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Téléport 2 - BP 30179 Boulevard Marie et Pierre Curie, F–86962 Technopole du Futuroscope

de Poitiers Cedex, France

Wioletta M. Ruszel

E mail: W.M.Ruszel@tudelft.nl

Delft Institute of Applied Sciences, Technical University Delft, Mekelweg 4, 2628 CD Delft,

The Netherlands

Cristian Spitoni

E mail: C.Spitoni@uu.nl

Institute of Mathematics, University of Utrecht, Budapestlaan 6, 3584 CD Utrecht, The Nether-

lands

Abstract. Cellular Automata are discrete–time dynamical systems on a spatially extended

discrete space which provide paradigmatic examples of nonlinear phenomena. Their stochas-

tic generalizations, i.e., Probabilistic Cellular Automata (PCA), are discrete time Markov

chains on lattice with finite single–cell states whose distinguishing feature is the parallel

character of the updating rule. We study the ground states of the Hamiltonian and the

low–temperature phase diagram of the related Gibbs measure naturally associated with a

class of reversible PCA, called the cross PCA. In such a model the updating rule of a cell

depends indeed only on the status of the five cells forming a cross centered at the original

cell itself. In particular, it depends on the value of the center spin (self–interaction). The

goal of the paper is that of investigating the role played by the self–interaction parameter

in connection with the ground states of the Hamiltonian and the low–temperature phase

diagram of the Gibbs measure associated with this particular PCA.
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1. Introduction

Cellular Automata (CA) are discrete–time dynamical systems on a spatially extended dis-

crete space. They are well known for – at the same time – being easy to define and implement

and for exhibiting a rich and complex nonlinear behavior as emphasized for instance in [37,38]

for CA on one–dimensional lattice. See [22] to precise the connections with the nonlinear

physics. For the general theory of deterministic CA we refer to the recent paper [20] and

references therein.

Probabilistic Cellular Automata (PCA) are CA straightforward generalization where the

updating rule is stochastic. They inherit the computational power of CA and are used as

models in a wide range of applications (see, for instance, the contributions in [32]). From

a theoretic perspective, the main challenges concern the non–ergodicity of these dynam-

ics for an infinite collection of interacting cells. Ergodicity means the non–dependence of

the long–time behavior on the initial probability distribution and the convergence in law

towards a unique stationary probability distribution (see [34] for details and references).

Non–ergodicity is related to critical phenomena and it is sometimes referred to as dynamical

phase transition.

Strong relations exist between PCA and the general equilibrium statistical mechanics

framework [16, 23, 36]. Important issues are related to the interplay between disordered

global states and ordered phases (emergence of organized global states, phase transition) [28].

Altough, PCA initial interest arose in the framework of Statistical Physics, in the recent

literature many different applications of PCA have been proposed. In particular it is notable

to remark that a natural context in which the PCA main ideas are of interest is that of

evolutionary games [29–31].

PCA dynamics are naturally defined on an infinite lattice. Given a local stochastic up-

dating rule, one has to face the usual problems about the connections between the PCA

dynamics on a finite subpart of the lattice and the dynamics on the infinite lattice. In

particular, it was stated in [17] for translation–invariant infinite volume PCA with positive

rates1, that the law of the trajectories, starting from any stationary translation–invariant

distribution, is the Boltzmann–Gibbs distribution for some space–time associated poten-

tial. Thus phase transition for the space–time potential is intimately related to the PCA

dynamical phase transition.

Moreover, see [14, Proposition 2.2], given a translation–invariant PCA dynamics, if there

exists one translation–invariant stationary distribution which is a Gibbs measure with respect

to some potential on the lattice, then all the associated translation–invariant stationary

1A PCA is said to be with positive rates if the local updating rule is a distribution giving positive

probability to any cell–state.
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distributions are Gibbs with respect to the the same potential.

In this paper we shall consider a particular class of PCA, called reversible PCA, which are

reversible with respect to a Gibbs–like measure defined via a translation invariant multi–body

potential. In this framework we shall study the zero and low–temperature phase diagram

of such an equilibrium statistical mechanics–like system, whose phases are related to the

stationary measures of the original PCA.

We shall now first briefly recall formally the definitions of Cellular Automata and Prob-

abilistic Cellular Automata and then describe the main results of the paper.

1.1. Cellular Automata

Cellular Automata are defined via a local deterministic evolution rule. Let Λ ⊂ Zd be a

finite cube with periodic boundary conditions.

Associate with each site i ∈ Λ (also called cell) the state variable σi ∈ S0, where S0 is a

finite single-site space and denote by Ω := SΛ
0 the state space. Any σ ∈ Ω is called a state

or configuration of the system.

In order to define the evolution rule we consider I, a subset of the torus Λ, and a function

fI : SI0 → S0 depending on the state variables in I. We also introduce the shift Θi on the

torus, for any i ∈ Λ, defined as the map Θi : Ω→ Ω

(Θiσ)j = σi+j. (1.1)

The configuration σ at site j shifted by i is equal to the configuration at site i + j. For

example (see figure 1.1) set j = 0, then the value of the spin at the origin 0 will be mapped

to site i. The Cellular Automaton on Ω with rule fI is the sequence σ(0), σ(1), . . . , σ(t), for

t a positive integer, of states in Ω satisfying the following (deterministic) rule:

σi(t) = fI(Θiσ(t− 1)) (1.2)

for all i ∈ Λ and t ≥ 1.

Note the local and parallel character of the evolution: the value σi(t + 1), for all i ∈ Λ,

of all the state variables at time t + 1 depend on the value of the state variables at time t

(parallel evolution) associated only with the sites in i+ I (locality).

