
HAL Id: hal-01283864
https://hal.science/hal-01283864

Submitted on 9 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Characterising the Complexity of Constraint Satisfaction
Problems Defined by 2-Constraint Forbidden Patterns

Martin Cooper, Guillaume Escamocher

To cite this version:
Martin Cooper, Guillaume Escamocher. Characterising the Complexity of Constraint Satisfaction
Problems Defined by 2-Constraint Forbidden Patterns. Discrete Applied Mathematics, 2015, 184,
pp.89-113. �10.1016/j.dam.2014.10.035�. �hal-01283864�

https://hal.science/hal-01283864
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 15210

To link to this article : DOI :10.1016/j.dam.2014.10.035
URL : http://dx.doi.org/10.1016/j.dam.2014.10.035

To cite this version : Cooper, Martin C. and Escamocher, Guillaume
Characterising the Complexity of Constraint Satisfaction Problems
Defined by 2-Constraint Forbidden Patterns. (2015) Discrete Applied
Mathematics, vol. 184. pp. 89-113. ISSN 0166-218X

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://dx.doi.org/10.1016/j.dam.2014.10.035
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Characterising the complexity of constraint satisfaction
problems defined by 2-constraint forbidden patterns✩

Martin C. Cooper a, Guillaume Escamocher b,∗

a IRIT, University of Toulouse, France
b INSIGHT, University College Cork, Ireland

a b s t r a c t

Although the CSP (constraint satisfaction problem) is NP-complete, even in the case when
all constraints are binary, certain classes of instances are tractable. We study classes of
binary CSP instances defined by excluding subproblems. This approach has recently led
to the discovery of novel tractable classes. The complete characterisation of all tractable
classes defined by forbidding patterns (where a pattern is simply a compact representation
of a set of subproblems) is a challenging problem. We demonstrate a dichotomy in the
case of forbidden patterns consisting of either one or two constraints. This has allowed us
to discover several new tractable classes including, for example, a novel generalisation of
2SAT. We then extend this dichotomy to existential patterns which are only forbidden on
specific domain values.

1. Introduction

In this paper we study the generic combinatorial problem known as the binary constraint satisfaction problem (CSP) in
which the aim is to determine the existence of an assignment of values to n variables such that a set of constraints on pairs
of variables are simultaneously satisfied. The generic nature of the CSP has led to diverse applications, notably in the fields
of Artificial Intelligence and Operations Research [24].

A fundamental research question in complexity theory is the identification of tractable subproblems of NP-complete
problems. Classical approaches have consisted in identifying types of constraintswhich imply the existence of a polynomial-
time algorithm. Among the most well-known examples, we can cite linear constraints and Horn clauses. In an orthogonal
approach, restrictions are placed solely on the (hyper)graph of constraint scopes, known as the constraint (hyper)graph. In
some cases, dichotomies have even been proved characterising all tractable classes definable by placing restrictions either
on the constraint relations [4,3,2] or on the constraint (hyper)graph [21–23].

Recently, a new avenue of research has been investigated: the identification of tractable classes of CSP instances defined
by forbidding a specific (set of) subproblems. Novel tractable classes have been discovered by forbidding simple 3-variable
subproblems [13,15]. A dichotomy has even been discovered for classes of binary CSP instances defined by forbidding
configurations of incompatibilities [5].

One concrete example of a tractable class defined by forbidding a generic subproblem (known as a pattern) is the set of
binary CSP instances satisfying the broken-triangle property [13]: a binary CSP instance on variables X1, . . . , Xn satisfies the

✩ Supported by ANR Project ANR-10-BLAN-0210.
∗ Corresponding author.

E-mail addresses: cooper@irit.fr (M.C. Cooper), guillaume.escamocher@insight-centre.org (G. Escamocher).

Fig. 1. Pattern forbidden by the broken-triangle property.

broken-triangle property if ∀i < j < k ∈ {1, . . . , n}, whenever the assignments a1 = 〈Xi, a〉, a2 =
〈

Xj, b
〉

, a3 = 〈Xk, c〉,
a4 = 〈Xk, d〉 are such that the pairs of assignments (a1, a2), (a1, a3), (a2, a4) are compatible, then at least one of the pairs
of assignments (a1, a4), (a2, a3) is also compatible. The forbidden subproblem is shown in Fig. 1. It has three constraints,
because it has at least one edge between each of the three different pairs of variables. For example, any binary CSP instance
whose constraint graph is a tree satisfies the broken-triangle property for some ordering of its variables; furthermore such
an ordering can be determined in polynomial time. However, tractability is not due to a property of the constraint graph,
since instances satisfying the broken-triangle property exist for arbitrary constraint graphs.

Recently the broken-triangle property has also inspired the development of simplification operations based on the
absence of patterns of compatibilities and incompatibilities on particular variables or values (known as existential patterns).
While in the present paper we infer tractability from a globally-held property (that is, a given pattern does not appear
anywhere in the instance), [6] show that evenwith only local properties of the same kind (a given pattern does not appear on
a given variable Xi) it is possible to deduce information about the relationship between the variable Xi and the rest of the CSP
instance. Depending on that information, it may then be possible to remove the variable withoutmodifying the satisfiability
of the CSP instance. Note that any pattern permitting this kind of elimination also defines a tractable class when it does not
occur on any variable, but not all tractable patterns permit variable elimination. It was possible to characterise all patterns
permitting variable elimination [6], but for the more challenging problem of characterising all forbidden patterns defining
tractable classes, we restrict ourselves in the present paper to 2-constraint patterns as an important first step towards a
complete characterisation.

Two other examples of forbidden patterns which define tractable classes of binary CSP instances are based on the
transitivity of compatibilities or incompatibilities [16]. The former class consists of all binary CSP instances in which for
all triples of assignments a1 = 〈Xi, a〉, a2 =

〈

Xj, b
〉

, a3 = 〈Xk, c〉 to three distinct variables, whenever the pairs (a1, a2),
(a2, a3) are both compatible, the third pair (a1, a3) is also compatible. The latter class consists of all binary CSP instances in
which for all triples of assignments a1 = 〈Xi, a〉, a2 =

〈

Xj, b
〉

, a3 = 〈Xk, c〉 to three distinct variables, whenever the pairs
(a1, a2), (a2, a3) are both incompatible, the third pair (a1, a3) is also incompatible. This property is satisfied, for example, by
instances consisting of unary constraints and non-overlapping AllDifferent constraints (since a = b ∧ b = c ⇒ a = c). The
class of binary CSP instances satisfying this negative-transitivity property has been generalised to a large tractable class of
optimisation problems involving cost functions of arbitrary arity [15,16].

Any class of instances defined by a forbidden pattern is necessarily recognisable in polynomial time by a simple
exhaustive search for the pattern.

The present paper provides an essential first step towards the identification of all tractable classes defined by forbidding
patterns, namely a dichotomy for the special case of 2-constraint forbidden patterns. This investigation of small forbidden
patterns has already allowed us to uncover several novel tractable classes. We expect that this dichotomy will in the future
represent an important base case in a more general characterisation of tractable classes of constraint problems defined by
local structure. The tractable classes described in this paper may prove to be the inspiration for larger tractable classes of
general-arity CSPs or may lead to the development of simplification rules for CSPs.

The paper is structured as follows. In Sections 2–4 we give the necessary definitions concerning patterns, tractability
and reductions between patterns, together with some preprocessing operations which can always be assumed to have been
applied. In Section 5 we give a dichotomy for one-constraint patterns. Section 6 is devoted to the main dichotomy result for
two-constraint patterns. This result first appeared as a conference paper without the proof of the most difficult case [12].
Finally, we extend this dichotomy to include existential patterns in Section 7.

2. Definitions

We first define the notion of a CSP pattern. A pattern can be seen as a generalisation of a binary CSP instance; it represents
a set of subproblems by leaving the consistency of some tuples undefined. We use the term point to denote an assignment

Fig. 2. Four patterns.

of a value to a variable, i.e. a pair a = 〈v, d〉 where d is in the domain of variable v. A pattern is a graph in which vertices
correspond to points and both vertices and edges are labelled. The label of a vertex corresponding to an assignment 〈v, d〉 is
simply the variable v and the label of an edge between two vertices describes the compatibility of the pair of assignments
corresponding to the pair of vertices.

Definition 1. A pattern is a quintuplet 〈V , A, var, E, cpt〉 comprising:

• a set V of variables,
• a set A of points (assignments),
• a variable function var : A → V ,

• a set E ⊆
(

A

2

)

of edges (unordered pairs of elements of A) such that {a, b} ∈ E ⇒ var(a) 6= var(b),

• a Boolean-valued compatibility function cpt : E → {F , T }, where for notational simplicity, we write cpt(a, b) instead of
cpt({a, b}).

Definition 2. A binary CSP instance is a pattern 〈V , A, var, E, cpt〉 such that E = {{a, b} | (a, b) ⊆ A × A, var(a) 6= var(b)}
(i.e. the compatibility of eachpair of assignments to distinct variables is specified by the compatibility function). The question
corresponding to the instance is: does there exist a consistent set of assignments to all the variables, that is a solution A ⊆ A

such that |A| = |V |, (∀a, b ∈ A, var(a) 6= var(b)) and (∀e ∈
(

A

2

)

∩ E, cpt(e) = T)?

A CSP instance can be viewed as a ‘‘total’’ pattern, that is a pattern where every two points not in the same domain are
either compatible or incompatible with each other.

For a pattern P = 〈V , A, var, E, cpt〉 and a variable v ∈ V , we use Av to denote the set of assignments {a ∈ A | var(a) =
v}. The constraint on variables v1, v2 ∈ V is the pattern
〈

{v1, v2}, A12, var|A12 , E12, cpt|E12
〉

where A12 = Av1 ∪ Av2 and E12 = {{a, b} | a ∈ Av1 , b ∈ Av2} ∩ E. If cpt(a, b) = T then
the two assignments (points) a, b are compatible and {a, b} is a compatibility edge; if cpt(a, b) = F then the two assignments
a, b are incompatible and {a, b} is an incompatibility edge. In a pattern, the compatibility of a pair of points a, b such that
var(a) 6= var(b) and (a, b) 6∈ E is undefined. A pattern can be viewed as a compact means of representing the set of all
instances obtained by arbitrarily specifying the compatibility of such pairs. Two patterns P and Q are isomorphic if they are
identical except for a possible renaming of variables and assignments.

In a CSP instance 〈V , A, var, E, cpt〉, we call the set {d | 〈v, d〉 ∈ A} of values that can be assigned to variable v the
domain of v and the set {(d1, d2) | (〈v1, d1〉 , 〈v2, d2〉) ∈ Av1 × Av2 ∧ cpt(〈v1, d1〉 , 〈v2, d2〉) = T } of compatible pairs of
values that can be assigned to two variables v1, v2 ∈ V the constraint relation on v1, v2. The constraint between variables v1

and v2 in a CSP instance is non-trivial if there is at least one incompatible pair of assignments, i.e. a ∈ Av1 and b ∈ Av2 such
that cpt(a, b) = F . The constraint graph of an instance 〈V , A, var, E, cpt〉 is 〈V ,H〉, where H is the set of pairs of variables
v1, v2 ∈ V such that the constraint on v1, v2 is non-trivial.

Definition 3. We say that a pattern P occurs in a pattern P ′ (or that P ′ contains P) if P ′ is isomorphic to a pattern Q in the
transitive closure of the following two operations (extension and merging) applied to P:

extension P is a sub-pattern ofQ (andQ an extension of P): if P = 〈VP , AP , varP , EP , cptP〉 andQ =
〈

VQ , AQ , varQ , EQ , cptQ
〉

,
then VP ⊆ VQ , AP ⊆ AQ , varP = varQ |AP , EP ⊆ EQ , cptP = cptQ |EP .

merging Merging two points in P transforms P into Q : if P = 〈VP , AP , varP , EP , cptP〉 and Q =
〈

VQ , AQ , varQ , EQ , cptQ
〉

,
then ∃a, b ∈ AP such that varP(a) = varP(b) and ∀c ∈ AP such that {a, c}, {b, c} ∈ EP , cptP(a, c) = cptP(b, c).
Furthermore, VP = VQ , AQ = AP \ {b}, varQ = varP |AQ , EQ = EP ∪ {{a, x} | {b, x} ∈ EP} and cptQ (a, x) = cptQ (b, x)

if {b, x} ∈ EP , cptQ (e) = cptP(e) for all other e ∈ EQ .

Consider the four patterns shown in Fig. 2. Assignments (points) are represented by bullets, and assignments to the same
variable v are grouped together within an oval representing Av . Solid lines represent compatibility edges and dashed lines
incompatibility edges. For example, Y consists of 4 points a, b ∈ Av0 , c, d ∈ Av1 such that cpt(a, c) = cpt(b, c) = T and
cpt(b, d) = F . Y occurs in Z since Z is an extension of Y . Y occurs in V since V can be obtained from Y by merging points
a, b. Y also occurs in X by a merging followed by an extension.

Notation. Let P be a CSP pattern. We use CSP(P) to denote the set of binary CSP instances Q in which P does not occur.

Definition 4. A pattern P is intractable if CSP(P) is NP-complete. It is tractable if there is a polynomial-time algorithm to
solve CSP(P).

As we will show, all forbidden patterns we study are either polynomial (tractable) or NP-Complete (intractable).

Definition 5. A pattern P ismergeable (non-mergeable) if P can (cannot) be transformed into a pattern Q 6= P by merging.

Forbidding amergeable pattern is equivalent to forbiddingmore than one pattern. Since known tractable classes defined
by forbidding patterns [13,15] are defined by forbidding a single non-mergeable pattern, we concentrate on this case in this
paper. We characterise all tractable non-mergeable two-constraint patterns.

It is worth observing that, in a class of CSP instances defined by forbidding a pattern, there is no bound on the size of
domains. Recall, however, that CSP instances have finite domains since the set of all possible assignments is assumed to be
given in extension as part of the input.

Clearly, all classes of CSP instances CSP(P) defined by forbidding a pattern are hereditary: I ∈ CSP(P) and I ′ ⊆ I (in the
sense that I is an extension of I ′, according to Definition 3) together imply that I ′ ∈ CSP(P). Furthermore, if I ∈ CSP(P) and I ′

is isomorphic to I , then I ′ ∈ CSP(P). Forbidding a pattern therefore only allows us to define hereditary classes closed under
arbitrary permutations of variable domains.

