chattopadhyay, Sangheeta Roy
and Aniruddha Sinha

Innovation Lab, Tata Consultancy Services, Kolkata
Dipti Prasad Mukherjee and Apurbaa Mallik
Indian Statistical Institute, Kolkata

The submitted method detects and classifies actions in the
dataset, but does not localize them. It segments and extracts
“interesting” moving objects in the scene based on motion and
entropy. HoF features were calculated according to [58] in a
hierarchical way using a pyramid.

Method A - (subset D1)
To create a baseline, we calculated 3D (depth) features pro-
posed in [59] and extracted them with dense-sampling on slid-
ing cuboids. Bounding boxes were estimated on the test set
using the same pre-processing step as method B [60]: people
were tracked using the Dalal/Triggs detector [55], and candi-
date bounding boxes were created based on pairwise combi-
nations of tracklets. From the acquired features, codebooks
trained through k-means clustering and videos were repre-
sented as bags of words (BoW) on space-time sliding win-
dows. For the recognition part an SVM classifier was trained.
We detected activities including a no-action class into the clas-
sifier which was trained trough boot-strapping.

Method B - (subset D1)
Method B (published in [60]) shares the features and the pre-
processing steps as the winning entry of the HARL compe-
tition, entry nr. 49. In particular, tracklets are created by
the Dalal/Triggs detector and combined into larger bounding
boxes. Instead of learning a belief network, each activity is
modelled as a deformable parts model in the spirit of [61] and
learned using structured SVM.

No. Set Recall Precision F-Score

49 D1 0.74 0.41 0.53
59 D1 0.08 0.17 0.11
A D1 0.34 0.24 0.28
B D1 0.74 0.41 0.53

13 D2 0.35 0.66 0.46
51 D2 0.30 0.46 0.36

Table 2: Results without localization. The bounding boxes of the annota-
tion are not used.

No. Set Recall Precision F-Score

49 D1 0.63 0.33 0.44
59 D1 N/A N/A N/A
A D1 0.27 0.18 0.22
B D1 0.67 0.36 0.47

13 D2 0.04 0.08 0.05
51 D2 0.03 0.04 0.03

Table 3: Results with fixed quality constraints: all thresholds are set to 0.1.
No localization information has been submitted for method No. 59.

4.2. Results without localization

Table 2 shows a preliminary evaluation of Recall and Preci-
sion values calculated according to equations (1) but without
any localization information, i.e., ignoring the bounding box
related information in the ground truth. Half of the partici-
pants submitted results for dataset D1 (kinect) and the other
half submitted runs for dataset D2 (color frames). The two ad-
ditional methods were applied to dataset D1. Results of the two
datasets cannot be directly compared, of course. As expected,
the obtained results are better on the Kinect data than on the
color frames, since the depth data is richer in information as
compared to color data for these scenes. We consider a recall
rate of 74% as an excellent result for this difficult dataset with
high intra-class variations. A precision value of 41% indicates
that, roughly, for each correctly detected activity, a second in-
correct activity has been detected. Note that no confusion ma-
trices can be given if localization is not used. Methods 49 and
B obtained the same performance in this setting, as the differ-
ence lies in the way how activities are localized.

4.3. Results with localization

Table 3 gives performance measures which do use localization
information from ground truth and detection. For a first exper-
iment, all quality thresholds have been fixed to a low value of
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tsr=tsp=ttr=ttp=0.1. In other words, a ground-truth action g
is matched to a detected action a if and only if

• at least 10% of the ground-truth frames are detected (ttr);

• at least 10% of the detected frames are also in the ground-
truth (ttp);

• at least 10% of the pixels of the ground-truth bounding
boxes have been detected, only counting frames which
appear in both ground truth and detection (tsr);

• at least 10% of the pixels of the detected bounding boxes
are also in the ground-truth bounding boxes, only count-
ing frames which appear in both ground truth and detec-
tion (tsp).

These conditions correspond to equation (7) in section 2.
When localization information is taken into account, differ-

ences in performance between the algorithms become much
more evident. While the differences were modest when
no penalty was applied on localization, now a clear win-
ner emerges in competition participant No. 49, only slightly
topped by not participating method B. Including these new
constraints due to localization, Recall drops from 74% to 63%,
and Precision drops from 41% to 33% for this participant. The
performance for the winning entry, submitted for dataset D1,
cannot be directly compared to the performance of methods
No. 13 and No. 51, which were submitted for dataset D2.
However, given the difference in F-scores, with 44% on one
hand, and 5% and 3% on the other hand, it is safe to announce
for a clear winner of the contest.

