Detecting sociosemantic communities by applying social network analysis in tweets - Archive ouverte HAL
Article Dans Une Revue Social Network Analysis and Mining Année : 2015

Detecting sociosemantic communities by applying social network analysis in tweets

Résumé

Virtual social networks have led to a new way of communication that is different from the oral one, where the restriction of time and space generates new linguistic practices. Twitter, a medium for political and social discussion, can be analyzed to understand new ways of communication and to explore sociosemiotics aspects that come with the use of the hashtags and their relationship with other elements. This paper presents a quantitative study of tweets, around a fixed hashtag, in relation with other contents that users bring to connection. By calculating the frequency of terms, a table of nodes and edges is created to visualize tweets like graphs. Our study applies social network analysis that, going beyond mere topology, reveals relevant sociosemantic communities providing insights for the comparison of social and political movements.
Fichier principal
Vignette du fichier
Abascal-Mena_15373.pdf (1.74 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01283863 , version 1 (07-03-2016)

Identifiants

Citer

Rocio Abascal-Mena, Rose Lema, Florence Sèdes. Detecting sociosemantic communities by applying social network analysis in tweets. Social Network Analysis and Mining, 2015, vol. 5 (n° 1), pp. 1-17. ⟨10.1007/s13278-015-0280-2⟩. ⟨hal-01283863⟩
150 Consultations
495 Téléchargements

Altmetric

Partager

More