3. Preprocessing operations on CSP instances

This section describes polynomial-time simplification operations on CSP instances. Assuming that these operations have
been applied facilitates the proof of tractability of many patterns.

Let 〈V , A, var, E, cpt〉 be a CSP instance. If for some variable v, Av is a singleton {a}, then the elimination of a single-valued

variable corresponds to making the assignment a and consists of eliminating v from V and eliminating a from A as well as
all assignments bwhich are incompatible with a.

Given a CSP instance 〈V , A, var, E, cpt〉, arc consistency consists in eliminating from A all assignments a for which there
is some variable v 6= var(a) in V such that ∀b ∈ Av , cpt(a, b) = F [1].

Given a CSP instance 〈V , A, var, E, cpt〉, if var(a) = var(b) and for all variables v 6= var(a), ∀c ∈ Av , cpt(a, c) = T ⇒
cpt(b, c) = T , then we can eliminate a from A by neighbourhood substitution, since in any solution in which a appears, we
can replace a by b [19]. Establishing arc consistency and eliminating single-valued variables until convergence produces
a unique result, and the result of applying neighbourhood substitution operations until convergence is unique modulo
isomorphism [8]. Since removing points or variables from a CSP instance does not introduce any pattern, none of these
three operations when applied to an instance in CSP(P) can introduce the forbidden pattern P .

We now consider two new simplification operations. They are simplification operations that can be applied to certain
CSP instances.We can always perform the fusion of two variables v1, v2 in a CSP instance into a single variable v whose set of
assignments is the cartesian product of the sets of assignments to v1 and to v2. Under certain conditions, we do not need to
keep all elements of this cartesian product and, indeed, the total number of assignments actually decreases. The semantics
of the two fusion operations defined below will become clear with the explanations given in the proof of Lemma 1.

Definition 6. Consider a CSP instance 〈V , A, var, E, cpt〉 with v1, v2 ∈ V . Suppose that there is a fusion function f : Av1 →
Av2 , such that ∀u ∈ Av1 , whenever u is in a solution S, there is a solution S ′ containing both u and f (u). Then we can perform
the simple fusion of v2 and v1 to create a new fused variable v. The resulting instance is

〈

V ′, A′, var ′, E ′, cpt ′
〉

defined by
V ′ = (V \ {v1, v2}) ∪ {v}, A′ = A \ Av2 , var

′(u) = var(u) for all u ∈ A′ \ Av1 and var ′(u) = v for all u ∈ Av1 , E
′ =

{{p, q} ∈
(

A′

2

)

| var ′(p) 6= var ′(q)}, cpt ′(p, q) = cpt(p, q) if p, q ∈ A′ \ Av1 , cpt
′(u, q) = cpt(u, q) ∧ cpt(f (u), q) for all

u ∈ Av1 and all q ∈ A′ \ Av1 .

Definition 7. Consider a CSP instance 〈V , A, var, E, cpt〉 with v1, v2 ∈ V and a hinge value a ∈ Av1 . Suppose that there
is a fusion function f : Av1 \ {a} → Av2 , such that ∀u ∈ Av1 \ {a}, whenever u is in a solution S, there is a solution S ′

containing both u and f (u). Then we can perform the complex fusion of v2 and v1 to create a new fused variable v. The
resulting instance is

〈

V ′, A′, var ′, E ′, cpt ′
〉

defined by V ′ = (V \ {v1, v2}) ∪ {v}, A′ = A \ {a}, var ′(u) = var(u) for all

u ∈ A′ \ (Av1 ∪ Av2) and var ′(u) = v for all u ∈ (Av1 \ {a}) ∪ Av2 , E
′ = {{p, q} ∈

(

A′

2

)

| var ′(p) 6= var ′(q)}, cpt ′(p, q) =

cpt(p, q) if p, q ∈ A′ \ (Av1 ∪ Av2), cpt
′(u, q) = cpt(u, q) ∧ cpt(f (u), q) for all u ∈ Av1 \ {a} and all q ∈ A′ \ (Av1 ∪ Av2),

cpt ′(p, q) = cpt(a, q) ∧ cpt(p, q) for all p ∈ Av2 and all q ∈ A′ \ (Av1 ∪ Av2).

Lemma 1. If I is a CSP instance and I ′ the result of a (simple or complex) fusion of two variables in I, then I ′ is solvable iff I is

solvable.

Proof. We give the proof only for the case of a complex fusion, since a simple fusion can be considered as a special case.
Among the assignments in the cartesian product of Av1 and Av2 , it is sufficient, in order to preserve solvability, to keep only
those of the form (a, p) where p ∈ Av2 or of the form (u, f (u)) where u ∈ Av1 \ {a}. So if I is solvable, then I ′ is solvable. To
complete the proof, it suffices to observe that in A′ weuse p ∈ Av2 to represent the pair of assignments (a, p) and u ∈ Av1 \{a}
to represent (u, f (u)). So if I ′ is solvable, then I is solvable. �

Fig. 3. Example of dp-elimination.

Fusion preserves solvability and the total number of assignments decreases by at least 1 (in fact, by |Av2 | in the case of a

simple fusion). However, when solving instances I ∈ CSP(P), for some pattern P , a fusion operation will only be useful if it
does not introduce the forbidden pattern P .

4. Reduction

In a pattern P = 〈VP , AP , varP , EP , cptP〉, a point awhich is linked by a single compatibility edge to the rest of P is known
as a dangling point. If an arc consistent instance I = 〈V , A, var, E, cpt〉 with |V | ≥ |VP | does not contain the pattern P then it
does not contain the pattern P ′ which is equivalent to P in which the dangling point a and the corresponding compatibility
edge have been deleted. Thus, since arc consistency is a polynomial-time operation which cannot introduce a forbidden
pattern, to decide tractability we only need to consider patterns without dangling points.

Definition 8. We say that a pattern P can be reduced to a pattern Q , and that Q is a reduction of P , if Q = P or if Q is in
the transitive closure of the two operations merging and dp-elimination applied to P , where dp-elimination is the following
operation:

dp-elimination Eliminating a dangling point, its corresponding compatibility edge and its corresponding variable v (if Av

becomes empty) from P transforms P into Q . We give an example in Fig. 3.

Lemma 2. Let P = 〈VP , AP , varP , EP , cptP〉 and Q =
〈

VQ , AQ , varQ , EQ , cptQ
〉

be two patterns, such that P can be reduced to a

sub-pattern of Q . Let I = 〈V , A, var, E, cpt〉 be a CSP instance satisfying arc consistency, with |V | ≥ |VP |. If Q occurs in I, then

P also occurs in I.

Proof. By definition, reduction is a transitive relation. Therefore, by induction, it suffices to prove the result for each of the
individual operations: merging and dp-elimination. We suppose Q occurs in I . If merging two points a and b in P transforms
it into a sub-pattern Q ′ of Q , then P actually covers two different patterns: the one where a and b are different points, and
the one where a and b are the same point. The latter pattern is Q ′. So the set of instances containing Q is a subset of the
set of instances containing (at least one of the two versions of) P and we have the result. If adding a dangling point and its
corresponding compatibility edge to a sub-pattern Q ′ of Q transforms Q ′ into P , then since I satisfies arc consistency P also
occurs in I . �

The following corollary follows immediately from the fact that arc consistency can be established in polynomial time.

Corollary 1. Let P and Q be two patterns, such that P can be reduced to a sub-pattern of Q . Then

• If Q is tractable, then P is tractable.
• If P is intractable, then Q is intractable.

It follows that we only need to study those patterns that cannot be reduced to a sub-pattern of a known tractable pattern
and that do not have as a sub-pattern a reduction of a known intractable pattern.

5. One-constraint patterns

In this sectionwe prove a dichotomy for patterns composed of a single constraint.We also prove some results concerning
1-constraint patterns that are essential for the proof of the 2-constraint dichotomy given in Section 6.

Lemma 3. Let P be a pattern such that a constraint in P contains two distinct incompatibility edges that cannot be merged. Then

P is intractable.

Proof. Let P be a pattern such that a constraint in P contains two non-mergeable incompatibility edges. Let SAT1 be the set
of SAT instances with atmost one occurrence of each variable in each clause. SAT1 is trivially equivalent to SATwhich is well
known to beNP-complete [7]. To prove the lemma it suffices to give a polynomial reduction fromSAT1 to CSP(P).We suppose
that we have a SAT1 instance I = {V , S} with V a set of variables {v1, v2, . . . , vn} and S a set of clauses {C1, C2, . . . , Ck} such
that each clause Ci is a disjunction of ci literals l

1
i ∨ · · · ∨ l

ci
i . We create the following CSP instance I ′:

• n + k variables v′
1, . . . , v

′
n+k.

• ∀v′
i with 1 ≤ i ≤ n, two points vi and vi in Av′

i
.

• ∀v′
i with n + 1 ≤ i ≤ n + k, ci−n points l1i−n, . . . , l

ci−n

i−n in Av′
i
.

• ∀1 ≤ i ≤ k, ∀1 ≤ j ≤ ci, an incompatibility edge between the point lji ∈ Av′
n+i

and the point in Av′
1
, . . . , Av′

n
corresponding

to the literal lji.

A solution to I ′ consists of a set of literals assigned true in a solution s to I together with for each clause a literal from this
clause which is assigned true in s. Therefore, by construction, I ′ has a solution if and only if I has a solution. Furthermore,
each time an incompatibility edge occurs in a constraint C , this constraint C is between a CSP variable v′

i representing the
SAT1 variable vi and another CSP variable v′

n+j representing the SAT1 clause Cj. Since vi occurs at most once in Cj, there is

only one incompatibility edge in C . So I ′ does not contain the pattern P . So we have reduced SAT1 to CSP(P), as required. �

Definition 9. Given a pattern P = 〈V , A, var, E, cpt〉, a variable v ∈ V , and a point a ∈ Av , we say that a is explicitly

compatible (respectively explicitly incompatible) if there is a point b ∈ A such that a is compatible with b (respectively such
that a is incompatible with b).

Lemma 4. Let P be a non-mergeable pattern. Then for every variable v in P, there is at most one point in Av which is not explicitly

incompatible.

Proof. Suppose we have a pattern P such that there are two points a and b with var(a) = var(b) such that neither a nor b
is explicitly incompatible. So no point in the pattern is incompatible with either a or b. Hence, we can merge a and b, which
is a contradiction. �

Let Z be the pattern on two variables v and v′, shown in Fig. 2, with points a, b ∈ Av and points c, d ∈ Av′ such that a is
compatible with both c and d, b is compatible with c and incompatible with d.

Lemma 5. Z is intractable.

Proof. Since 3-colouring is NP-complete [20], it suffices to give a polynomial reduction from 3-colouring to CSP(Z), the
set of CSP instances in which the pattern Z does not occur.

For s, t ∈ {1, 2, 3}, define the relation Rs,t ⊆ {1, 2, 3}2 by

Rs,t = {〈u, v〉|(u = s ∧ v = t) ∨ (u 6= s ∧ v 6= t)}.

It is easy to verify that Rs,t does not contain the pattern Z . Consider the 5-variable gadget with variables vi, vj, u1, u2, u3,
each with domain {1, 2, 3}, and with constraint relations Rk,k on variables (vi, uk) (k = 1, 2, 3) and constraint relations
R1+(k mod 3),k on variables (uk, vj) (k = 1, 2, 3). The joint effect of these six constraints is simply to impose the constraint
vi 6= vj. Any instance 〈V , E〉 of 3-colouring, with V = {1, . . . , n}, can be reduced to an instance of CSP(Z) with variables
v1, . . . , vn by placing a copy of this gadget between every pair of variables (vi, vj) such that {i, j} ∈ E. This reduction is
clearly polynomial. �

Let 1I be the pattern on two variables v and v′ with points a ∈ Av and b ∈ Av′ such that a and b are incompatible. 1I is a
trivial tractable pattern, because any CSP instance not containing 1I contains only trivial constraints.

Lemma 6. Let P be a pattern on one constraint. Then either P is reducible to a sub-pattern of 1I , and thus is tractable, or P is

intractable.

Proof. Let P be a pattern on one constraint between two variables v and v′. From Lemma 3, we know that if P has two
non mergeable incompatibility edges, then P is intractable. If there is no incompatibility edge at all in P , then P is reducible
by merging and/or dp-elimination to the empty pattern, which is a sub-pattern of 1I . We therefore suppose that there is
exactly one incompatibility edge in P , or that P can be reduced by merging to a pattern with only one incompatibility edge.
Let a ∈ Av and b ∈ Av′ be the points defining this edge. From Lemma 4, we know that we only need to consider at most one
other point c 6= a in Av and at most one other point d 6= b in Av′ . If all three edges {a, d}, {c, b} and {c, d} are compatibility
edges, then P is intractable from Lemma 5. If only two or less of these edges are compatibility edges, then P is reducible by
merging and/or dp-elimination to 1I . So we have the lemma. �

Lemma 7. Let P be a pattern composed of two separate one-constraint patterns: P1 on variables v0, v1 and P2 on variables v2, v3,

where all four variables are distinct. Then

1. If either P1 or P2 is intractable, then P is intractable too.
2. If both P1 and P2 are tractable, then P is tractable.

Proof. 1. P1 and P2 are sub-patterns of P . So if one of them is intractable, then P is intractable too, by Corollary 1.
2. Suppose that both P1 and P2 are tractable. So there are two polynomial algorithms A1 and A2 which solve CSP(P1) and

CSP(P2), respectively. Let I be a CSP instance such that P does not occur in I . If P1 does not occur in I then this can be
detected in polynomial time and I can be solved by A1. If P1 occurs on variables u, v in I1, then for each assignment of
values to the pair of variables u, v, the resulting instance I ′ cannot contain P2 and hence can be solved by A2. �

Fig. 4. The pattern 2V .

The following lemma concerns a pattern in which some structure is imposed on domain elements. It is essential for our
two-constraint dichotomy.

Let 2V be the pattern on three variables v0, v1 and v2 with three points a, b, c ∈ Av1 , three points d, e, f ∈ Av2 and
six points g, h, i, j, k, l ∈ Av0 , such that a is compatible with h, b is compatible with g and h, c is incompatible with i, d is
incompatible with j, e is compatible with k and l, f is compatible with l. The pattern 2V also has the associated structure
(a 6= b or g 6= h) and (e 6= f or k 6= l). When a pattern has an associated structure given by a property P , the property
P must be preserved by extension and reduction operations. For example, if P is a 6= b then the points a and b cannot be
merged during a reduction. It is worth pointing out that in a CSP instance, all points are assumed to be distinct and hence a
property such as a 6= b is necessarily satisfied. The pattern 2V is represented in Fig. 4.