With an F-Score of 0.22, the baseline method based on a
bags of words representation (method A) fares reasonable well
compared to the winning methods based on more sophisticated
methods integrating spatio-temporal relationships through be-
lief nets (method 49, F-Score of 0.44) and deformable parts
models (method B, F-Score of 47). Integrating spatial rela-
tionships is clearly important.

4.4. Dependence on quality

The measures described above have been calculated using
thresholds set to 0.1, which seems to be a good compromise
given the high spatial and temporal variations of human ac-
tivities. However, interesting information on the behavior of
a detection algorithm can be obtained by calculating Recall
and Precision measures over varying thresholds and creating
plots, as explained in section 2.2. Figures 7 and 8 show these
graphs. Each column corresponds to a method, and each of the

Equation→ (8) (8) (8) (8) (9)
No. Set Itr Itp Isr Isp Total

49 D1 0.27 0.37 0.29 0.37 0.33
59 D1 N/A N/A N/A N/A N/A
A D1 0.14 0.15 0.15 0.19 0.16
B D1 0.30 0.38 0.32 0.40 0.35

13 D2 0.03 0.03 0.02 0.03 0.03
51 D2 0.03 0.00 0.01 0.01 0.02

Table 4: Results integrated over all quality constraints: for each column
of type I∗ a single threshold is varied and the others are fixed. The total is
the mean value over these indicators. No localization information has been
submitted for method No. 59.

four rows corresponds to a situation where only one of the four
thresholds tsr, tsp, ttr and ttp is varied from 0 to 1, while the
other three thresholds are kept to a fixed value of 0.1.

Focusing our attention on the winning entry, method No.
49 shown in the rightmost column, we can deduce valuable
information from the first diagram in the top row, where the
threshold ttr of the temporal frame-wise recall is varied. The
highest performance is obtained for ttr = 0: Recall=65% and
Precision=36%. Note that the thresholding condition requires
the thresholded quantity to be strictly larger than 0, as indi-
cated in equation (7). When we increase the threshold in small
steps up to ttr=1, we can see an almost linear drop of the Pre-
cision and Recall measures. At the right end of the diagram we
see that we obtain a performance of 8% and 5%, respectively,
for ttr=1, which gives the performance for the case where all
frames of an activity need to be detected in order for the activ-
ity itself to be counted as detected.

A similar behavior can be seen when threshold ttp (temporal
frame-wise precision) is varied, illustrated in the second row of
figure 7. At ttp=1, when we require that not a single spurious
frame outside ground-truth activity is detected, we still get per-
formance measures of 30% and 16%, respectively.

The last two rows of figure 7 illustrate the behavior when
spatial overlap is considered. Both diagrams show perfor-
mance figures approaching zero when the respective threshold
approaches 1. This shows that it is extremely rare for a ground
truth activity to be consistently (spatially) included in the cor-
responding detected activity over all frames, as indicated in the
third row, and it is extremely rare for a detected activity to be
(spatially) included in the corresponding ground-truth activity
over all frames, as indicated in the last row.

These indications of behavior over varying quality con-
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Participant Nr. 13 (D2) Participant Nr. 51 (D2) Participant Nr. 49 (D1)
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Figure 7: Performance curves for the three participating methods in view of localization data (OR, under the constraint of localization data). They are
obtained by varying a single quality constraint and keeping the other ones at 0.1 level. From top to bottom, the following constraints are varied: temporal
recall, temporal precision, spatial recall, spatial precision.
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Method A (D1) Method B (D1)
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Figure 8: Performance curves for the two additional methods in view of localization data (OR, under the constraint of localization data). They are obtained
by varying a single quality constraint and keeping the other ones at 0.1 level. From top to bottom, the following constraints are varied: temporal recall,
temporal precision, spatial recall, spatial precision.
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Annotator N.o. F-Score (fixed thresholds) Integrated
Id runs t∗=0.1 t∗=0.5 t∗=0.8 performance

1 6 1.0 0.93 0.30 0.86
2 6 1.0 0.91 0.39 0.87
3 6 1.0 0.91 0.35 0.86
4 6 1.0 0.93 0.35 0.86
5 6 1.0 0.87 0.35 0.86
6 6 1.0 0.83 0.24 0.84
7 6 1.0 0.70 0.17 0.83

1-7 21 1.0 0.86 0.31 0.85

Table 5: Estimation of soft upper bounds on the proposed performance mea-
sures: mean performance values calculated on different ground-truth annota-
tions (t* signifies all four thresholds collectively set at that the given value).
In contrast to classical measures as in Eq. 7, integrated performance stays
quite stable over different annotators.

straints can be captured in a performance measure, as given in
equation (8) in section 2.3. Intuitively, the measures are means
of F-Score over the threshold variations. They are given in
figure 4 for the different participants of the competition.