1.2. Probabilistic Cellular Automata

The stochastic version of Cellular Automata is called Probabilistic Cellular Automata (PCA).

We consider a probability distribution fσ : S0 → [0, 1] depending on the state σ restricted

to I; we drop the dependence on I in the notation for future convenience. A Probabilistic

Cellular Automata is the Markov chain σ(0), σ(1), . . . , σ(t) on Ω with transition matrix

p(σ, η) =
∏
i∈Λ

fΘiσ(ηi) (1.3)

clsr-pca-001.tex – 29 settembre 2018 3 2:40



Λ r0
I ri

i+I

Figure 1.1: Schematic representation of the action of the shift Θi defined in (1.1).

for σ, η ∈ Ω. We remark that f depends on Θiσ only via the neighborhood i+ I. Note that,

as in the deterministic case, the character of the evolution is local and parallel.

1.3. Description of the problem and results

Under suitable hypotheses on the probability distribution fσ, for Λ finite, the Markov chain

is irreducible and aperiodic, so that a unique stationary probability measure exists. On the

other hand, irreducible and aperiodic PCA are in general not reversible. As already proven

in [18, 21, 34] there exists a class of PCA which are reversible with respect to a Gibbs–like

probability measure [14, Proposition 3.1] and, hence, they admit a sort of Hamiltonian.

These models will be called reversible PCA (see [24, Section 3.5] for more details).

From the results in [14], see for instance Proposition 3.3 therein, it is possible to deduce

that these Gibbs–like measures are either stationary or two–periodic for the PCA. Therefore

it is quite natural to compare the behavior of these distributions to the one of the statistical

mechanics counterpart.

Moreover, it is worth mentioning that also non–equilibrium properties of the PCA dy-

namics have been widely investigated. In [25], in the attractive reversible case and in ab-

sence of phase transition, the equivalence between an equilibrium weak–mixing condition

and the convergence towards a unique equilibrium state with exponential speed was proven.

In [1,7–9,27] the metastable behavior of a certain class of reversible PCA has been analyzed.

In this framework the remarkable interest of a particular reversible PCA has been pointed

out, called the cross PCA (see Section 3). It is a two–dimensional reversible PCA in which

the updating rule of a cell depends on the status of the five cells forming a cross centered at

the cell itself. In this model, the future state of the spin at a given cell depends also on the

present value of such a spin. This effect will be called self–interaction and its weight in the

updating rule will be called self–interaction intensity.

In [10] the analogies between the metastable behavior of the cross PCA and the Blume–

Capel model [2, 3, 5] have been pointed out. Starting from [7], it has been heuristically

argued that from a metastability perspective, the cross model behaves like the Blume–Capel

one once the checkerboard configuration and the self–interaction intensity of the cross model
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are identified with the empty configuration and the chemical potential of the Blume–Capel

one [12].

In this paper we shall investigate this analogy further from an equilibrium point of view.

We study the low–temperature2 phase diagram of the Gibbs–like measure associated with the

cross PCA which, as explained above, is strictly connected to the structure of the stationary

states of the PCA. This is a very difficult task, since the microscopic interaction is described

by a Hamiltonian in which coupling constants associated with all the multi–body potentials

that can be constructed inside a five site cross are present. As a first step we shall discuss the

zero–temperature phase diagram, namely, the structure of the ground states of the system,

and we will show that the analogy with the Blume–Capel model is still strict. The second

step will be the study of how the phase diagram changes when the temperature is fixed to a

small positive value. In this case we will see that great differences, at least at the level of the

Mean Field approximation, between the Blume–Capel and the cross PCA case will emerge.

One of the distinguishing features of the Blume–Capel model is the presence of a triple

point in the zero–temperature phase diagram corresponding to zero chemical potential and

magnetic field. In this point the three ground states (homogeneous plus, minus, and lacuna

state) coexist (see, for instance, [33, Fig. 1]). It was proven in [4, 33] that this triple point

moves toward the region with positive chemical potential when the temperature is positive

and small. This is an entropy effect explained in [33].

In the present paper for the cross PCA model we prove a similar structure for the zero–

temperature phase diagram: the triple point is at zero self–interaction intensity and magnetic

field. At this point the four ground states (homogeneous plus, minus, even checkerboard,

and odd checkerboard) coexist. Due to the presence of four coexisting ground states, an

entropy argument similar to the one developed for the Blume–Capel model suggests that the

position of the triple point is not affected by a small positive temperature [8, Section 2.4].

In this paper we approach the problem also from a Mean Field point of view and we obtain

a result consistent with this conjecture.

The paper is organized as follows. In Section 2 we introduce the reversible Probabilistic

Cellular Automata and discuss some general properties. In Section 3 we introduce the cross

PCA and discuss its Hamiltonian. In particular we study its ground states and draw the zero

temperature phase diagram. In Section 4.1 we study the phase diagram of the cross PCA

in the framework of the Mean Field approximation. Finally, we summarize our conclusions

in Section 5. The technical details of the painstaking computations we had to perform have

2Note that in the case of reversible PCA the use of the word temperature is misleading since the stationary

measure is not precisely a Gibbs one. But, as it will be discussed in Section 2.1, a parameter playing a

similar role can be introduced.
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been relegated to the Appendix.

2. Reversible Probabilistic Cellular Automata

In this section we shall introduce reversible Probabilistic Cellular Automata and discuss

some general results on their Hamiltonian.