Lemma 8. 2V is intractable.

Proof. Let the gadget V+ be the pattern on two variables v0, v1 with points a ∈ Av0 and b, c ∈ Av1 such that a is compatible
with both b and c , together with the structure b 6= c . In the pattern 2V , either b is compatible with two different points g
and h, or h is compatible with two different points a and b. So, if 2V occurs in a CSP instance on variables v′

0, v
′
1, v

′
2, then the

gadget V+ necessarily occurs in the constraint between v′
0 and v′

1. By an identical argument, the gadget V+ must also occur
in the constraint between v′

0 and v′
2.

We define an equality constraint between two variables v and v′ as the constraint consisting of compatibility edges
between identical values in the domains of v and v′ and incompatibility edges between all pairs of distinct values. Thus,
by definition, a point in an equality constraint is compatible with only one point. Since the gadget V+ contains a point a
compatible with two different points, V+ does not occur in an equality constraint.

We will reduce CSP to CSP(2V). Let I be a CSP instance. For each pair of variables v, w in I such that there is a non-trivial
constraint between v andw, we introduce two new variables v′ andw′ such that the domain of v′ is the same as the domain
of v, the domain of w′ is the same as the domain of w. We add equality constraints between v and v′, and between w and
w′, and we add between v′ and w′ the same constraint as there was between v and w. All other constraints involving v′ or
w′ are trivial. We also replace the constraint between v and w by a trivial constraint. After this transformation, v and w′ are
the only variables which share a non trivial constraint with v′. Let I ′ be the instance obtained after all such transformations
are simultaneously performed on I . By construction, I ′ has a solution if and only if I has a solution.

We now suppose that we have three variables v0, v1 and v2 in I ′ such that there are non-trivial constraints between v0

and v1 and between v0 and v2. By construction, at least one of these constraints is an equality constraint. Hence, the gadget
V+ cannot occur in both of these constraints. It follows that 2V cannot occur in I ′. So we have reduced I to an instance
without any occurrence of the pattern 2V . This polynomial reduction from CSP to CSP(2V) shows that 2V is intractable. �

6. Two-constraint patterns

6.1. A dichotomy for two-constraint patterns

Let T be the set {T1, T2, T3, T4, T5} of patterns shown in Fig. 5.
No pattern in T can be reduced to a sub-pattern of a different pattern in T . As wewill show, each Ti (i = 1, . . . , T5) defines

a tractable class of binary CSP instances. For example, T4 defines a class of instances which includes as a proper subset all
instances with zero–one-all constraints [10]. Zero–one-all constraints can be seen as a generalisation of 2SAT clauses to
multi-valued logics.

Let 2I represent the pattern composed of two separate copies of 1I , i.e. 2I consists of four points a, b, c, d such that var(a),
var(b), var(c), var(d) are all distinct and both a, b and c, d are pairs of incompatible points.

Fig. 5. The set of tractable patterns T .

Fig. 6. The pattern Diamond.

Fig. 7. Incompatibility skeleton of type 1.

Definition 10. We say that a pattern P is irreducible if we cannot apply merging or dp-elimination on P .

Theorem 1. Let P be an irreducible pattern on two constraints. Then P is tractable if and only if P is a sub-pattern of one of the

patterns in T ∪ {2I}.

6.2. Proof of Theorem 1

6.2.1. Necessary

⇒: A two-constraint pattern involves either three or four distinct variables. Consider first the latter case, in which P is
composed of two separate irreducible one-constraint patterns P1 and P2 on four distinct variables. By Lemma 7, P is tractable
if and only if both P1 and P2 are tractable. Furthermore, by Lemma 6, all tractable one-constraint irreducible patterns are
sub-patterns of 1I . Thus, if P is tractable, then it is a sub-pattern of 2I , by a combination of P1 and P2 being sub-patterns of
1I . It only remains to study two-constraint patterns on three variables.

From Lemmas 3, 5 and Corollary 1, we know that we only have to study patterns P with at most one incompatibility edge
in each constraint such that P does not contain the pattern Z . If one of the constraints does not contain any incompatibility
edge at all, then the pattern is reducible by merging and/or dp-elimination to a pattern with only one constraint or to the
pattern Diamond, shown in Fig. 6, which is a sub-pattern of T2, T3 and T4. So we can assume from now on that there is exactly
one incompatibility edge (p ∈ Av0 , b ∈ Av1) between v0 and v1, and also exactly one incompatibility edge (p′ ∈ Av0 , c ∈ Av2)

between v0 and v2. The ‘‘skeleton’’ of incompatibility edges of an irreducible tractable pattern can thus take two forms
according to whether p = p′ (skeleton of type 1) or p 6= p′ (skeleton of type 2).

FromLemma4weknow that |Av| ≤ 2 for each variablevwith only one explicitly incompatible point, and that |Av| ≤ 3 for
each variable v with two explicitly incompatible points. We know from Lemmas 5 and 8 that both Z and 2V are intractable,
so by Corollary 1wemust look for patterns inwhich neither one occurs.We know that we have two possible incompatibility
skeletons to study, each one implying a maximum number of points appearing in the pattern.

We first consider the incompatibility skeleton of type 1, shown in Fig. 7.
Suppose that a is a point in the pattern. Then there must be a compatibility edge between a and e, otherwise we could

merge a and b. There also must be a compatibility edge between a and f , otherwise a would be a dangling point. Similarly,
if d is a point in the pattern, then there must be compatibility edges between d and e, and between d and f . So if both a and
d are points in the pattern, then the pattern 2V occurs. So, by Lemma 8 and Corollary 1, a and d cannot be both points of the
pattern. Since they play symmetric roles, we only have two cases to consider: either a is a point in the pattern and not d, or
neither a nor d is a point in the pattern.

Fig. 8. Incompatibility skeleton of type 2.

If a is a point in the pattern and not d, then the only remaining edges to consider are {f , b} and {f , c}. {f , b} cannot be a
compatibility edge, because otherwise the pattern Z would occur. {f , c} must be a compatibility edge, otherwise we could
merge f and e. Thus the pattern is T2.

On the other hand, if neither a nor d is a point in the pattern, then the only remaining edges to consider are {f , b} and
{f , c}. If one of them is a compatibility edge but not the other, then f would be a dangling point. So either both {f , b} and
{f , c} are compatibility edges, or neither of them is. However, the latter case is a sub-pattern of the former one which is T1.
So the only possible irreducible tractable patterns with this incompatibility skeleton are sub-patterns of T1 or T2.

We now consider the incompatibility skeleton of type 2, shown in Fig. 8.
If g is a point in the pattern, then theremust be a compatibility edge between g and b, otherwise we couldmerge g and e.

There alsomust be a compatibility edge between g and c , otherwisewe couldmerge g and f .We suppose, for a contradiction,
that a is a point in the pattern. Then there is a compatibility edge between a and e, otherwisewe couldmerge a and b. There is
also a compatibility edge either between a and f or between a and g , otherwise awould be a dangling point.We cannot have
a compatibility edge between a and g , otherwise the pattern Z would occur. So there is a compatibility edge between a and f .
There is a compatibility edge either between b and f or between c and e, otherwise we could merge e and f . We cannot have
a compatibility edge between b and f , otherwise the pattern Z would occur. We cannot have a compatibility edge between
c and e, otherwise the pattern 2V would occur. So a cannot be a point in the pattern. Since a and d play symmetric roles, we
can also deduce that d cannot be a point in the pattern. So the only remaining edges are {b, f } and {c, e}. At least one of them
is a compatibility edge, otherwise we could merge e and f . If both of them are compatibility edges, the pattern 2V occurs.
So exactly one of them is a compatibility edge. Since they play symmetric roles, we can assume for instance that {b, f } is a
compatibility edge while {c, e} is an unknown edge which means that the pattern is T4.

We now consider the case in which g is not a point in the pattern. Suppose that a is a point in the pattern. There is a
compatibility edge between a and e, otherwise we could merge a and b. There is also a compatibility edge between a and
f , otherwise a would be a dangling point. Similarly, if d is a point in the pattern, then there must be compatibility edges
between d and e, and between d and f . At least one of the edges {b, f } and {c, e} must be a compatibility edge, otherwise we
could merge e and f . In either case, Z occurs in the pattern. So a and d cannot both be points of the pattern. Since they play
symmetric roles, we only have two cases to consider: either a is a point in the pattern and not d, or neither a nor d is a point
in the pattern.

If a is a point in the pattern, then the only remaining edges to consider are {b, f } and {c, e}. At least one of them is
a compatibility edge, otherwise we could merge e and f . There is no compatibility edge between b and f , otherwise the
pattern Z would occur. So there is a compatibility edge between c and e. Hence the pattern is T3.

If neither a nor d is a point in the pattern, then the only remaining edges are {b, f } and {c, e}. At least one of them is a
compatibility edge, otherwise we could merge e and f . So either exactly one of them is a compatibility edge, or they both
are. However, the former case is a sub-pattern of the latter which corresponds to pattern T5. So the only possible irreducible
tractable patterns with this incompatibility skeleton are sub-patterns of T3, T4 or T5.

So if P is a tractable irreducible pattern on two constraints, then P is reducible to a sub-pattern of one of the patterns in
T ∪ {2I}.

6.2.2. Sufficient

⇐: We now give the tractability proofs for all patterns in T ∪ {2I}. We assume throughout that we have applied
until convergence the preprocessing operations: arc consistency, neighbourhood substitution and single-valued variable
elimination. The proof of tractability of T1 is by far the longest of these proofs and will require a dozen lemmas showing that
many simplification operations can be applied to instances in CSP(T1) without introducing the pattern T1 and describing
the structure of the simplified instance. The final step consists in observing that the simplified instance belongs to a known
tractable class [14]. The proofs of tractability of the other patterns are based on the same principle: simplification operations
can be applied which do not introduce the pattern and the resulting simplified instance belongs to a known, sometimes
trivial, tractable class.

Proof of tractability of T1. Let I be an instance in CSP(T1). Let the gadget X be the pattern on two variables v0, v1, shown in
Fig. 2, with points a, b ∈ Av0 and c, d ∈ Av1 such that a is incompatible with c and compatible with d, and b is compatible
with c and incompatible with d.

Fig. 9. Introduction of the pattern T1 .

Suppose that the gadget X is a sub-pattern of the instance I . Suppose a is in a solution S. Let e ∈ Av2 be such that v2 6= v0,
v2 6= v1 and e ∈ S. Let f be the point of S in v1.

If b is incompatible with e then a, b, d and e form the forbidden pattern. So b is compatible with e. Similarly, if c is
incompatible with e, then a, c , f and e form the forbidden pattern. So c is compatible with e. So if we replace a by b and f by
c in S, then we have another solution. So if a is in a solution, then b is also in a solution. So we can remove awhile preserving
the solvability of the instance.

Sowe can assume from now on that the gadget X is not a sub-pattern of the instance.We say that an instance I ∈ CSP(T1)
is simplified if we have applied neighbourhood substitution operations until convergence and all gadgets X have been
eliminated from I . We say that I is fusion-simplified if it is simplified and all (simple or complex) fusion operations have
been performed that do not introduce T1. The following lemma indicates when we can perform fusion operations.

Lemma 9. Consider a (simple or complex) fusion of two variables v, v′ in an instance I ∈ CSP(T1). Suppose that whenever (a, a′)

and (b, b′) are pairs of fused points during this fusion, such that a 6= b ∈ Av and a′ 6= b′ ∈ Av′ , either a and b′ were incompatible

in I or b and a′ were incompatible in I. Then the pattern T1 cannot be introduced by this fusion.

Proof. By the definition of (simple or complex) fusion, the only way that T1 could be introduced is when the two points in
the central variable of T1 are created by the fusion of pairs of points (a, a′) and (b, b′) such that the compatibilities of the
points a, b ∈ Av and a′, b′ ∈ Av′ with the two other points a1, a2 of T1 are as shown in Fig. 9.

Now, if a and b′ were incompatible, then T1 was already present on points a1, a, b, b′ in the original instance, and hence
cannot be introduced by the fusion. Similarly, if b and a′ were incompatible, then T1 was already present on points b, a′, b′,
a2 in the original instance. �

Definition 11. ∀v, v′, ∀a, b ∈ Av , we say that b is better than a with respect to v′, which we denote by a ≤ b for (v, v′) (or
for v′ if the variable v is obvious from the context), if every point in Av′ compatible with a is also compatible with b.

It is easy to see that ≤ is a partial order. We also have the relations ≥, < and > derived in the obvious way from ≤. We
write a ≡ b if a ≤ b and b ≤ a.

Lemma 10. In a simplified instance I ∈ CSP(T1)

1. ∀(v, v′), the order ≤ on Av with respect to v′ is total.
2. ∀v, ∀a, b ∈ Av , there is v′ such that a < b for v′.
3. ∀v, ∀a, b ∈ Av , there is only one v′ such that a < b for v′.

Proof. 1. Because the gadget X cannot occur.
2. Otherwise b is dominated by a and we can remove it by neighbourhood substitution.
3. Because of the initial forbidden pattern. �

Lemma 11. In a simplified instance I ∈ CSP(T1), if a < b < c for (v0, v1), then there exists v2 6= v1 such that c < b < a for

(v0, v2).

Proof. Since we have a < b for (v0, v1), from Lemma 10.2 there is some v2 such that b < a for (v0, v2). Since b < c for
(v0, v1), c ≤ b for (v0, v2) by Lemma 10.3. If c < b for v2, then we have the lemma. Otherwise, we have c ≡ b < a for v2.
Since b < c for v1, there exists v3 6= v1, v2 such that c < b for v3. Since a < b for v1, b ≤ a for v3. So c < b ≤ a for v3. So
we have c < a for both v2 and v3, which is not possible. So we must have c < b < a in v2. �

Lemma 12. In a simplified instance I ∈ CSP(T1), ∀a, b, c, d ∈ Av0 , for all v1 6= v0 none of the following is true:

1. a ≡ b < c < d for v1.

2. a < b ≡ c < d for v1.

3. a < b < c ≡ d for v1.