4.5. Soft upper bounds on performance

The upper bound for any of the performance measures, (Preci-
sion, Recall and F-Score) is in principle 1. However, ground-
truth annotations are subjective and inherently imprecise, so
a totally precise localization resulting in Recall=Precision=F-
Score=1 may not be expected for any method. It is therefore
interesting to estimate “soft” upper bounds on the performance
measures corresponding to the average agreement score of hu-
man annotators (inter-subject agreement), which is defined as
expected value of the performance measures when different
test subjects do the localization task. To estimate these bounds,
we selected a subset of 9 videos containing 9 actions and had
these actions annotated by 7 different people. From this pool of
annotations, pairs of annotations were selected where the first
one was used as ground truth and the second one as (virtual)
detection.

Table 5 shows means of F-Score obtained for sets of such
pairs. The last row shows the mean over all possible 21 combi-
nations of pairs of this set of 7 annotators. The first seven rows
give the different means for different annotators, where each
row corresponds to a mean over 6 runs (one annotator against
the 6 other annotators). The different columns correspond to
F-Score for different quality constraints, as given in equation
(2), as well as integrated performance, as given in equation (9).
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Figure 9: Estimation of soft upper bounds on the proposed performance
measures: mean performance curves calculated on pairs of different ground
truth annotations.
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The given figures may seem quite low, especially for thresh-
olds equal to 0.8. These low detection rates among differ-
ent manual annotations can be explained by the fact that the
threshold is enforced jointly in the temporal and the spatial
domain. It is very difficult to create similar annotations in all
aspects, i.e., not to cut away relevant parts or not to add ir-
relevant parts, both temporally and spatially. We can also see
that while classical performance measures (measures that do
not take into account the quality factors as in Eqs. 1-2) seem
to vary across annotators, the proposed integrated performance
measure stays quite stable over different annotators. We claim
that this invariance to subtle changes in annotations is a ma-
jor advantage of this new metric. This does not mean that the
measure loses its discriminative power in comparing different
methods, as can be seen in Table 4: for the winning entry, per-
formance is measured as 33%, whereas the other two entries
are measured as 3% and 2%, respectively. The large difference
in the methods’ performance is illustrated by the curves given
in figures 7 and 8.

“Soft” upper bounds have also been calculated for the per-
formance curves proposed in section 2.2. These curves are
shown in figure 9, where each row corresponds to a variation
in one of the four thresholds, in the same way as shown in fig-
ure 7. In figure 9, each point of a plot corresponds to a mean
calculated over the 21 different values obtained by taking all
possible pairwise combinations of annotations. Note that the
plots of Recall, Precision and F-Score are identical for each
diagram. This is due to the fact that all annotators have an-
notated the same activities and that no annotator added a new
false activity. In other words, the differences in annotations are
only in the coordinates and number of the bounding boxes, not
in the number of found activities.

4.6. Confusion matrices

Figure 10 shows confusion matrices for the methods for which
localization information (bounding boxes) has been submitted.
These matrices contain complementary information to Recall
and Precision values, but otherwise they cannot be used as in-
dicators for detection performance of a method. In particular,
calculating the difference between the ground-truth class and
the detected class requires the assignment of a detected activity
for each ground-truth activity, which can only be done through
localization information, i.e., bounding boxes. Unmatched ac-
tivities are not included in these matrices, which therefore lack
any information on the amount of unfound activities or false
alarms.

Considering the matrix for the winning entry, the bottom
matrix in the figure, we see that the actions Handshaking and
Give Item are frequently confused, which is not surprising
given the similar motion involved in both actions. Activities
Telephone call and Pick up / Put down Object are also some-
times confused, which may eventually be explained by the
context model used in the method. Both methods take place in
similar contexts, and picking up and putting down a telephone
has been annotated as Pick up / Put down Object. Further con-
fusions are Discussion and Give Item, which both involve a
group of people standing close together and interacting.

4.7. Implementation and tools

An open-source implementation for Windows, Linux and Mac
OS of the proposed performance metric is available online4.
The software allows to calculate Recall, Precision and F-Score
for fixed (selectable) thresholds as well as integrated perfor-
mance, to plot and export performance curves and confusion
matrices. Two versions are available: one with a graphical
user interface and one version with a scriptable command line
interface. It comes with software allowing to view ground-
truth annotations superimposed on videos, as well as software
which allows to create new annotations.