2.1. Reversible Probabilistic Cellular Automata

A class of reversible PCA can be obtained by choosing Ω = {−1,+1}Λ, and

fσ;h(s) =
1

2

{
1 + s tanh

[
β
(∑
j∈Λ

k(j)σj + h
)]}

(2.4)

for all s ∈ {−1,+1} where T ≡ 1/β > 0 and h ∈ R are called temperature and magnetic

field. k : Z2 → R is such that its support is a subset of Λ and k(j) = k(j′) whenever

j, j′ ∈ Λ are symmetric with respect to the origin. Recall that, by definition, the support

of the function k is the subset of Λ where the function k is different from zero. With the

notation introduced above, the set I is the support of the function k.

Recall that Λ is a finite torus, namely, periodic boundary conditions are considered

throughout this paper. It is not difficult to prove [18, 21] that the above specified PCA

dynamics is reversible with respect to the finite–volume Gibbs–like measure3

µβ,h(σ) =
1

Zβ
e−βGβ,h(σ) (2.5)

with Hamiltonian

Gβ,h(σ) = −h
∑
i∈Λ

σi −
1

β

∑
i∈Λ

log cosh
[
β
(∑
j∈Λ

k(j − i)σj + h
)]

(2.6)

and partition function

Zβ,h =
∑
η∈Ω

e−βGβ,h(η) (2.7)

In other words, in this case the detailed balance equation

p(σ, η)e−βGβ,h(σ) = e−βGβ,h(η)p(η, σ)

3This statement, with some care, can be extended to non–periodic boundaries [14]. For finite lattice

and periodic boundary conditions the finite–volume Gibbs distribution is the unique reversible one (our

framework). For finite lattice and fixed deterministic non–periodic boundary conditions, the finite–volume

Gibbs distribution differs from the unique reversible one; differences are somehow localized close to the

boundary .
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Figure 2.2: Schematic representation of the nearest neighbor (left) and cross (right) models.

is satisfied thus the probability measure µβ,h is stationary for the PCA.

Note that different reversible PCA models can be specified by choosing different func-

tions k. In particular the support I of such a function can be varied. The generality of

this PCA family among the reversible one was remarked in Section 4.1.1 in [24]. Common

choices are the nearest neighbor PCA [8] obtained by choosing the support of k as the set of

the four sites neighboring the origin and the cross PCA [9] obtained by choosing the support

of k as the set made of the origin and its four neighboring sites (see figure 2.2).

2.2. Connection with statistical mechanics stochastic systems

The interest of reversible PCA has already been discussed above. In this section we recall an

interesting connection between reversible PCA and statistical mechanics lattice models [15]

and [26, Section 2.4.2].

Consider a statistical mechanics model on the torus Λ (periodic boundary conditions)

with configuration space Ω = {−1,+1}Λ and Hamiltonian

F (σ) = −1

2

∑
i,j∈Λ

Jijσiσj − h
∑
i∈Λ

σi

with h ∈ R and Jij symmetrical and translationally invariant, that is Jij = Jji and Jij =

Ji+s,j+s for all s ∈ Z2. The equilibrium properties of the model at inverse temperature β are

described by the finite–volume Gibbs measure νβ(σ) = exp{−βF (σ)}/
∑

η∈S exp{−βF (η)}.
The stochastic version of the model is a discrete time Markov chain σ(0), σ(1), . . . , σ(t)

such that its stationary measure is equal to the equilibrium Gibbs measure νβ. This can be

achieved by choosing different transition matrices in the definition of the Markov chain. A

very celebrated choice is the so–called heat–bath (Glauber) dynamics: at each time t ∈ N
choose uniformly at random (with probability 1/|Λ|) a site i ∈ Λ and let σi(t) = s with

probability fHB
Θiσ(t−1)(s) where

fHB
σ (s) =

exp{−βH(sσΛ\{0})}
exp{−βH(sσΛ\{0})}+ exp{−βH(−sσΛ\{0})}
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for any σ ∈ Ω, where σΛ\{0} denotes the restriction of the configuration σ on Λ \ {0}. We

have that

fHB
σ (s) =

1

1 + exp{β[H(sσΛ\0)−H(−sσΛ\0)]}
=

1

1 + exp{β[−2s(
∑

j∈Λ J0jσj + h)]}

=
1

2

{
1 + s tanh

[
β
(∑
j∈Λ

J0jσj + h
)]}

which is in the form (2.4).

Summing up, by implementing in a parallel fashion the heat–bath rates of a statistical

mechanics lattice model, a reversible PCA is obtained. Notice that the stationary measure

of the reversible PCA obtained is different from that of the starting statistical mechanics

model. Then, an interesting question arises immediately: are there connections between the

phase diagram of the starting statistical mechanics model and that of the resulting reversible

PCA? This question is one of the problems which is addressed in this paper. We recall that

a similar question has been posed in [8] in connection with metastability phenomena.

2.3. Low temperature behavior of the reversible PCA Hamiltonian

The stationary measure µβ,h introduced above looks like a finite–volume Gibbs measure with

Hamiltonian Gβ,h(σ) (see (2.6)). It is worth noting that Gβ,h cannot be thought as a proper

statistical mechanics Hamiltonian since it depends on the temperature 1/β. On the other

hand the low–temperature behavior of the stationary measure of the PCA can be guessed

by looking at the function

Hh(σ) = lim
β→∞

Gβ,h(σ) = −h
∑
i∈Λ

σi −
∑
i∈Λ

∣∣∣∑
j∈Λ

k(j − i)σj + h
∣∣∣ (2.8)

The absolute minima of the function Hh are called ground states of the stationary measure

for the reversible PCA.