Proof. We give the proof only for the case 1, since the proofs of cases 2 and 3 are almost identical. Since we have a < c < d

for v1, from Lemma 11 there exists v2 such that d < c < a for v2. Likewise, since b < c < d for v1, there exists v′
2 such that

d < c < b for v′
2. Since d < c for both v2 and v′

2, v2 = v′
2 by Lemma 10.3. This leaves three possibilities:

1. d < c < b < a for v2: from Lemma 11 we know there is v3 such that a < b < c for v3. So we have a < c for both v1 and
v3 with v1 6= v3 (since a ≡ b for v1), which is not possible by Lemma 10.3. So we cannot have this possibility.

2. d < c < b ≡ a for v2: since a ≡ b for both v1 and v2, by Lemma 10.2 there is a different v3 such that a < b for v3. Since
c < b for v2 and v3 6= v2, b ≤ c for v3. So a < c for v3. But we also have a < c for v1 and v1 6= v3. So by Lemma 10.3 we
cannot have this possibility.

3. d < c < a < b for v2: equivalent to the case d < c < b < a after interchanging a and b. �

Corollary 2. In a simplified instance I ∈ CSP(T1), if for some (v0, v1), we have at least three equivalence classes in the order on

Av0 with respect to v1 then:

1. The order on Av0 with respect to v1 is strict.

2. There is v2 such that the order on Av0 with respect to v2 is the exact opposite to the order on Av0 with respect to v1.

3. ∀v3 such that v3 6= v0, v1, v2, there is only one equivalence class in the order on Av0 with respect to v3.

Proof. Points 1, 2 and 3 follow respectively from Lemmas 12, 11 and 10. �

Lemma 13. In a simplified instance I ∈ CSP(T1), ∀a, b, c, d ∈ Av0 , there is no v1 such that a ≡ b < c ≡ d for v1.

Proof. By Lemma 10.2, we know there is some v2 such that a < b for v2. Since we have a < c and a < d for v1, by
Lemma 10.3, we have c ≤ a and d ≤ a for v2. From Corollary 2, we cannot have c < a < b or d < a < b for v2, so we have
d ≡ c ≡ a < b for v2. Since we have c ≡ d for both v1 and v2, we have a different variable v3 such that c < d for v3. Since
c < b for v2 and v3 6= v2, b ≤ c for v3. So b < d for v3. But we also have b < d for v1 and v1 6= v3. So, by Lemma 10.3, we
cannot have this possibility. �

Lemma 14. In a simplified instance I ∈ CSP(T1), if for some (v, v′) there are at least three equivalence classes in the order on Av

with respect to v′, then there are the same number of points in both Av and Av′ and both the order on Av with respect to v′ and

the order on Av′ with respect to v are strict.

Proof. Let d be the number of points in Av and d′ the number of points in Av′ . From Lemma 12 we know that the order on Av

with respect to v′ is strict. Sowe have a1 < a2 < · · · < ad for (v, v′). Sowe have (a′
1, a

′
2, . . . , a

′
d−1) such that ∀i ∈ {1, . . . , d},

ai and a′
i are incompatible but ai+1 and a′

i are compatible. So ∀i ∈ {2, . . . , d} we have ai and a′
i which are incompatible but

ai and a′
i−1 are compatible. So, by Lemma 10.1 we have a′

1 > a′
2 > · · · > a′

d−1 for v. Moreover, since a1 is incompatible with
a′
1, a1 is incompatible with all a′

i for 1 ≤ i < d. By arc consistency, we have a′
0 such that a1 and a′

0 are compatible. So we
have a′

0 > a′
1 > a′

2 > · · · > a′
d−1. So we have d ≤ d′ and at least three equivalence classes in the order on Av′ with respect

to v. By switching v and v′ in the proof, we can prove the remaining claims of the lemma. �

We say that the pair of variables (v, v′) is a 3-tiers pair if there are at least 3 classes of equivalence in the order on Av

with respect to v′; we say that it is a 2-tiers pair otherwise.

Lemma 15. In a simplified instance I ∈ CSP(T1), suppose we have v and v′ such that (v, v′) is a 3-tiers pair. Thenwe can perform

the simple fusion of v, v′ without introducing T1.

Proof. Let d be the number of points inAv . FromLemma14we know that the points inAv can be denoted a1 < a2 < · · · < ad
for v′ and the points in Av′ can be denoted b1 < b2 < · · · < bd for v. We will show that we can perform a simple fusion of v
and v′ with fusion function f given by f (ai) = bd+1−i (i = 1, . . . , d).

Claim: ∀1 ≤ i ≤ d, {bd+1−i, bd+1−i+1, . . . , bd} is the exact set of points compatible with ai.
If we have ai < aj for v′, it means ai is compatible with strictly less points in Av′ than aj. By arc consistency, every point in Av

is compatible with a point in Av′ . So ∀1 ≤ i ≤ d, we have d possibilities (1, 2, . . . , d) for the number of points compatible
with ai. Since we have d points in Av , it means that ∀1 ≤ i ≤ d, ai is compatible with i points in Av′ . By definition of the order
on a variable with respect to another variable, the points in Av′ compatible with a point ai ∈ Av are the greatest points for
v. So we have the claim.

We now show that ∀1 ≤ i ≤ d, if ai is in a solution S, then there is a solution S ′ such that both bd+1−i and ai are in S ′.
Let b be the point of S in v′. If bd+1−i = b, then we have the result. Otherwise, let c 6= b be a point of S. If c = ai, then from
the above claim we know that c is compatible with bd+1−i. Otherwise, let vc = var(c). So vc 6= v. From the above claim we

have bd+1−i < b for v. So b ≤ bd+1−i for vc . So bd+1−i is compatible with c. So bd+1−i is compatible with all the points in S.
So we have a solution S ′ obtained by replacing b by bd+1−i in S which contains both ai and bd+1−i.

We now perform the simple fusion of v and v′ with fusion function f (ai) = bd+1−i for 1 ≤ i ≤ d; we have just shown
that this is a valid simple fusion. It only remains to show that the resulting instance is in CSP(T1), since by Lemma 1 it is
solvable if and only if the original instance was solvable. Let a, b be two distinct points in Av . Without loss of generality,
suppose that a < b for v′. By choice of the fusion function f , b is the smallest (according to the order < for v′) of the points
in Av compatible with f (b). Therefore, a and f (b) are incompatible. The result then follows from Lemma 9. �

Therefore, from now on, in a fusion-simplified instance I ∈ CSP(T1), we can assume that each pair (v, v′) is a 2-tiers pair.
We callwinner for (v, v′) the points in the greater equivalence class in the order for (v, v′). The other points are called losers

for this order. A same point can (and actually will) be a winner for a given order and a loser for another order. If for a given
order there is only one equivalence class, then all the points are considered winners.

Thewinners for (v, v′) are compatiblewith all the points inAv′ . The losers for (v, v′) are only compatiblewith thewinners
for (v′, v).

We say that a variable v is one-winner if ∀v′ 6= v, either only one point of Av is a winner for (v, v′) or all the points in Av

are. Similarly, we say that a variable v is one-loser if ∀v′ 6= v, either only one point of Av is a loser for (v, v′) or all the points
of Av are winners for (v, v′).

Lemma 16. In a simplified instance I ∈ CSP(T1), ∀v, if there is v′ such that there is only one winner for (v, v′), then v is

one-winner. Similarly, if there is v′ such that there is only one loser for (v, v′), then v is one-loser.

Proof. Let a, b, c, d, e, f ∈ Av be such that there are v1 6= v2 with a ≡ b < c for v1, d < e ≡ f for v2, a 6= b and e 6= f . If
d 6= c , then from Lemma 13, we have a ≡ b ≡ d ≡ c for v1 and d < e ≡ f ≡ c for v2. So d < c for both v1 and v2 with
v1 6= v2 (which is a contradiction by Lemma 10.3). So we cannot have d 6= c. So d = c. So we have c < e ≡ f for v2. From
Lemma 13 we have c < e ≡ f ≡ a ≡ b for v2. Since we have a ≡ b for both v1 and v2, by Lemma 10.2 there is a different
variable v3 such that a < b for v3. Since a < c for v1, c ≤ a for v3. So c < b for v3. So c < b for both v2 and v3 with v2 6= v3.
This is impossible by Lemma 10.3. So we have the lemma. �

Corollary 3. In a simplified instance I ∈ CSP(T1), ∀v, either v is one-winner or v is one-loser.

Proof. Lemma 10.2 tells us that there exists v′ and a, b ∈ Av such that a < b for v′. By Lemma 13, either there is only one
winner for (v, v′) or only one loser. The result follows directly from Lemma 16. �

Let E be the set of one-winner variables and F = V \E with V being the set of all variables. From Corollary 3, the variables
in F are one-loser. Let va, vb ∈ E be such that there is a non-trivial constraint between va and vb. Since va ∈ E, there is only
one winner a for vb in va. Similarly, there is only one winner b for va in vb. We can perform a complex fusion of va and vb

with hinge value a and fusion function the constant function f = b.
By Lemma 1, the instance resulting from this fusion is solvable if and only if the original instance was solvable.

Lemma 17. The complex fusion of two one-winner variables va and vb in a simplified instance of CSP(T1) does not create the

forbidden pattern.

Proof. Suppose that (c, c ′) and (d, d′) are corresponding pairs of points during this fusion, with c 6= d ∈ Ava and c ′ 6=
d′ ∈ Avb . Since va only has one winner for vb, we know that either c or d is a loser for vb. Without loss of generality, suppose
d is a loser for vb. Since vb only has one winner for va, and losers are only compatible with winners, we know that d is
incompatible with c ′ (since it is necessarily compatible with d′ for the fusion to take place). The result now follows directly
from Lemma 9. �

We have shown that we can fusion any pair of variables in E between which there is a non-trivial constraint. We now do
the same for F , the set of one-loser variables.

Lemma 18. In a simplified instance I ∈ CSP(T1), let va, vb ∈ F (where F is the set of one-loser variables of I) be such that there

is a non-trivial constraint between va and vb. Let a ∈ Ava and b ∈ Avb be such that a is incompatible with b. If a′ ∈ Ava is in a

solution S and a′ 6= a, then b is in a solution S ′ containing a′.

Proof. Let b′ be the point of S in vb. If b′ = b, then we have the result. Since va is a one-loser variable, we know that all
points in Ava other than a are winners. Thus a′ is compatible with b. By a symmetric argument, b′ is compatible with a. If we
have c ∈ S such that b is incompatible with c , then a, b′, c and b form the forbidden pattern. So b is compatible with all the
points in S. So if we replace b′ by b in S we get a solution S ′ containing both a′ and b. �

Lemma 19. Let va, vb both be one-loser variables in a simplified instance I ∈ CSP(T1) such that a ∈ Ava and b ∈ Avb are incom-

patible. Then we can perform the complex fusion of va and vb with hinge value a and fusion function the constant function f = b

without introducing the forbidden pattern T1.

Fig. 10. Constraint between a one-winner variable v1 and a one-loser variable v2 .

Proof. It follows from Lemma 18 that we only need to consider solutions containing a or b. We can therefore perform a
complex fusion of va and vb with hinge value a and fusion function the constant function f = b.

In all pairs (c, c ′) of corresponding points in this fusion, we must have either c = a or c ′ = b. Suppose that (c, c ′) and
(d, d′) are corresponding pairs of points during the fusion, with c 6= d ∈ Ava and c ′ 6= d′ ∈ Avb . Without loss of generality,
we can assume that c = a and d′ = b. But we know that awas incompatible with b. From Lemma 9 we can deduce that the
fusion does not introduce the pattern T1. �

We say a point a is weakly incompatiblewith a variable v if there exists some b ∈ Av such that a is incompatible with b.

Lemma 20. Let v be a one-loser variable in a simplified instance I ∈ CSP(T1). Let f be a point in Av . Then f is weakly incompatible

with one and only one variable.

Proof. From the definition of a one-loser variable, we know that there is some variable v′ such that f is a loser for (v, v′). So f

is weakly incompatible with v′. From Lemma 10.3, we know that f is a loser only for (v, v′). Furthermore, by arc consistency
we know that f is compatible with all points of Au, for all variables u such that f is not a loser for (v, u). So f is weakly
incompatible with one and only one variable, namely v′, and we have the lemma. �

We have shown that after all possible fusions of pairs of variables, we have two sets of variables E (the set of one-winner
variables) and F = V \ E (the set of one-loser variables) such that:

• ∀v, v′ ∈ E, there is no non-trivial constraint between v and v′.
• ∀v, v′ ∈ F , there is no non-trivial constraint between v and v′.
• ∀v ∈ F , ∀f ∈ Av , f is weakly incompatible with one and only one variable v′ ∈ E. This is from Lemma 20. Furthermore, f

is incompatible with all points of Av′ but one (since v′ ∈ E is a one-winner variable).
• The only possible non-trivial constraint between a variable v1 ∈ E and another variable v2 ∈ F is the following with d1

being the size of the domain of v1:
– There is a point b ∈ Av2 incompatible with exactly d1 − 1 points in Av1 .
– ∀b′ ∈ Av2 with b′ 6= b, b′ is compatible with all points in Av1 .
This is illustrated in Fig. 10. It is easily seen that this constraint can be written (v2 = b) ⇒ (v1 = a).

We call NOOSAT (for Non-binary Only Once Sat) the following problem:

• A set of variables V = {v1, v2, . . . , ve}.
• A set of values A = {a1, a2, . . . , an}.
• A set of clauses C = {C1, C2, . . . , Cf } such that:

– Each clause is a disjunction of literals, with a literal being in this case of the form vi = aj.
– ∀i, j, p, q((vi = aj) ∈ Cp) ∧ ((vi = aj) ∈ Cq) ⇒ p = q.

Lemma 21. CSP(T1) can be reduced to NOOSAT in polynomial time.

Proof. The total number of assignments decreases when we fuse variables, so the total number of (simple or complex)
fusions that can be performed is linear in the size of the original instance. Hence we can produce a fusion-simplified version
of an instance I ∈ CSP(T1) in polynomial time. Thus supposewehave a fusion-simplified instance in CSP(T1).We have shown
that the non-trivial constraints between variables v ∈ F and v′ ∈ E are all of the form v = b ⇒ v′ = a. Furthermore, from

Fig. 11. The gadget N .