5. Conclusion

This paper has introduced a new performance metric which
allows to evaluate human activity detection, recognition and
localization algorithms. Taking into account localization infor-
mation is a non-trivial task, as evaluation needs to decide for
each activity whether it has been successfully detected based
on detection quality constraints. The inherent dependency be-
tween performance and quality has been identified and a set of
quantity / quality curves has been introduced to describe the
detection and localization behavior of a computer vision algo-
rithm.

The proposed integrated performance measure is a new way
to compare and rank detection and localization methods. Its
advantages are two-fold:

• the measure is independent of quality constraints on de-
tection, i.e. it is independent of arbitrary thresholds on
spatial and temporal overlap;

4http://liris.cnrs.fr/voir/activities-dataset
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Participant Nr. 13 (subset D2) Method A (subset D1)
DI GI BO EN ET LO UB HS KB TE

DI 50 0 0 0 0 0 0 50 0 0
GI 50 0 50 0 0 0 0 0 0 0
BO 0 0 80 0 0 0 0 0 0 0
EN 0 0 0 100 0 0 0 0 0 0
ET 33 0 0 0 67 0 0 0 0 0
LO 0 0 0 0 100 0 0 0 0 0
UB 0 0 100 0 0 0 0 0 0 0
HS 0 0 100 0 0 0 0 0 0 0
KB 0 0 67 33 0 0 0 0 0 0
TE 0 0 0 0 0 0 0 0 0 100

DI GI BO EN ET LO UB HS KB TE
DI 60 0 7 33 0 0 0 0 0 0
GI 20 0 20 40 0 20 0 0 0 0
BO 0 0 29 43 7 7 0 0 0 14
EN 0 0 0 83 6 11 0 0 0 0
ET 0 0 0 100 0 0 0 0 0 0
LO 0 0 25 0 50 25 0 0 0 0
UB 0 0 17 83 0 0 0 0 0 0
HS 6 0 0 71 12 0 0 12 0 0
KB 0 0 0 60 0 0 0 0 40 0
TE 0 0 0 71 0 0 0 0 14 14

Participant Nr. 51 (subset D2) Method B (subset D1)
DI GI BO EN ET LO UB HS KB TE

DI 100 0 0 0 0 0 0 0 0 0
GI 100 0 0 0 0 0 0 0 0 0
BO 50 0 0 0 0 25 0 25 0 0
EN 0 0 0 89 0 11 0 0 0 0
ET 0 0 0 25 25 25 0 25 0 0
LO 0 0 0 100 0 0 0 0 0 0
UB 100 0 0 0 0 0 0 0 0 0
HS 0 0 14 57 0 14 0 14 0 0
KB 100 0 0 0 0 0 0 0 0 0
TE 33 0 0 33 0 33 0 0 0 0

DI GI BO EN ET LO UB HS KB TE
DI 93 7 0 0 0 0 0 0 0 0
GI 33 50 0 0 0 17 0 0 0 0
BO 0 8 69 0 0 0 0 0 15 8
EN 0 0 0 96 4 0 0 0 0 0
ET 0 0 0 0 89 11 0 0 0 0
LO 0 0 0 11 0 89 0 0 0 0
UB 20 0 40 0 0 0 40 0 0 0
HS 6 59 6 6 0 0 0 24 0 0
KB 0 20 10 0 0 0 0 0 70 0
TE 0 0 57 0 0 0 0 0 14 29

Participant Nr. 49 (subset D1)
DI GI BO EN ET LO UB HS KB TE

DI 93 7 0 0 0 0 0 0 0 0
GI 33 50 0 0 0 17 0 0 0 0
BO 0 8 69 0 0 0 0 0 15 8
EN 0 0 0 96 4 0 0 0 0 0
ET 0 0 0 0 89 11 0 0 0 0
LO 0 0 0 11 0 89 0 0 0 0
UB 20 0 40 0 0 0 40 0 0 0
HS 6 56 6 6 0 0 0 25 0 0
KB 0 20 10 0 0 0 0 0 70 0
TE 0 0 57 0 0 0 0 0 14 29

Figure 10: Confusion matrices for the five methods providing localization data. They are calculated on actions satisfying quality constraints only. Rows
are ground-truth classes, columns are detected classes.
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• experiments described in this paper have shown, that the
measure is less sensitive to annotator variance than the
classical measures while at the same time allowing to dis-
criminate between changes in performance of the algo-
rithms.

The paper also describes the LIRIS human activities dataset
as a new standard dataset, which allows to benchmark activ-
ity recognition algorithms based on realistic and difficult data.
The proposed performance metric has been tested on the LIRIS
dataset and on the detection methods submitted to the ICPR
HARL 2012 competition.
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