Following [7], the difference between the Hamiltonian Gβ,h and its zero temperature limit

Hh can be computed. We have that

Gβ,h(σ)−Hh(σ) = − 1

β

∑
i∈Λ

log
(

1 + exp
{
− 2β

∣∣∣∑
j∈Λ

k(j − i)σj + h
∣∣∣})+

1

β
|Λ| log(2) (2.9)
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for each β > 0 and σ ∈ Ω. Indeed,

Gβ,h(σ)−Hh(σ) = − 1

β

∑
i∈Λ

log cosh
[
β
(∑
j∈Λ

k(j − i)σj + h
)]

+
∑
i∈Λ

∣∣∣∑
j∈Λ

k(j − i)σj + h
∣∣∣

= − 1

β

∑
i∈Λ

{
log cosh

[
β
(∑
j∈Λ

k(j − i)σj + h
)]

− log exp
[
β
∣∣∣∑
j∈Λ

k(j − i)σj + h
∣∣∣]}

Hence

Gβ,h(σ)−Hh(σ)=− 1

β

∑
i∈Λ

log

exp
[
β
∣∣∣∑
j∈Λ

k(j − i)σj + h
∣∣∣]+exp

[
− β

∣∣∣∑
j∈Λ

k(j − i)σj + h
∣∣∣]

2 exp
[
β
∣∣∣∑
j∈Λ

k(j − i)σj + h
∣∣∣]

which yields (2.9).

3. The cross PCA

In this paper we shall study the phase diagram of the Gibbs–like measure associated to the

cross PCA. More precisely, we shall that k(j) = 0 if j is neither the origin nor one of its

nearest neighbors, i.e. in the cross I. In this case, since k has to be symmetric with respect

to the origin, the probability measure fσ;h has to be

fσ;h(s) =
1

2

{
1 + s tanh

[
β
(
k0σ0 + k1[σe1 + σ−e1 ] + k2[σe2 + σ−e2 ] + h

)]}
where e1 and e2 are unit vectors parallel to the coordinate axes of the lattice and k0, k1, k2 ∈ R.

The constant k0 is the self–interaction intensity. To sum up, the cross PCA is a family of

PCA dynamics parameterized by k0, k1, k2, β, h.

Note that for the cross model the Hamiltonian Gβ,h defining the stationary Gibbs–like

measure is given by

Gβ,h(σ) = −h
∑
i∈Λ

σi −
1

β

∑
i∈Λ

log cosh
[
β
(
k0σi + k1[σi+e1 + σi−e1 ]

+k2[σi+e2 + σi−e2 ] + h
)] (3.10)

The Hamiltonian can be rewritten as

Gβ,h(σ) =
∑
i∈Λ

Gβ,h,i(σ) (3.11)

clsr-pca-001.tex – 29 settembre 2018 9 2:40



v v v v v v v v v vvv v v v v v v vv v v
v v v vvv v

Figure 3.3: Schematic representation of the coupling constants: from the left to the right

and from the top to the bottom the couplings J., J〈〉1 , J〈〈〉〉, J〈〈〈〉〉〉1 , J41 , Jx, J:1 , J⊥1 , J♦,

and J+ are depicted.

where

Gβ,h,i(σ) = G0
β,h(Θiσ) (3.12)

and

G0
β,h(σ) = −1

5
h[σ0 + σe1 + σ−e1 + σe2 + σ−e2 ]

− 1

β
log cosh{β(k0σ0 + k1[σe1 + σ−e1 ] + k2[σe2 + σ−e2 ] + h)}

(3.13)

Note that, for any i ∈ Λ, Gβ,h,i is the contribution of the cross centered at the site i of the

torus Λ to the Hamiltonian of the system.

3.1. Coupling constants for the Hamiltonian of the cross PCA

In statistical mechanics systems the Hamiltonian is usually written as a sum of potentials

each of them being the product of the spin variables over some subset of the lattice multiplied

by a constant called coupling constant. For any σ ∈ Ω and any I ⊂ Λ we set

σI =
∏
i∈I

σi (3.14)

In this section we prove that the Hamiltonian (3.10) for the cross PCA can be written in the

form

Gβ,h(σ) = −J.
∑
i∈Λ

σi − J〈〉1
∑
〈〉1

σ〈〉1 − J〈〉2
∑
〈〉2

σ〈〉2 − J〈〈〉〉
∑
〈〈〉〉

σ〈〈〉〉 − J〈〈〈〉〉〉1
∑
〈〈〈〉〉〉1

σ〈〈〈〉〉〉1

−J〈〈〈〉〉〉2
∑
〈〈〈〉〉〉2

σ〈〈〈〉〉〉2 − J41

∑
41

σ41 − J42

∑
42

σ42 − Jx
∑
x

σx − J:1

∑
:1

σ:1

−J:2

∑
:2

σ:2 − J⊥1

∑
⊥1

σ⊥1 − J⊥2

∑
⊥2

σ⊥2 − J♦
∑
♦

σ♦ − J+

∑
+

σ+

(3.15)
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Figure 3.4: The coupling constants J〈〈〉〉 (solid), J〈〈〈〉〉〉1 = J〈〈〈〉〉〉2 (dashed), and J� (dotted).

are plotted at h = 0, k0 = 0, and k1 = k2 = 1 as a function of β.

where the meaning of each term is illustrated in figure 3.3 and its expression as function

of h, β, k0, k1, and k2 is given in the Appendix A. Note that 1 and 2 mean, respectively,

oriented along the 1 and the 2 coordinate direction (namely, horizontal and vertical).