Lemma 20 and the third bullet point in the description of a post-fusions instance, each variable-value assignment v = b

occurs in exactly one such constraint. For any v ∈ F , we can replace the set of such constraints v = bi ⇒ vi = ai, for all
values bi in the domain of v, by the clause (v1 = a1) ∨ . . . ∨ (vd = ad). It only remains to prove that no literal appears in
two distinct clauses. Suppose that we have a literal v1 = awhich occurs in two distinct clauses. Then there must have been
two constraints v2 = b ⇒ v1 = a and v3 = c ⇒ v1 = a and with v1 ∈ E, v2 6= v3 ∈ F . Let a′ 6= a be a point in Av1 . Then
b and c are both incompatible with a′ but compatible with a. But this is precisely the forbidden pattern. This contradiction
shows that CSP(T1) can be reduced to NOOSAT. �

The constraints in NOOSAT are convex when viewed as {0, ∞}-valued cost functions on the assignment-sets
{〈v1, a1〉 , . . . , 〈dd, ad〉} (the cost being infinite if and only if the number of assignments in this set is 0) and these assignment-
sets (corresponding to clauses) are non overlapping. So, from [14], it is solvable in polynomial time. Hence the forbidden
pattern T1 is tractable.

Proof of tractability of T2. Let N be the gadget shown in Fig. 11: two variables v0, v1 with points a, b ∈ Av0 and c, d ∈ Av1 ,
such that a,b are both compatible with d, b is incompatible with c , and with the structure a 6= b.

Suppose we are given a CSP instance containing the gadget N . Let v2 be a variable with v2 6= v0, v2 6= v1 and let e be a
point in Av2 such that a and e are compatible. If b is incompatible with e, then we have the forbidden pattern T2 on d, c , b,
a, e. So b is compatible with e. If all the points in Av1 which are compatible with a are also compatible with b, then we can
remove a by neighbourhood substitution. So, assuming that neighbourhood substitution operations have been applied until
convergence, if we have the gadget N , then there is a point g ∈ Av1 compatible with a and incompatible with b.

Let v3 6= v1 such that v3 6= v0. By arc consistency, there is h ∈ Av3 such that h is compatible with a. If b and h are
incompatible, then we have the forbidden pattern T2 on d, g , b, a, h. So b and h are compatible. If there is i ∈ Av3 such that b
and i are incompatible, then we have the forbidden pattern on h, i, b, a, g . So b is compatible with all the points in Av3 . So, if
we have the gadget N , then b is compatible with all the points of the instance outside v0, v1.

Definition 12. A constraint C between two variables v and v′ is functional from v to v′ if ∀a ∈ Av , there is one and only one
point in Av′ compatible with a.

Let the gadget V− be the pattern comprising three variables v4, v5, v6 and points a ∈ Av4 , b ∈ Av5 , c ∈ Av6 such that a is
incompatible with both b and c.

From now on, since V− is a tractable pattern [16], we only need to consider the connected components of the constraint
graph which contain V−.

Lemma 22. If in an instance from CSP(T2), we have the gadget V−, then the constraint between v5 and v4 is functional from v5

to v4 and the constraint between v4 and v6 is functional from v6 to v4.

Proof. By symmetry, it suffices to prove functionality from v5 to v4. We suppose we have the gadget V−. Let d ∈ Av5 be
compatible with a. Since a is weakly incompatible with two different variables, a, b and d cannot be part of the gadget N ,
because otherwise T2 would be present. So the only point in Av4 compatible with d is a. So if a point in Av5 is compatible with
a, then it is only compatible with a. Likewise, if a point in Av6 is compatible with a, then it is only compatible with a.

Let f 6= a be a point in Av4 . By arc consistency, we have d ∈ Av5 and e ∈ Av6 such that a is compatible with d and with
e. From the previous paragraph, we know that both d and e are incompatible with f . So we have the situation illustrated in
Fig. 12.

So d, e and f form the gadget V−. So each point in Av5 and Av6 compatible with f is compatible with only one point of
Av4 . So each point in Av5 and Av6 compatible with a point in Av4 is compatible with only one point of Av4 . By arc consistency,
each point of Av5 and Av6 is compatible with exactly one point of Av4 . So the constraint between v4 and v5 is functional from
v5 to v4. �

Lemma 23. In a connected component of the constraint graph containing V− of an instance from CSP(T2), all constraints are
either functional or trivial.

Proof. Let P(V) be the following property: V is a connected subgraph of size at least two of the constraint graph and all
constraints in V are either functional or trivial.

P({v4, v5}) is true from Lemma 22.

Fig. 12. The three variables v4 , v5 and v6 .

Let Vall be the set of all variables of the connected subgraph of the constraint graph containing V−. Let V be a maximum
(with respect to inclusion) subset of Vall for which P(V) is true. Let V ′ = Vall \ V . Let v′ ∈ V ′. Let v ∈ V be such that C(v, v′)

(the constraint on v, v′) is non-trivial. So there is d ∈ Av and e ∈ Av′ such that d and e are incompatible. Since V is connected
and of cardinality at least two, there is v′′ ∈ V such that C(v, v′′) is functional. By arc consistency and elimination of single-
valued variables, there is necessarily a point f ∈ Av′′ such that d and f are incompatible. So d, e and f form the gadget V−.
From Lemma 22 we know C(v, v′) is functional. So P(V) is true for all subsets of Vall. �

Lemma 24. In an instance from CSP(T2), ∀v such that v is in a connected component of the constraint graph containing V−, all

points in Av are weakly incompatible with the exact same set of variables.

Proof. Let a ∈ Av be weakly incompatible with v′. So C(v, v′) is non trivial. So C(v, v′) is functional.
If C(v, v′) is functional from v to v′, then a point in Av can be compatible with only one point in Av′ . We can assume, by

elimination of single-valued variables, that there are at least two points in Av′ , so every point in Av is weakly incompatible
with v′.

If C(v, v′) is functional from v′ to v, then let b 6= a in v. By arc consistency, we know there is c ∈ Av′ such that a and c are
compatible. Since C(v, v′) is functional from v′ to v, c is compatible with only one point in Av , namely a, so b is incompatible
with c. So every point in Av is weakly incompatible with v′.

So ∀(v, v′), a ∈ Av weakly incompatible with v′ ⇒ ∀b ∈ Av, bweakly incompatible with v′. �

Definition 13. A sequence of variables (v0, v1, . . . , vk) is a path of functionality if∀i ∈ {0, . . . , k−1}, C(vi, vi+1) is functional
from vi to vi+1.

Lemma 25. In a connected component of the constraint graph containing V− of an instance from CSP(T2), ∀v, v′, either v′ is

connected to only one other variable in the constraint graph, or there is a path of functionality from v to v′.

Proof. Since we are in a connected component, there is a path of incompatibility (v0 = v, v1, v2, . . . , vk = v′) with all vi

different and at least one incompatibility edge between vi and vi+1 for 0 ≤ i ≤ k− 1. If v′ is connected to at least two other
variables in the constraint graph, then we have a path of incompatibility (v0, v1, v2, . . . , vk−1, vk, vk+1) with vk+1 6= vk−1.
From Lemma 24 we have a path of incompatibility (a0 ∈ Av0 , a1 ∈ Av1 , . . . , ak ∈ Avk , ak+1 ∈ Avk+1). So ∀i ∈ {1, . . . , k}, ai−1,
ai and ai+1 form the gadget V−. So from Lemma 22, ∀i ∈ {1, . . . , k}, C(vi−1, vi) is functional from vi−1 to vi. So we have a
path of functionality from v to v′. �

Variables which are connected to at most one other variable in the constraint graph can be removed from the instance I

since, by arc consistency, any solution on the remaining variables can be extended to a solution for I . Once we have removed
all such variables, for each connected component of the constraint graph, we only have to set an initial variable v0 and see if
the q chains of implications (with q being the number of points inAv0) lead to a solution. Since this is clearly polynomial-time,
the pattern T2 is tractable.

Proof of tractability of T3. Consider an instance from CSP(T3).
Suppose that the gadget N , shown in Fig. 11, is a sub-pattern of the instance and let e be a point in Av2 , with v2 6= v0, v1.

If e is compatible with b but not with a, then we have the forbidden pattern T3. So if b is compatible with a point outside of
Av1 , then a is also compatible with the same point.

Fig. 13. The gadget W .

Let S be a solution containing b. Let f be the point of S in Av1 . If f is compatible with a, then we can replace b by a in S

while maintaining the correctness of the solution, since all the points in the instance outside of Av1 which are compatible
with b are also compatible with a.

If f is not compatible with a, then edges {a, f }, {f , b} and {b, d} form the gadget N . So, by our previous argument, if f
is compatible with a point outside of Av1 , then d is also compatible with the same point. We can then replace b by a and
f by d in S while maintaining the correctness of the solution, since all the points in the instance outside of Av1 which are
compatible with b are also compatible with a and all the points in the instance outside of Av0 which are compatible with f

are also compatible with d. So if a solution contains b, then there is another solution containing a. Thus we can remove b

while preserving solvability.
So each time the gadget N is present in an instance I ∈ CSP(T3), we can remove one of its points and hence eliminate N .

Absence of the gadgetN in I is equivalent to saying that all constraints are either trivial or bijections and hence (a subclass of)
zero–one-all constraints [10]. Since all gadgets N can be removed in polynomial time and CSP instances with zero–one-all
constraints can be solved in polynomial time, it follows that the pattern T3 is tractable.

Proof of tractability of T4. Consider an instance from CSP(T4).
Let W be the gadget shown in Fig. 13: two variables v0 and v1 such that we have a in Av0 , b, c, g in Av1 , with b 6= c , a

compatible with both b and c , and a incompatible with g . Suppose we haveW in the instance.
Let f be a point in Av2 , with v2 6= v0, v1. If f is compatible with b but not with c , then we have the forbidden pattern T4.

Likewise, if f is compatible with c but not with b, then we have the forbidden pattern T4. So all the points of the instance not
in Av0 or Av1 have the same compatibility towards b and c.

If all points in Av0 compatible with b are also compatible with c , then all the points in the instance compatible with b are
also compatible with c and by neighbourhood substitution we can remove b. Thus we can assume there is d in Av0 such that
d is compatible with b but not with c .

Let S be a solution containing c. Let e be the point of S in Av0 . If e is compatible with b, then we can replace c by b in S

while maintaining the correctness of the solution, since b and c have the same compatibility towards all the points in the
instance outside of Av0 and Av1 . If e is not compatible with b, then edges {b, e}, {b, a} and {b, d} form the gadgetW . So, by our
argument above, a and d have the same compatibility towards all the points in the instance outside of Av0 and Av1 . Similarly,
edges {c, d}, {c, a} and {c, e} form the gadgetW . So a and e have the same compatibility towards all the points in the instance
outside of Av0 and Av1 . So d and e have the same compatibility towards all the points in the instance outside of Av0 and Av1 .
Thus we can replace c by b and e by d in S while maintaining the correctness of the solution, since b and c have the same
compatibility towards all the points in the instance outside of Av0 and Av1 and e and d have the same compatibility towards
all the points in the instance outside of Av0 and Av1 . So if a solution contains c , then there is another solution containing b.
Thus we can remove c .

Therefore, each time the gadgetW is present, we can remove one of its points. The gadgetW is a known tractable pattern
since forbidding W is equivalent to saying that all constraints are zero–one-all [10]. So if it is not present, the instance is
tractable. Hence pattern T4 is tractable.

Proof of tractability of T5. The pattern T5 is a sub-pattern of the broken-triangle pattern BTP , a known tractable pattern [13]
on three constraints. So the pattern T5 is tractable by Corollary 1.

Proof of tractability of 2I . Since 2I is the disjoint union of two copies of the trivially tractable pattern 1I , the tractability of
2I follows directly from Lemma 7.

We have proved that all patterns in T are tractable. This concludes the proof of the theorem.

7. Two-constraint existential patterns

7.1. Definitions, reduction and properties

In this sectionwe consider a differentway of defining a class of CSP instances by forbidding patterns. An existential pattern

is a pattern P with a set of points e ⊆ Av for some distinguished variable v. We call the points in e existential points. Often e

will be a singleton {a}. In this case, forbidding the existential pattern P means that for all variables x in the instance I , there
is some point fx(a) ∈ Ax such that there is no occurrence of P in I in which the existential point a maps to fx(a).

Fig. 14. A simple pattern 1I and an existential version ∃1I of the same pattern.

Fig. 15. A pattern V- and an existential version V-Middle of the same pattern.

Fig. 16. Example of extension of an existential pattern P to produce the existential pattern Q .

As a simple example, consider the pattern 1I and its existential version ∃1I shown in Fig. 14. Forbidding 1I in an instance
means that all points are compatiblewith all other points in the instance, whereas forbidding ∃1I imposes the less restrictive
assumption that for each variable x there exists some point fx(a) ∈ Ax which is compatible with all other points of the
instance.

As a slightly more elaborate example, consider the pattern V- and its existential version V-Middle shown in Fig. 15.
Forbidding V- in an instance means that all points in the instance are incompatible with points in at most one other
variable, whereas forbidding V-Middle imposes the less restrictive assumption that for each variable x there exists some
point fx(a) ∈ Ax which is incompatible with points in at most one other variable. From Theorem 1, we know that the set
of CSP instances in which we forbid the pattern V- is tractable. Actually, if we only consider arc-consistent instances, there
even exists a linear time algorithmwhich can find a solution in any such instance. However, as we show later in Lemma 29,
the set of instances in which we forbid the pattern V-Middle is NP-Complete, even when only considering arc-consistent
instances.

When e is not a singleton, forbidding the existential pattern P means that for all variables x in I , there is an injective
function fx : e → Ax such that there is no occurrence of P in I in which each p ∈ e maps to fx(p). An existential pattern
〈V , A, var, E, cpt, e〉 is thus a pattern 〈V , A, var, E, cpt〉 to which we add a set of existential points e ⊆ Av for some distin-
guished variable v ∈ V . If e = ∅, then the existential pattern is equivalent to the (non-existential) pattern 〈V , A, var, E, cpt〉.
Existential patterns have been previously studied in order to characterise under which conditions a variable can be elimi-
nated from a binary CSP instance without the need to add any constraints [6].

Forbidding an existential version Q of a pattern P defines a much larger class CSP(Q) than CSP(P). Although existential
patterns were first introduced in order to define variable elimination rules, an interesting question is whether any new
tractable classes can be defined by existential patterns. In this section we give a complete dichotomy for 2-constraint
existential patterns (under the very reasonable assumption that all instances are arc consistent).