We calculate the coefficients J ’s by using [13, equations (6) and (7)] (see also [19, equa-

tions (3.1) and (3.2)] and [11]). More precisely, given f : {−1,+1}V → R, with V ⊂ Z2

finite, we have that for any σ ∈ {−1,+1}V

f(σ) =
∑
I⊂V

CI
∏
i∈I

σi (3.16)

with the coefficients CI ’s given by

CI =
1

2|V |

∑
σ∈{−1,+1}V

f(σ)
∏
i∈I

σi (3.17)

By expanding the function −G0
β,h defined in the cross centered at the origin we obtain,

by exploiting the symmetry of the cross, the seventeen different coefficients J0
• , J

0
◦1 , J

0
◦2 , J

0
〈〉1 ,

J0
〈〉2 , J

0
〈〈〉〉, J

0
〈〈〈〉〉〉1 , J

0
〈〈〈〉〉〉2 , J

0
41

, J0
42

, J0
x , J0

:1
, J0

:2
, J0
⊥1

, J0
⊥2

, J0
♦, and J0

+ whose meaning is the

same as for the J ’s introduced above (see also figure 3.3) but for the single site coefficients

J0
• , J

0
◦1 , and J0

◦2 which refer, respectively, to the center and to the peripheral sites of the

cross on the 1 and on the 2 direction. The coefficients we get are listed in the Appendix A.

By exploiting, now, the translational invariance of the cross PCA Hamiltonian Gβ,h we

have that

J. = J0
• + 2J0

◦1 + 2J0
◦2 , J〈〉1 = 2J0

〈〉1 , J〈〉2 = 2J0
〈〉2 , J〈〈〉〉 = 2J0

〈〈〉〉, J〈〈〈〉〉〉1 = J0
〈〈〈〉〉〉1 ,

J〈〈〈〉〉〉2 = J0
〈〈〈〉〉〉2 , J41 = J0

41
, J42 = J0

42
, Jx = J0

x , J:1 = J0
:1
,

J:2 = J0
:2
, J⊥1 = J0

⊥1
, J⊥2 = J0

⊥2
, J♦ = J0

♦, J+ = J0
+

(3.18)

clsr-pca-001.tex – 29 settembre 2018 11 2:40



-1.0 -0.5 0.5
h

-1.5

-1.0

-0.5

0.5

1.0

coupling constant

-1.0 -0.5 0.5
k0

-1.5

-1.0

-0.5

0.5

1.0

coupling constant

Figure 3.5: Left: the coupling constants J· (dashed), J〈〈〉〉 (solid thick), J〈〈〈〉〉〉1 = J〈〈〈〉〉〉2
(dot–dashed), J41 = J42 (solid thin), and J� (dotted) are plotted at β = 10, k0 = 0, and

k1 = k2 = 1 as a function of h. Right: the coupling constants J〈〉1 = J〈〉2 (dashed), J〈〈〉〉 (solid

thick), J〈〈〈〉〉〉1 = J〈〈〈〉〉〉2 (dot–dashed), J⊥1 = J⊥2 (solid thin), and J� (dotted) are plotted at

β = 10, h = 0, and k1 = k2 = 1 as a function of k0.

The coupling constants J ’s depend on the parameters of the model, namely, β, h, k0, k1,

and k2, see also the explicit expressions given in Appendix A. To give an idea of their typical

values we plot some of them in the figures 3.4 and 3.5.

In figure 3.4 we plot the coupling constants at h = 0, k0 = 0, and k1 = k2 = 1 as a

function of β. Note that with such a choice of the parameters the sole non zero couplings

are J〈〈〉〉, J〈〈〈〉〉〉1 , J〈〈〈〉〉〉2 , and J�. Moreover, since k1 = k2, it turns out that J〈〈〈〉〉〉1 = J〈〈〈〉〉〉2 .

In figure 3.5 on the left we plot the coupling constants at β = 10, k0 = 0, and k1 =

k2 = 1 as a function of h. Note that, from the graphs in figure 3.4, it results that the

coupling constants are approximatively constant for β ≥ 5. Note that with such a choice

of the parameters the sole non zero couplings are J·, J〈〈〉〉, J〈〈〈〉〉〉1 , J〈〈〈〉〉〉2 , J41 , J42 , and J�.

Moreover, since k1 = k2, it turns out that J〈〈〈〉〉〉1 = J〈〈〈〉〉〉2 and J41 = J42 .

In figure 3.5 on the right we plot the coupling constants at β = 10, h = 0, and k1 = k2 = 1

as a function of k0. Note that with such a choice of the parameters the sole non zero couplings

are J〈〉1 , J〈〉2 , J〈〈〉〉, J〈〈〈〉〉〉1 , J〈〈〈〉〉〉2 , J⊥1 , J⊥2 , and J�. Moreover, since k1 = k2, it turns out

that J〈〉1 = J〈〉2 , J〈〈〈〉〉〉1 = J〈〈〈〉〉〉2 and J⊥1 = J⊥2 .

3.2. Ground states of the cross PCA

Assume that the side length of the torus Λ is an even number. Furthermore, we assume that

|k0| < 2(k1 +k2) in order for the self-interaction not to be able to change the majority of the

cross configuration. Recalling the definition of ground states given in Section 2.3, we have
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that the ground states of the cross PCA are the absolute minima of the function

Hh(σ) = −h
∑
i∈Λ

σi −
∑
i∈Λ

∣∣∣ k0σi + k1[σi+e1 + σi−e1 ]

+ k2[σi+e2 + σi−e2 ] + h
∣∣∣ (3.19)

which can be rewritten as

Hh(σ) =
∑
i∈Λ

Hh,i(σ) (3.20)

where

Hh,i(σ) =−
[1

5
h[σi + σi+e1 + σi−e1 + σi+e2 + σi−e2 ]

+ |k0σi + k1[σi+e1 + σi−e1 ] + k2[σi+e2 + σi−e2 ] + h|
] (3.21)

Remark that

lim
β→∞

Gβ,h,i(σ) = Hh,i(σ)

for each h ∈ R, i ∈ Λ, and σ ∈ Ω. We also note that

Hh(σ) = H−h(−σ) (3.22)

for any h ∈ R and σ ∈ Ω, where −σ denotes the configuration obtained by flipping the sign

of all the spins of σ. By (3.22) we can bound our discussion to the case h ≥ 0 and deduce a

posteriori the structure of the ground states for h < 0.