We now give versions of the definitions of extension, merging, dp-elimination, occurrence and tractability generalised
to existential patterns.

Definition 14. We say that an existential pattern P occurs in an existential pattern P ′ (or that P ′ contains P) if P ′ is isomorphic
to an existential pattern Q in the transitive closure of the following two operations (extension and merging) applied to P:

extension P is a sub-pattern of Q (and Q an extension of P): if P = 〈VP , AP , varP , EP , cptP , eP〉 and Q =
〈

VQ , AQ , varQ ,

EQ , cptQ , eQ
〉

, then VP ⊆ VQ , AP ⊆ AQ , varP = varQ |AP , EP ⊆ EQ , cptP = cptQ |EP , and eP ⊆ eQ . We give an example
in Fig. 16.

Fig. 17. Example of merging in an existential pattern P to produce the existential patten Q .

merging Merging two points in P transforms P into Q : if P = 〈VP , AP , varP , EP , cptP , eP〉 and Q =
〈

VQ , AQ , varQ , EQ , cptQ ,

eQ
〉

, then ∃a, b ∈ AP such that varP(a) = varP(b), a ∈ eP ⇔ b ∈ eP and ∀c ∈ AP such that {a, c}, {b, c} ∈ EP ,
cptP(a, c) = cptP(b, c). Furthermore, VP = VQ , AQ = AP \ {b}, varQ = varP |AQ , EQ = EP ∪ {{a, x} | {b, x} ∈ EP},
cptQ (a, x) = cptQ (b, x) if {b, x} ∈ EP , cptQ (e) = cptP(e) for all other e ∈ EQ , and eQ = ep \ {b}. We give an example
in Fig. 17.

It follows from Definition 14 that an occurrence of an existential pattern P in an existential pattern Q can also be viewed
as the existence of an occurrence-function f : AP → AQ such that

1. ∀a, b ∈ AP , varQ (f (a)) = varQ (f (b)) if and only if varP(a) = varP(b).
2. ∀a, b ∈ AP such that {a, b} ∈ EP , {f (a), f (b)} ∈ EQ and cptQ (f (a), f (b)) = cptP(a, b).
3. ∀a ∈ AP such that a ∈ eP , f (a) ∈ eQ .

Definition 15. Let I = 〈V , A, var, E, cpt〉 be a CSP instance. Let v be a variable in V . Let S ⊆ Av . Let P =
〈

VP , AP ,

varP , EP , cptP , eP
〉

be an existential pattern.
If P occurs in the existential pattern 〈V , A, var, E, cpt, S〉 with occurrence-function f : AP → A, such that f |eP is a

bijection, then we say that P occurs on S via f |eP . (If S is a singleton {a}, then to simplify notation we simply say that P occurs
on a.)

Definition 16. If I = 〈V , A, var, E, cpt〉 is a CSP instance, then an existential pattern
P = 〈VP , AP , varP , EP , cptP , eP〉 appears in I (and I contains P) if ∃v ∈ V with |Av| ≥ |eP | such that for all subsets S of Av with
|S| = |eP | and all bijections g : eP → S, P occurs on S via g . Conversely, P does not appear in I if ∀v ∈ V with |Av| ≥ |eP |,
there is an injective mapping g : eP → Av such that P does not occur on g(eP) via g .

It is worth pointing out that wewill show later that when eP ≥ 2 for some non-trivial existential pattern P , the set of CSP
instances not containing P is NP-Complete. This explains why no such pattern appears on the tractability side of our main
result and why for most of the following we only need to consider existential patterns P in which eP is a singleton.

Suppose that an existential pattern P does not appear in an instance I since for all variables v, there is a subset Sv of Av

and a bijection g : eP → A such that P does not occur on Sv via g . Establishing arc consistency in I may eliminate some
of the assignments in the sets Sv with the consequence that P may now appear in the arc-consistent version of I . Since arc
consistency is a basic filtering operation applied by all constraint solvers to reduce the size of variable domains, we choose
to study only arc consistent CSP instances.

Notation. Let P be an existential pattern.We use CSPAC(P) to denote the set of arc-consistent binary CSP instances I inwhich
P does not appear.

Definition 17. An existential pattern P is intractable if CSPAC(P) is NP-complete. It is tractable if there is a polynomial-time
algorithm to solve CSPAC(P).

In an existential pattern P = 〈VP , AP , varP , EP , cptP , eP〉, a point p 6∈ eP which is linked by a single compatibility edge
to the rest of P is known as a dangling point. If an arc consistent instance I = 〈V , A, var, E, cpt〉 with |V | ≥ |VP | does not
contain the existential pattern P then it does not contain the pattern P ′ which is equivalent to P in which the dangling point
p and the corresponding compatibility edge have been deleted. Thus, to decide the tractability of CSPAC(P) we only need to
consider patterns P without dangling points.

Definition 18. We say that an existential pattern P can be reduced to an existential pattern Q , and that Q is a reduction

of P , if Q = P or if Q is in the transitive closure of the two operations merging and dp-elimination applied to P , where
dp-elimination is the following operation:

dp-elimination Eliminating a dangling point, its corresponding compatibility edge and its corresponding variable v (if Av

becomes empty) from P transforms P into Q . We give an example in Fig. 18.

Lemma 26. Let P = 〈VP , AP , varP , EP , cptP , eP〉 and Q =
〈

VQ , AQ , varQ , EQ , cptQ , eQ
〉

be two existential patterns, such that P

is a sub-pattern of Q . Let I = 〈V , A, var, E, cpt〉 be an arc-consistent CSP instance. If Q appears in I, then P also appears in I.

Fig. 18. Example of dp-elimination in an existential pattern P to produce the existential pattern Q .

Proof. Suppose that Q appears in I . So ∃v ∈ V such that Q occurs on all subsets of Av of size |eQ | and for all bijections
g : eQ → S. Let T be any subset of Av of size |eP | and let h : eP → T be any bijection. We have to show that P appears in I

on T via h.
Let S be any subset of Av of size |eQ | such that T ⊆ S and let g : eQ → S be any bijection such that g|eP = h. We know

that Q occurs in the existential pattern 〈V , A, var, E, cpt, S〉 with an occurrence-function f such that f |eQ = g . Since P is a
sub-pattern of Q , P occurs in the existential pattern 〈V , A, var, E, cpt, S ∩ f (eP)〉 with the occurrence-function f |AP . Since
eP ⊆ eQ by the definition of a sub-pattern, we have f |eP = g|eP = h. Thus P appears in I on T = h(eP) via h and we are
done. �

Lemma 27. Let P = 〈VP , AP , varP , EP , cptP , eP〉 and Q =
〈

VQ , AQ , varQ , EQ , cptQ , eQ
〉

be two existential patterns, such that P

can be reduced to a sub-pattern of Q . Let I = 〈V , A, var, E, cpt〉 be an arc-consistent CSP instance with |V | ≥ |VP |. If Q appears

in I, then P also appears in I.

Proof. By definition, reduction is a transitive relation. Therefore, by induction, it suffices to prove the result for each of the
individual operations: merging and dp-elimination.

If merging two points a and b in P transforms it into a sub-pattern Q ′ of Q , then P actually covers two different patterns:
the one where a and b are different points, and the one where a and b are the same point. The latter pattern is Q ′ which
appears in I , by Lemma 26, since it is a sub-pattern ofQ . So the set of instances containingQ is a subset of the set of instances
containing (at least one of the two versions of) P and we have the result.

We now suppose that eliminating a dangling point c ∈ vc , with vc ∈ VP , and its corresponding compatibility edge
from P transforms P into a sub-pattern Q ′ of Q , where Q ′ =

〈

VQ ′ , AQ ′ , varQ ′ , EQ ′ , cptQ ′ , eQ ′

〉

. Since c is a dangling point,
from the definition of dp-elimination we know that c 6∈ eP . So eQ ′ = eP . Let d be the point such that {c, d} is the
compatibility edge eliminated from P to produceQ ′. SinceQ ′ is a sub-pattern ofQ , by Lemma 26,we know thatQ ′ appears in
I = 〈V , A, var, E, cpt〉. So ∃v ∈ V such that for all S ⊆ Av with |S| = |eQ ′ | and for all bijections g : eQ ′ → S,Q ′ occurs on S via
g . Let f be the corresponding occurrence-function. Since eP = eQ ′ , it suffices to show that P also occurs on S via g . If vc ∈ VQ ′ ,
then let v′

c = var(f (vc)) be the variable in I corresponding to vc in this appearance ofQ ′. If vc 6∈ VQ ′ (due to being eliminated
during dp-elimination), then |VQ ′ | < |VP | ≤ |V |, and so we can set v′

c ∈ V to be a variable of I not corresponding to any
variable in VQ ′ in this appearance of Q ′. In both cases, since I satisfies arc consistency, there is a point c ′ ∈ v′

c compatible
with f (d). We can thus extend f to an occurrence-function f ′ of P in I by setting: f ′(c) = c ′, and f ′(p) = f (p) for all
p ∈ AP \ {c} = AQ ′ . Hence P also occurs on S via g , since f and f ′ are identical on eP , which completes the proof. �

The following corollary follows immediately from the fact that arc consistency can be established in polynomial time.

Corollary 4. Let P and Q be two existential patterns, such that P can be reduced to a sub-pattern of Q . Then

• If Q is tractable, then P is tractable.

• If P is intractable, then Q is intractable.

It follows that we only need to study those existential patterns that cannot be reduced to a sub-pattern of a known
tractable existential pattern and that do not have as a sub-pattern a reduction of a known intractable existential pattern.

Let I be a CSP instance. We say that v′ ∈ V is a copy in I of v ∈ V on (A0, A1) with A0 ⊂ Av and A1 ⊂ Av′ if:

• |A0| = |A1|.
• ∀a ∈ A0, ∃b ∈ A1 such that cpt(a, b) = T and ∀c 6= b in A1 we have cpt(a, c) = F .
• ∀b ∈ A1, ∃a ∈ A0 such that cpt(a, b) = T and ∀c 6= a in A0 we have cpt(c, b) = F .
• ∀a ∈ A0, ∀b ∈ A1 such that cpt(a, b) = T , ∀c ∈ A \ {Av, Av′}, we have cpt(b, c) = cpt(a, c).

For notational simplicity, we say that v′ is a copy of v in I if A0 = Av and A1 = Av′ .

Lemma 28. Let P = 〈V , A, var, E, cpt〉 be a pattern and P ′ = 〈V , A, var, E, cpt, a〉 be an existential version of P. Then P ′ is

tractable only if P is tractable.

Proof. Since 〈V , A, var, E, cpt〉 is equivalent to 〈V , A, var, E, cpt, ∅〉, the result follows directly from Definition 14 of exten-
sion and Corollary 4. �

Fig. 19. Two intractable existential patterns on three variables.

Fig. 20. Two intractable existential patterns on two variables.

Fig. 21. The existential pattern ExpandedV+.

7.2. Some NP-complete existential patterns

In order to identify all tractable existential patterns, we begin by showing that many simple existential patterns are
NP-complete. Let V3 = {v0, v1, v2}, A3 = {a0, a1, a2}, var3(ai) = vi for i ∈ {0, 1, 2}, E3 = {{a0, a1}, {a0, a2}} and
cpt3(a0, a1) = cpt3(a0, a2) = F . Let
V-Middle=〈V3, A3, var3, E3, cpt3, {a0}〉 be the existential pattern shown on the left of Fig. 19 and V-Side=

〈

V3, A3, var3, E3,

cpt3, {a1}
〉

be the existential pattern shown on the right of Fig. 19.

Lemma 29. V-Middle and V-Side are NP-Complete.

Proof. Let I = 〈V , A, var, E, cpt〉 be an arc-consistent CSP instance. Let v1, . . . , vk be the variables of I . Let I ′ =
〈

V ′, A′, var ′, E ′, cpt ′
〉

be the CSP instance on variables v′
1, . . . , v

′
2k such that:

• Av′
i
= Avi ∪ {ai} for all 1 ≤ i ≤ k and Av′

i
= Bvi−k

∪ {ai} for all k + 1 ≤ i ≤ 2k, where |Bi| = |Ai| (1 ≤ i ≤ k). We can think

of variables v′
i and v′

i+k as having the same domain except for the special value corresponding to ai.
• For all 1 ≤ i ≤ k, ai is incompatible with ai+k and compatible with all other points of I ′. For all k + 1 ≤ i ≤ 2k, ai is

incompatible with ai−k and compatible with all other points of I ′. For all 1 ≤ i ≤ k, this prevents both ai and ai+k to be
part of the same solution. The idea here is that for any solution S ′ to I ′, for all 1 ≤ i ≤ k, either the point of S ′ in v′

i or the
point of S ′ in v′

i+k will be an original point from I , or a copy of an original point from I .
• For all 1 ≤ i < j ≤ k, for all a ∈ Ai, for all b ∈ Aj, cpt ′(a, b) = cpt(a, b). For all 1 ≤ i ≤ k, v′

i+k is a copy of v′
i in I ′ on

(Avi , Av′
i+k

\ {ai+k}).

By construction, I ′ has a solution if and only if I has a solution, since (1) a solution to I can be duplicated to produce a
solution to I ′, and (2) a solution to I ′ without the assignments ai and after elimination of duplicates is a solution to I .

Furthermore, for all 1 ≤ i ≤ k, ai is incompatible with only one other point in I ′. So for all 1 ≤ i ≤ k, neither V-Middle nor
V-Side occurs on ai. So neither V-Middle nor V-side appears in I ′. Thus we can reduce any CSP instance I to an arc-consistent
CSP instance I ′ in which neither V-middle nor V-side appears. It follows that V-Middle and V-Side are NP-Complete. �

Let V2 = {v0, v1}, A2 = {a0, a1, a2}, var2(a0) = v0, var2(a1) = var2(a2) = v1, E2 = {{a0, a1}, {a0, a2}} and cpt2(a0, a1) =
cpt2(a0, a2) = T . Let V+Middle be the existential pattern
〈V2, A2, var2, E2, cpt2, {a0}〉 shown on the left of Fig. 20 and V+Side the existential pattern
〈V2, A2, var2, E2, cpt2, {a1}〉 shown on the right of Fig. 20.