Moreover, we notice that, since Hh is in the form (3.20), a global minimum of Hh is

realized by minimizing each Hh,i(σ) for any i ∈ Λ.

We discuss the structure of the ground states of the cross PCA under the assumption

k1, k2 > 0 and consider the following cases (see figure 3.6).

Case h > 0 and k0 ≥ 0. The minimum of Hh,i is attained at the cross configuration having all

the spins equal to plus one. Hence the unique absolute minimum of Hh is the configuration

u such that u(i) = +1 for all i ∈ Λ.

Case h > −k0 and k0 < 0. If the spin at i is plus, since h + k0 > 0, Hh,i is then minimal

provided all the other spins in the cross are equal to +1 and it is equal to −h− |k0 + 2(k1 +

k2) + h|. If the spin at i is minus, since h − k0 > 0, Hh,i is then minimal provided all the

other spins in the cross are equal to +1 and it is equal to −3h/5− | − k0 + 2(k1 + k2) + h|.
Is not difficult to prove that

−h− |k0 + 2(k1 + k2) + h| ≤ −3h/5− | − k0 + 2(k1 + k2) + h| if and only if h ≥ −5k0

We can than conclude that in the region k0 < 0 and h > −5k0 the ground state of the cross

PCA is the configuration u.
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In the region k0 < 0 and 0 < h < −5k0 the situation is more complicated and we

expect that the line h = −k0 is the boudary between the regions where the ground states

are respectively u and the pair ce and co with ce the checkerboard configuration with pluses

on the even sub–lattice of Λ and minuses on its complement, while co is the corresponding

spin–flipped configuration. Indeed, we can write Hh(u) = −|Λ|[h+ |k0 + 2k1 + 2k2 +h|] and,

hence,

Hh(u) =

{
−|Λ|[k0 + 2(k1 + k2) + 2h] if k0 + 2k1 + 2k2 + h > 0

−|Λ|[−k0 − 2(k1 + k2)] if k0 + 2k1 + 2k2 + h < 0

Moreover, recalling k0 < 0, Hh(ce) = Hh(co) = −(|Λ|/2)[|k0− 2k1− 2k2 +h|+ | − k0 + 2k1 +

2k2 + h|] = −(|Λ|/2)[|k0 − 2k1 − 2k2 + h|+ (−k0 + 2k1 + 2k2 + h)]. Hence,

Hh(ce) = Hh(co) =

{
−|Λ|h if k0 − 2k1 − 2k2 + h > 0

−|Λ|[−k0 + 2k1 + 2k2] if k0 − 2k1 − 2k2 + h < 0

From these explicit expressions, by discussing separately the three cases h > −k0+2(k1+k2),

−k0 + 2(k1 + k2) > h > −k0 − 2(k1 + k2), and −k0 − 2(k1 + k2) > h, it follows that

Hh(ce) = Hh(co) < Hh(u) if and only if h+ k0 < 0.

We now discuss those cases in which the external field h is equal to zero. We first note

that in this case the term Hh,i reduces to

H0,i(σ) = −|k0σi + k1[σi+e1 + σi−e1 ] + k2[σi+e2 + σi−e2 ]| (3.23)

Case h = 0 and k0 > 0. The minimum of H0,i is attained at the cross configuration having

all the spins equal to plus one or all equal to minus one. Hence the set of ground states is

made of the two configurations u and d with this last one such that d(i) = −1 for all i ∈ Λ.

Case h = 0 and k0 = 0. The minimum of H0,i is attained at the cross configuration having

all the spins equal to plus one or all equal to minus one on the neighbors of the center and

with the spin at the center which can be, in any case, either plus or minus. Hence the set of

ground states is made of the four configurations u, d, ce, and co.

Case h = 0 and k0 < 0. The minimum of H0,i is attained at the cross configuration having

the spin at the center equal to plus one and the others equal to minus one and at the spin–

flipped cross configuration. Hence the set of ground states is made of the two configurations

ce and co.

Case h < 0. The set of ground states can be easily discussed as for h > 0 by using the

property (3.22).

3.3. Phase diagram

The goal of this paper is the study of the effect of the self–interaction parameter k0 on the

phase diagram of the Gibbs–like measure (2.5) with Hamiltonian (3.10) associated with the
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Figure 3.6: Expected zero temperature phase diagram of the stationary measure of the cross

PCA. On the thick lines the ground states of the adjacent regions coexist. At the origin the

four ground states coexist.

cross PCA. In other words we want to study how the ground states structure depicted in

figure 3.6 is deformed when a small non–zero temperature is considered. One interesting

feature is the connection with the well know Blume–Capel model which has been widely

discussed in the introduction, see Section 1.3.

As recalled in Section 1.3 such a phase diagram is strictly connected with the structure

of the stationary states of the PCA. On this subject very few rigorous results have been

established:

– it has been remarked in [21] and in [14, Remark 4.1] and proven more accurately [24,

Th. 4.2.5 Section 4.2.2, Proposition 4.3.4 Section 4.3.3] that at h = k0 = 0 the model

can be decoupled into two independent systems defined on the even and on the odd

part of the lattice and that the phase diagram is the same as that of two independent

nearest–neighbor Ising models. The set of Gibbs distributions consists in the convex

hull generated by the four Gibbs distributions respectively close to u, d, ce, and co and

obtained by taking those as boundary conditions and considering the thermodynamic

limit.

– For h = 0, k1 6= 0, k2 6= 0 and for any k0, it has been proven in [14, Proposition 4.1]

that for T smaller than a critical value, a phase transition for the Gibbs–like measure

associated with the PCA occurs.

Consider, now, the three–dimensional space k0–h–T , where we recall T = 1/β is the

temperature. The rigorous results quoted above are related to some subparts of such a
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space. What we want to do is to study the phase diagram in the whole space and precise

which phases are at play. Obtaining rigorous results of this kind is an absolutely difficult

task. In this paper we shall give an idea of the phase diagram in this space via Mean Field

computations, see Section 4.1.

4. Mean Field phase diagram

In this section we shall study the phase diagram of the Gibbs–like measure associated with

the cross PCA via a suitable Mean Field approximation.

4.1. The Mean Field free energy

The Mean Field approximation relies on considering non–correlated degrees of freedom. In

other words the equilibrium density matrix %Λ is supposed to be factorized as the product

of one–site transition matrices %x for each x ∈ Λ. Moreover, inspired by the structure of

the ground states discussed above, we partition the squared torus Λ in its even and odd

components Λe and Λo, respectively, and assume that with each site of the even component

is associated the single site matrix %e and with each site of the odd component is associated

the single site matrix %o. In other words we assume %x = %e for x ∈ Λe and %x = %o for

x ∈ Λo, that is to say we assume the density matrix to be in the form

%Λ(σ) =
∏
x∈Λe

%e(σx)
∏
y∈Λo

%o(σy) (4.24)

for any configuration σ ∈ Ω. The next step is that of computing, under such assumption,

the free energy [6]

f =
1

|Λ|

(
U − 1

β
S
)

(4.25)

where

U :=
∑
σ∈Ω

%Λ(σ)Gβ,h(σ) and S := −
∑
σ∈Ω

%Λ(σ) log %Λ(σ) (4.26)

are, respectively, the internal energy and the entropy.

We now compute the entropy under the Mean Field hypothesis. First of all we note that

−S =
∑
σ∈Ω

∏
x∈Λe

%e(σx)
∏
y∈Λo

%o(σy) log
( ∏
w∈Λe

%e(σw)
∏
z∈Λo

%o(σz)
)

and, hence,

−S =
∑
w∈Λe

∑
σ∈Ω

∏
x∈Λe

%e(σx)
∏
y∈Λo

%o(σy) log %e(σw) +
∑
z∈Λo

∑
σ∈Ω

∏
x∈Λe

%e(σx)
∏
y∈Λo

%o(σy) log %o(σz)
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Finally, we get

− S =
|Λ|
2

( ∑
s=±1

%e(s) log %e(s) +
∑
s=±1

%o(s) log %o(s)
)

(4.27)

We define now the even and the odd site magnetizations

me =
∑
s=±1

s%e(s) and mo =
∑
s=±1

s%o(s) (4.28)

Note that, recalling %r(+1) + %r(−1) = 1 for r = e, o, we have that

%r(+1) =
1 +mr

2
and %r(−1) =

1−mr

2
(4.29)

with r = e, o. By (4.27) and (4.29) we get, for the Mean Field entropy, the expression

−S =
|Λ|
2

{1 +me

2
log

1 +me

2
+

1−me

2
log

1−me

2

+
1 +mo

2
log

1 +mo

2
+

1−mo

2
log

1−mo

2

} (4.30)

The computation of the internal energy in the Mean Field approximation is more delicate

and the expansion for the Hamiltonian discussed in Section 3.1 will be used. First of all recall

(4.26) and note that

U =
∑
x∈Λ

∑
σ∈Ω

%Λ(σ)Gβ,h,x(σ) =
∑
x∈Λ

∑
σy=±1:

y∈C(x)

( ∏
y∈C(x)

%y(σy)
)
Gβ,h,x(σ)

where we have used (3.11), set C(x) := {x, x+ e1, x− e1, x+ e2, x− e2} for each x ∈ Λ, and

recalled that Gβ,h,x(σ) depends only on the spins σy with y ∈ C(x).

Now, since 0 = (0, 0) ∈ Λe and (1, 0) ∈ Λo, by exploiting the translation invariance of the

Hamiltonian and the structure of the Mean Field transition matrices, we have that

U =
|Λ|
2

[ ∑
σy=±1:

y∈C(0)

( ∏
y∈C(0)

%y(σy)
)
Gβ,h,0(σ) +

∑
σy=±1:

y∈C((1,0))

( ∏
y∈C((1,0))

%y(σy)
)
Gβ,h,(1,0)(σ)

]

We finally get

U =
|Λ|
2

(ue + uo) (4.31)

with

ue =
∑
σy=±1:

y∈C(0)

( ∏
y∈C(0)

%y(σy)
)
Gβ,h,0(σ) and uo =

∑
σy=±1:

y∈C((1,0))

( ∏
y∈C((1,0))

%y(σy)
)
Gβ,h,(1,0)(σ)
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The coefficients J0’s introduced below (3.17) and listed in the Appendix A, have been

obtained by expanding the function G0
β,h. This remark and a straightforward computation

yield to the equation

−ue = J0
•me + 2(J0

◦1 + J0
◦2)mo + 2(J0

〈〉1 + J0
〈〉2)memo + (4J0

〈〈〉〉 + J0
〈〈〈〉〉〉1 + J0

〈〈〈〉〉〉2)m
2
o

+2(J0
41

+ J0
42

)m3
o + (4J0

x + J0
:1

+ J0
:2

)mem
2
o

+2(J0
⊥1

+ J0
⊥2

)mem
3
o + J0

�m
4
o + J0

+mem
4
o

(4.32)

A similar expression for uo can be obtained by simply exchanging in (4.32) the role of e

and o.