Let ExpandedV+ = 〈V , A, var, E, cpt, {a0}〉 be the existential pattern shown in Fig. 21 and given by: V = {v0, v1, v2},
A = {a0, a1, a2, a3}, var(a0) = v0, var(a1) = var(a2) = v1, var(a3) = v2, E = {{a0, a1}, {a0, a2}, {a3, a1}, {a3, a2}},
cpt(a0, a2) = cpt(a3, a1) = cpt(a3, a2) = T and cpt(a0, a1) = F .

Lemma 30. V+Middle, V+Side and ExpandedV+ are NP-Complete.

Proof. Let I = 〈V , A, var, E, cpt〉 be an arc-consistent CSP instance on variables v1, . . . , vk. Let I ′ =
〈

V ′, A′, var ′, E ′, cpt ′
〉

be
the CSP instance on variables v′

1, . . . , v
′
3k such that:

Fig. 22. The existential pattern V + −.

Fig. 23. Three intractable existential patterns.

• Av′
i

= Avi ∪ {ai, bi} for all 1 ≤ i ≤ k, Av′
i

= Bvi−k
∪ {ai, bi} for all k + 1 ≤ i ≤ 2k, and Av′

i
= Cvi−2k ∪ {ai, bi} for

2k + 1 ≤ i ≤ 3k, where |Ci| = |Bi| = |Ai| (1 ≤ i ≤ k). We can think of variables v′
i , v

′
i+k and v′

i+2k as having the same
domain except for the special values corresponding to ai, bi.

• For all 1 ≤ i ≤ 3k, for all 1 ≤ j ≤ 3k such that i 6= j, ai is compatible with bj and incompatible with all other points of
Av′

j
. For all 1 ≤ i ≤ 3k, for all 1 ≤ j ≤ 3k such that i 6= j, bi is compatible with aj and incompatible with all other points

of Av′
j
. For all 1 ≤ i ≤ k, this prevents any three points from {ai, bi, ai+k, bi+k, ai+2k, bi+2k} to be part of the same solution.

The idea here is that for any solution S ′ to I ′, for all 1 ≤ i ≤ k, at least one of the points of S ′ in v′
i , v

′
i+k and v′

i+2k will be
an original point from I , or a copy of an original point from I .

• For all 1 ≤ i < j ≤ k, for all a ∈ Avi , for all b ∈ Aj, cpt ′(a, b) = cpt(a, b). For all 1 ≤ i ≤ k, vi+k is a copy of vk in I ′ on
(Avi , Av′

i+k
\ {ai+k, bi+k}) and vi+2k is a copy of vk on (Avi , Av′

i+2k
\ {ai+2k, bi+2k}).

By construction, I has a solution if and only I ′ has a solution. Furthermore, for all 1 ≤ i 6= j ≤ k, ai is only compatible
with bj in Avj and bj is itself only compatible with ai in Avi . So for all 1 ≤ i ≤ k, neither V+Middle nor V+Side occurs
on ai. Moreover, for all 1 ≤ i, j, h ≤ k, ai is only compatible with bj in Avj , bj is only compatible with ah in Avh and ah is
only compatible with bj in Avj . So for all 1 ≤ i ≤ k, ExpandedV+ does not occur on ai. So none of V+Middle, V+side or
ExpandedV+ appear in I ′. Hence V+Middle and V+Side are NP-Complete. �

Let V+− =〈V , A, var, E, cpt, {a1}〉 be the existential pattern shown in Fig. 22 and given byV = {v0, v1},A = {a0, a1, a2},
var(a0) = v0, var(a1) = var(a2) = v1, E = {{a0, a1}, {a0, a2}}, cpt(a0, a1) = T and cpt(a0, a2) = F .

Lemma 31. V + − is NP-Complete.

Proof. Let I be an arc-consistent CSP instance on variables v1, . . . , vk with at most one incompatibility edge in each
constraint. Let I ′ be the CSP instance on variables v′

1, . . . , v
′
k such that:

• Av′
i
= Avi ∪ {ai} for all 1 ≤ i ≤ k.

• For all 1 ≤ i < j ≤ k, ai is incompatible with aj. For all 1 ≤ i < j ≤ k, for all b ∈ Av′
j
, ai is incompatible with b if b is

incompatible with a point c ∈ Av′
i
and ai is compatible with b otherwise.

• For all 1 ≤ i < j ≤ k, for all a ∈ Avi , for all b ∈ Avj , cpt
′(a, b) = cpt(a, b).

For all 1 ≤ i 6= j ≤ k, we know that ai is compatible with a point a′ ∈ Avj if and only if a′ is compatible with all points
in Avi . Since at most one point in Avj is incompatible with a point in Avi , and since |Avj | ≥ 2, there always exists such a point
a′ ∈ Avj . So I ′ is arc consistent. Furthermore, for all 1 ≤ i 6= j ≤ k we know that if ai is compatible with a point a′ ∈ Avj ,
then a′ is compatible with all points in Avi . So for all 1 ≤ i ≤ k, V + − does not occur on ai and we can remove ai by
neighbourhood substitution. So V+− does not appear in I ′ and the solvability of I ′ is the same as that of I . So we can reduce
any CSP instance with at most one incompatibility edge in each constraint I to a CSP instance I ′ in which V + − does not
appear. From Lemma 3, the set of CSP instances with at most one incompatibility edge in each constraint is NP-Complete.
Thus V + − is NP-Complete. �

Let ∃T3 = 〈V , A, var, E, cpt, {a0}〉 be the existential pattern shown in the middle of Fig. 23 and defined by V = {v0,

v1, v2}, A = {a0, a1, a2, a3, a4}, var(a0) = var(a1) = v0, var(a2) = var(a3) = v1, var(a4) = v2, E = {{a0, a2},
{a1, a2}, {a1, a3}, {a2, a4}, {a3, a4}}, cpt(a1, a2) = cpt(a1, a3) = cpt(a2, a4) = T and cpt(a0, a2) = cpt(a3, a4) = F .

Lemma 32. ∃T3 is NP-Complete.

Proof. Let I be an arc-consistent CSP instance on variables v1, . . . , vk. Let I ′ be the CSP instance on variables v′
1, . . . , v

′
2k,

u′
1, . . . , u

′
k with compatibility function cpt ′ such that:

• Av′
i

= Avi ∪ {ai, bi} for all 1 ≤ i ≤ k, Av′
i

= Bvi−k
∪ {ai, bi} for all k + 1 ≤ i ≤ 2k, where |Bi| = |Ai| (1 ≤ i ≤ k), and

Au′
i
= {ci, di, ei} for 1 ≤ i ≤ k. We can think of variables v′

i and v′
i+k as having the same domain except for the special

values corresponding to ai, bi. The role of the variables u′
i is to ensure that ai, bi cannot be part of any solution to I ′.

• For all 1 ≤ i ≤ 2k, for all 1 ≤ j ≤ 2k such that i and j are not equal modulo k, ai and bi are compatible with all points of
Av′

j
. For all 1 ≤ i ≤ k: ai is compatible with ai+k and incompatible with all other points of Av′

i+k
; ai+k is incompatible with

all points in Av′
i
\ {ai}; bi is compatible with bi+k and incompatible with all other points of Av′

i+k
; bi+k is incompatible with

all points in Av′
i
\ {bi}.

• For all 1 ≤ i ≤ k: ci is incompatible with ai, bi, ai+k, bi+k and compatible with all other points of A′; di is incompatible
with all points in (Av′

i
\ {bi})∪ (Av′

i+k
\ {ai+k}) and compatible with all other points in A′; ei is incompatible with all points

in (Av′
i
\ {ai}) ∪ (Av′

i+k
\ {bi+k}) and compatible with all other points in A′.

• For all 1 ≤ i < j ≤ k, for all a ∈ Avi , for all b ∈ Aj, cpt ′(a, b) = cpt(a, b). For all 1 ≤ i ≤ k, vi+k is a copy of vk in I ′ on
(Avi , Av′

i+k
\ {ai+k, bi+k}).

The points ai, bi, di, ei do not belong to any solution to the sub-instance of I ′ on variables v′
i , v

′
i+k, u

′
i , whereas ci is compatible

with all points in the original instance I . Furthermore, apart from these special points, variables v′
i , v

′
i+k are just copies of

variable vi. Thus, by construction, I has a solution if and only I ′ has a solution.
We will now show that the existential pattern ∃T3 cannot occur on any ai, with 1 ≤ i ≤ 2k. Suppose that there is some

i, with 1 ≤ i ≤ 2k, such that the existential pattern ∃T3 occurs on ai. Let v be the variable of ai. Since ∃T3 occurs on ai, there
is a variable v′ and a point a′ ∈ Av′ such that ai and a′ are incompatible. By construction, v′ can only be one of the following
variables: v′

i+k (or v′
i−k if i > k) and u′

i (or u
′
i−k if i > k). Since ∃T3 occurs on ai, there is a point in Av which is compatible

with two different points in Av′ . However, from the second and fourth bullet points we know that there is no point in Av

compatible with two different points in Av′
i
(Av′

i−k
if i > k), and from the third bullet point we also know that there is no

point in Av compatible with two different points in Au′
i
(Au′

i−k
if i > k). So ∃T3 cannot occur on ai. So the existential pattern

∃T3 cannot occur on any ai, with 1 ≤ i ≤ 2k.
Similarly, it is easy to verify that the existential pattern ∃T3 does not occur on ci (for all 1 ≤ i ≤ k). Hence ∃T3 does not

appear in I ′. It follows that ∃T3 is NP-complete. �

Let ∃subT1 = 〈V , A, var, E, cpt, {a0}〉 be the existential pattern shown on the left of Fig. 23 and defined by V = {v0,

v1, v2}, A = {a0, a1, a2, a3}, var(a0) = v0, var(a1) = var(a2) = v1, var(a3) = v2, E = {{a0, a1}, {a1, a3}, {a2, a3}},
cpt(a0, a1) = cpt(a1, a3) = T and cpt(a2, a3) = F .

Lemma 33. ∃subT1 is NP-Complete.

Proof. Let I be an arc-consistent binary CSP instance on variables v1, . . . , vn, where n > 3. Let I ′ be the CSP instance on
variables v′

1, . . . , v
′
n with compatibility function cpt ′ such that:

• Av′
i
= Avi ∪ {ai} ∪ {bij | j = 1, . . . , i − 1, i + 1, . . . , n} for all 1 ≤ i ≤ n.

• For all 1 ≤ i, j ≤ k with i 6= j, for all p ∈ Av′
i
and for all q ∈ Av′

j
\ Avj , cpt

′(p, q) = T if and only if p = bij or q = bji.

• For all 1 ≤ i < j ≤ n, for all a ∈ Avi , for all b ∈ Avj , cpt
′(a, b) = cpt(a, b).

It is easy to verify that none of the points ai or bij belong to a solution to any 4-variable sub-instance of I ′. This implies that
the solutions to I ′ are exactly the solutions I .

To complete the proof, it remains to show that for each i = 1, . . . , n, ∃subT1 does not occur on ai in I ′. Let v′
i , v

′
j , v

′
k be any

three distinct variables in I ′. The point ai is only compatible with bji in Av′
j
which is only compatible with bkj in Av′

k
. Since bkj

is compatible with all points in Av′
j
, the existential pattern ∃subT1 does not occur on ai in I ′. �

Let ∃T4 = 〈V , A, var, E, cpt, {a0}〉 be the existential pattern shown on the right of Fig. 23 and defined by V = {v0, v1,

v2}, A = {a0, a1, a2, a3, a4}, var(a0) = var(a1) = var(a2) = v0, var(a3) = v1, var(a4) = v2, E = {{a0, a4},
{a1, a3}, {a1, a4}, {a2, a3}, {a2, a4}}, cpt(a1, a3) = cpt(a1, a4) = cpt(a2, a4) = T and cpt(a0, a4) = cpt(a2, a3) = F .

Lemma 34. ∃T4 is NP-Complete.

Proof. Let I = 〈V , A, var, E, cpt〉 be an arc-consistent binary CSP instance on variables v1, . . . , vn. We will construct an
equivalent instance I ′ in which we add an assignment ai for each variable so that ∃T4 does not occur on ai. For each such
point ai, we will also add a 3-variable gadget to prevent ai from being part of a solution. Let I ′ =

〈

V ′, A′, var ′, E ′, cpt ′
〉

be the
CSP instance on variables v′

1, . . . , v
′
n, w

′
1, . . . , w

′
n, x

′
1, . . . , x

′
n, y

′
1, . . . , y

′
n such that:

Fig. 24. Three tractable existential patterns.

• Av′
i
= Avi ∪ {ai} for all 1 ≤ i ≤ n.

• For all 1 ≤ i ≤ n, |Aw′
i
| = |Av′

i
| and the constraint between v′

i and w′
i is a permutation constraint, i.e. there is a bijection

π : Av′
i
→ Aw′

i
such that ∀p ∈ Av′

i
, ∀q ∈ Aw′

i
, cpt ′(p, q) = T if and only if q = π(p). For all 1 ≤ i ≤ n, we denote π(ai) by

bi.
• For all 1 ≤ i, j ≤ kwith i 6= j: Ax′

i
= {ci, di} and Ay′

i
= {ei, fi}; the point ci is compatible with all points in A′ except ei; the

point ei is compatible with all points in A′ except ci; the point di is compatible with all points in A′ except bi and fi; the
point fi is compatible with all points in A′ except bi and di. This implies that bi, and hence ai cannot be part of any solution
on the variables v′

i , w
′
i , x

′
i , y

′
i .

• For all 1 ≤ i 6= j ≤ n: for all p ∈ Avi , for all q ∈ Avj , cpt
′(p, q) = cpt(p, q); for all q ∈ Av′

j
, cpt(ai, q) = T .

• For all 1 ≤ i < j ≤ n, for all p ∈ Awi
, for all q ∈ Awj

, cpt(p, q) = T .

For all 1 ≤ i ≤ n, let gi be any point in Aw′
i
\ {bi}. By construction, the existential pattern ∃T4 does not occur on any of the

points ai, gi, ci or ei in I ′. Hence ∃T4 does not appear in the instance I ′.
For all 1 ≤ i ≤ n, the point ai cannot be extended to a solution to the sub-instance on variables v′

i , w
′
i , x

′
i , y

′
i , whereas all

other points in Av′
i
can. It follows that the solutions to I ′ are exactly the solutions to I . Hence ∃T4 is NP-complete. �

7.3. A dichotomy for two-constraint existential patterns

Definition 19. We say that an existential pattern P is irreducible if we cannot apply merging or dp-elimination to P .

Let X1 = 〈V , A, var, E, cpt, {a}〉 be the following existential pattern (shown on the left of Fig. 24): V = {v0, v1, v2},
A = {a, b, c, d}, var(a) = var(b) = v0, var(c) = v1, var(d) = v2, E = {{a, c}, {b, c}, {b, d}}, cpt(a, c) = cpt(b, d) = F and
cpt(b, c) = T .

Let X2 = 〈V , A, var, E, cpt, {a}〉 be the following existential pattern (shown in the middle of Fig. 24): V = {v0, v1, v2},
A = {a, b, c, d}, var(a) = v0, var(b) = var(c) = v1, var(d) = v2, E = {{a, b}, {a, c}, {b, d}, {c, d}}, cpt(a, b) = cpt(c, d) =
F and cpt(a, c) = cpt(b, d) = T .

Let X3 = 〈V , A, var, E, cpt, {a}〉 be the following existential pattern (shown on the right of Fig. 24): V = {v0, v1, v2, v3},
A = {a, b, c, d}, var(a) = v0, var(b) = v1, var(c) = v2, var(d) = v3, E = {{a, b}, {c, d}}, cpt(a, b) = cpt(c, d) = F .

We say that an existential pattern is a singleton existential pattern if its set of existential points is a singleton. We
first characterise the tractability of irreducible singleton 2-constraint existential patterns. This will then directly lead to
a dichotomy for general existential patterns.

Proposition 1. Let P = 〈V , A, var, E, cpt, {aP}〉 be an irreducible singleton existential pattern on two constraints. Then P is

tractable if and only if P is a sub-pattern of one of the existential patterns X1, X2, X3.

Proof. ⇒: Let P = 〈V , A, var, E, cpt, {aP}〉 be a tractable irreducible existential pattern on two constraints. A two-
constraint existential pattern involves either three or four variables. FromLemma28 and Theorem1, all potentially-tractable
irreducible singleton existential patterns on four variables are sub-patterns of X3. Therefore we only need to consider two-
constraint existential patterns on three variables.

By Lemma 28 and Theorem 1, we only need to consider patterns P such that the corresponding non-existential pattern
P ′ = 〈V , A, var, E, cpt〉 is a sub-pattern of one of T1, T2, T3, T4, T5.

If P ′ is a sub-pattern of T1, then the irreducible singleton 3-variable existential pattern P either contains one of V-Side,
V-Middle, V+− or ∃subT1 or is a subpattern of X1. Hence, by Lemmas 29, 31 and 33, P is either intractable or is a subpattern
of X1.

If P ′ is a sub-pattern of T2, then the irreducible singleton 3-variable existential pattern P either contains one of V-Side,
V-Middle, V+−, V+Side, V+Middle, ExpandedV+or∃subT1 or is a subpattern ofX1. Hence, by Lemmas29 and30, Lemmas31
and 33, P is either intractable or is a subpattern of X1.

If P ′ is a sub-pattern of T3, then the irreducible singleton 3-variable existential pattern P either contains one of V+Side,
V+Middle, ExpandedV+, V + −, or ∃T3 or is a subpattern of X1 or X2. Hence, by Lemmas 30–32, P is either intractable or is
a subpattern of X1 or X2.

If P ′ is a sub-pattern of T4, then the irreducible singleton 3-variable existential pattern P either contains one of V+Side,
V+Middle, ExpandedV+, V + −, ∃subT1 or ∃T4 or is a subpattern of X1 or X2. Hence, by Lemma 30, Lemma 31, Lemma 33
and Lemma 34, P is either intractable or is a subpattern of X1 or X2.

If P ′ is a sub-pattern of T5, then the irreducible singleton 3-variable existential pattern P either contains V + − or is a
subpattern of X1 or X2. Hence, by Lemma 31, P is either intractable or is a subpattern of X1 or X2.
⇐: We now give the tractability proofs for the patterns X1, X2, X3.

Proof of tractability of X1: Let I = 〈V , A, var, E, cpt〉 be an arc-consistent CSP instance such that X1 does not appear in I . So
∀vi ∈ V , ∃ai ∈ Avi such that X1 does not occur on ai. Suppose that we have a partial solution Sk = {s1 ∈ Av1 , . . . , sk ∈ Avk},
with 0 ≤ k < |V |. If ak+1 is compatiblewith all si for 1 ≤ i ≤ k, then Sk∪ak+1 is a partial solution for variables (v1, . . . , vk+1).
Suppose that for some 1 ≤ i ≤ k, we have that si and ak+1 are incompatible. By arc-consistency, we know there is b ∈ Avk+1

such that si and b are compatible. Since X1 does not occur on ak+1, b is compatible with all points in A \ (Avi ∪ Avk+1), in
particular all sj for j 6= i. So b is compatible with all points in Sk. So Sk ∪ b is a partial solution for variables (v1, . . . , vk+1). So
if we have a partial solution for I on k variables, then we also have a partial solution for I on k+1 variables. Hence, assuming
A 6= ∅, there is always a solution for I . So X1 is tractable.

Proof of tractability of X2: Let I = 〈V , A, var, E, cpt〉 be an arc-consistent CSP instance such that X2 does not appear in I . So
∀vi ∈ V , ∃ai ∈ Avi such that X2 does not occur on ai. Suppose that we have a partial solution Sk = {s1 ∈ Av1 , . . . , sk ∈ Avk},

with 0 ≤ k < |V |. Let Y be the set i ≤ k such that si and ak+1 are compatible and let Y be the set of i ≤ k such that si and ak+1

are compatible. By arc consistency, ∀i ∈ Y , ∃ti such that ti and ak+1 are compatible. Let S ′ = {s′1 ∈ Av1 , . . . , s
′
k+1 ∈ Avk+1}

with

s′i =

ai if i = k + 1
si if i ∈ Y

ti if i ∈ Y .

Let i ∈ Y and j ∈ Y . Since S is a partial solution, si and sj are compatible. We know that ak+1 is compatible with tj and
incompatible with sj. Since X2 does not occur on ak+1, si and tj are compatible.
Let i, j ∈ Y . From the argument in the previous paragraph, we know that si and tj are compatible. We also know that ak+1 is
compatible with ti and incompatible with sj. Since X2 does not occur on ak+1, ti and tj are compatible.
So all the points in S ′ are compatible with each other. So S ′ is a partial solution for variables (v1, . . . , vk+1). So if we have
a partial solution for I on k variables, then we also have a partial solution for I on k + 1 variables. Hence, assuming A 6= ∅,
there is always a solution for I . So X2 is tractable.

Proof of tractability of X3: Let I = 〈V , A, var, E, cpt〉 be an arc-consistent CSP instance such that X3 does not appear in I .
So ∀vi ∈ V , ∃ai ∈ Avi such that X3 does not occur on ai. If all ai are compatible with all points in I , then the set of all ai is a
solution for I . Otherwise, let i and j be such that ∃b ∈ Avj such that ai and b are incompatible. Since X3 does not occur on ai,
there is no incompatibility edge between two points of A\ (Avi ∪Avj). Thus we can perform the fusion of vi and vj into a new
variable vij such that points in Avij correspond to compatibility edges between vi and vj. Since there is no incompatibility
edge between two points outside of Avij , applying arc consistency on vij will determine whether there is a solution for I .

7.4. The main dichotomy

We can now combine Proposition 1 with Theorem 1 to obtain a complete dichotomy for irreducible 2-constraint exis-
tential patterns.

Theorem 2. Let P = 〈V , A, var, E, cpt, e〉 be an irreducible existential pattern on two constraints. Then CSPAC(P) is solvable in

polynomial-time if P is a sub-pattern of one of the patterns T1, T2, T3, T4, X1, X2, X3; if not CSPAC(P) is NP-complete.

Proof. We first make the observation that for non-existential patterns, i.e. patterns P for which e = ∅, CSPAC(P) is solvable
in polynomial time if and only if CSP(P) is solvable in polynomial time, since non-existential patterns cannot be introduced
by establishing arc consistency. Thus the case e = ∅ corresponds exactly to the dichotomy for non-existential patterns given
in Theorem 1. Note that the patterns T5 and 2I are equivalent to sub-patterns, respectively, of X2 and X3 which is why we do
not explicitly mention them in the statement of the theorem.

The case |e| = 1 corresponds exactly to Proposition 1. For the case |e| > 1, by Lemma 28, we only need to consider
existential versions of sub-patterns of T1, T2, T3, T4, T5, 2I . But all existential patterns P with |e| > 1 which are sub-patterns
of one of T1, T2, T3, T4, T5, 2I must contain either V + − or V-Side and hence are NP-complete by Lemmas 29 and 31. �

8. Conclusion

Wehave investigated the computational complexity of classes of binary CSP instances defined by forbidding 2-constraint
patterns.We have given a dichotomy for irreducible 2-constraint patterns which has brought to light several novel tractable
classes.

One avenue for future research is to investigate the possible generalisations of the seven tractable classes defined by
forbidding patterns T1, T2, T3, T4, X1, X2 or X3. Possible generalisations include the addition of costs, adding extra constraints
to the patterns and replacing binary constraints by constraints of arbitrary arity. Concerning general-arity constraints, two
distinct generalisations of BTP have been proposed [17,11], along with a generalisation of the notion of microstructure [18].

New and interesting tractable classes may exist which can only be defined by forbidding more than one irreducible
pattern. It is an interesting open question whether such classes exist. In this paper we have limited our study to single
irreducible patterns, due to the sheer number of cases when multiple patterns are simultaneously forbidden.

Another interesting avenue for research is to enrich the language of forbidden patterns, as we have done for existential
patterns. The fact that forbidding patterns only on one point per variable has allowed us to find a strict generalisation of
the tractable class defined by the pattern T5 indicates the validity of this approach. Recently it has been shown that further
enriching patterns with a sequence of arbitrary quantifiers on all variables and values can lead to the discovery of new
variable elimination rules [9].

References

[1] C. Bessière, J.-C. Régin, R.H.C. Yap, Y. Zhang, An optimal coarse-grained arc consistency algorithm, Artif. Intell. 165 (2) (2005) 165–185.
[2] A.A. Bulatov, Tractable conservative constraint satisfaction problems, in: LICS 2003: Proceedings of 18th IEEE Symposium on Logic in Computer

Science, 2003, pp. 321–330.
[3] A.A. Bulatov, A dichotomy theorem for constraint satisfaction problems on a 3-element set, J. ACM 53 (1) (2006) 66–120.
[4] A. Bulatov, P. Jeavons, A. Krokhin, Classifying the complexity of constraints using finite algebras, SIAM J. Comput. 34 (3) (2005) 720–742.
[5] D.A. Cohen, M.C. Cooper, P. Creed, D. Marx, A.Z. Salamon, The tractability of csp classes defined by forbidden patterns, J. Artif. Intell. Res. (JAIR) 45

(2012) 47–78.
[6] D.A. Cohen, M.C. Cooper, G. Escamocher, S. Živný, Variable elimination in binary csp via forbidden patterns, IJCAI 2013 (2013) 517–523.
[7] S.A. Cook, The complexity of theorem-proving procedures, in: M. A. Harrison, R. B. Banerji, J. D. Ullman (Eds.), STOC, ACM, 1971, pp. 151–158.
[8] M.C. Cooper, Fundamental properties of neighbourhood substitution in constraint satisfaction problems, Artif. Intell. 90 (1–2) (1997) 1–24.
[9] M.C. Cooper, Beyond consistency and substitutability, in: Principles and Practice of Constraint Programming—20th International Conference, CP 2014,

Lyon, France, September 8–12, 2014. Proceedings, 2014, pp. 256–271.
[10] M.C. Cooper, D.A. Cohen, P. Jeavons, Characterising tractable constraints, Artif. Intell. 65 (2) (1994) 347–361.
[11] M.C. Cooper, A. El Mouelhi, C. Terrioux, B. Zanuttini, On broken triangles, in: Principles and Practice of Constraint Programming - 20th International

Conference, CP 2014, Lyon, France, September 8-12, 2014. Proceedings, 2014 pp. 9–24.
[12] M.C. Cooper, G. Escamocher, A dichotomy for 2-constraint forbidden csp patterns, in: J. Hoffmann, B. Selman (Eds.), AAAI, AAAI Press, 2012.
[13] M.C. Cooper, P.G. Jeavons, A.Z. Salamon, Generalizing constraint satisfaction on trees: Hybrid tractability and variable elimination, Artif. Intell. 174

(9–10) (2010) 570–584.
[14] M.C. Cooper, S. Živný, Hierarchically nested convex VCSP, in: CP 2011, 2011, pp. 187–194.
[15] M.C. Cooper, S. Živný, Hybrid tractability of valued constraint problems, Artif. Intell. 175 (9–10) (2011) 1555–1569.

[16] M.C. Cooper, S. Živný, Tractable triangles and cross-free convexity in discrete optimisation, J. Artif. Intell. Res. (JAIR) 44 (2012) 455–490.
[17] A. El Mouelhi, P. Jégou, C. Terrioux, A hybrid tractable class for non-binary csps, in: 2013 IEEE 25th International Conference on Tools with Artificial

Intelligence, Herndon, VA, USA, November 4–6, 2013, 2013, pp. 947–954.
[18] A. ElMouelhi, P. Jégou, C. Terrioux,Microstructures for cspswith constraints of arbitrary arity, in: Proceedings of the Tenth SymposiumonAbstraction,

Reformulation, and Approximation, SARA 2013, 11–12 July 2013, Leavenworth, Washington, USA, 2013.
[19] E.C. Freuder, Eliminating interchangeable values in constraint satisfaction problems, in: T. L. Dean, K. McKeown (Eds.), AAAI, AAAI Press/TheMIT Press,

1991, pp. 227–233.
[20] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, San Francisco, CA, 1979.
[21] M. Grohe, The complexity of homomorphism and constraint satisfaction problems seen from the other side, J. ACM 54 (1) (2007) 1–24.
[22] D. Marx, Can you beat treewidth? Theory Comput. 6 (1) (2010) 85–112.
[23] D. Marx, Tractable hypergraph properties for constraint satisfaction and conjunctive queries, in: STOC’10: Proceedings of the 42nd ACM Symposium

on Theory of Computing, ACM, 2010, pp. 735–744.
[24] F. Rossi, P. van Beek, T. Walsh, Handbook of Constraint Programming, in: Foundations of Artificial Intelligence, Elsevier, 2006.