4.2. The Mean Field equations

By using (4.25), (4.30), (4.31), and (4.32) we can finally write explicitly the free energy of

the model in the Mean Field approximation. By minimizing such a free energy with respect

to the magnetizations me and mo, namely, by setting ∂f/∂me = ∂f/∂mo = 0, with some

algebra we get the two Mean Field equations

mr = − tanh
[
β

∂

∂mr

(ue + uo)
]

with r = e, o (4.33)

A straightforward computation gives the derivatives

− ∂ue

∂me

= J0
• + 2(J0

〈〉1 + J0
〈〉2)mo + (4J0

x + J0
:1

+ J0
:2

)m2
o + 2(J0

⊥1
+ J0

⊥2
)m3

o

+J0
+m

4
o

− ∂ue

∂mo

= 2(J0
◦1 + J0

◦2) + 2(J0
〈〉1 + J0

〈〉2)me + 2(4J0
〈〈〉〉 + J0

〈〈〈〉〉〉1 + J0
〈〈〈〉〉〉2)mo

+6(J0
41

+ J0
42

)m2
o + 2(4J0

x + J0
:1

+ J0
:2

)memo

+6(J0
⊥1

+ J0
⊥2

)mem
2
o + 4J0

�m
3
o + 4J0

+mem
3
o

(4.34)

and

− ∂uo

∂me

= 2(J0
◦1 + J0

◦2) + 2(J0
〈〉1 + J0

〈〉2)mo + 2(4J0
〈〈〉〉 + J0

〈〈〈〉〉〉1 + J0
〈〈〈〉〉〉2)me

+6(J0
41

+ J0
42

)m2
e + 2(4J0

x + J0
:1

+ J0
:2

)mome

+6(J0
⊥1

+ J0
⊥2

)mom
2
e + 4J0

�m
3
e + 4J0

+mom
3
e

− ∂uo

∂mo

= J0
• + 2(J0

〈〉1 + J0
〈〉2)me + (4J0

x + J0
:1

+ J0
:2

)m2
e + 2(J0

⊥1
+ J0

⊥2
)m3

e

+J0
+m

4
e

(4.35)
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Figure 4.7: Critical temperature βcrit as function of k0 at h = 0 and k1 = k2 = 1.

4.3. Mean Field results

We are interested to study the behavior of the critical transition between the paramagnetic

and the ferromagnetic one at h = 0 and the structure of the low–temperature phase diagram.

As discussed in Subsection 3.3, at k0 = 0 the model behaves as two decoupled standard

Ising models so that it exhibits a second order phase transition at β = log(1+
√

2)/2 ≈ 0.4407

(the classical Onsager critical temperature). By studying in this region the Mean Field

equation, we find a continuous transition at β = 0.3216(5). In the case k1 = k2 = 1 and

k0 = 1, it was shown in [24, section 7.2.3] through Monte-Carlo simulations that βcrit ≈ 0.32

to be compare with βcrit ≈ 0.24 in the Mean Field approximation. These results are not

surprising at all, indeed the Mean Field approximation always provides a larger estimate for

the critical temperature.

What we are interested in is trying to understand the effect of the self-interaction on

the behavior of the model. Hence, to understand if at k0 > 0 the critical transition is still

present and to estimate the value of the corresponding critical temperature.

By solving the Mean Field equation for k0 ∈ [0, 1], we always find a critical transition

and the value of the critical inverse temperature βcrit(k0) decreases when k0 is increased. Our

results are depicted in figure 4.7.

As explained in the introduction, our main concern is that of understanding how the zero–

temperature phase diagram, see figure 3.6, is modified at small positive temperatures. In view

of the ground state structure we expect the presence of four phases: positive ferromagnetic,

negative ferromagnetic, odd, and even checkerboard. The first two phases are respectively

characterized by positive and negative magnetization, while the last two by a positive and

negative staggered magnetization.

In the sequel we will not distinguish between the two checkerboard phases, since they
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Figure 4.8: Phase diagram at different values of β in the plane k0–h with k1 = k2 = 1.

In the region k0 < 0 the three lines are the first order transition line between the positive

ferromagnetic and the checkerboard phases. Continuous, dotted, and dashed lines refer,

respectively, to the cases β = 1.2, 0.8, 0.4. In the region k0 > 0 the horizontal h = 0 axis is

the first order transition line between the two ferromagnetic phases. The phase digram in

the region h < 0 can be constructed by symmetry.

are equivalent. Moreover, we shall discuss the phase diagram only in the region h > 0. The

case h < 0 can then be recovered by using the spin–flip symmetry.

For h > 0, in order to draw the Mean Field phase diagram we identify the two differ-

ent phases (checkerboard) and positive ferromagnetic by solving iteratively the Mean Field

equations (4.33) starting from a suitable initial point, namely, me = mo = 0.8 for the fer-

romagnetic phase and me = 0.8 and mo = −0.8 for the checkerboard one. We shall decide

about the phase of the system by choosing the one with smallest Mean Field free energy.

The free energy will be computed by using (4.25), (4.30), (4.31), and (4.32).

Mean Field predictions are summarized in figure 4.8, where the phase diagram of the cross

PCA is plotted on the k0–h plane at different values of β. More precisely, we considered the

values β = 1.2, 0.8, 0.4.

The most important remark is that the triple point is not affected by the temperature,

indeed, its position is constantly the origin of the k0–h plane for each value of β. In other

words the Mean Field approximation confirms the conjecture based on the entropy argument

quoted in the introduction [8].

For the sake of completeness we briefly recall this argument. At finite temperature,

ground states are perturbed because small droplets of different phases show up. The idea is

to calculate the energetic cost of a perturbation of one of the four coexisting states via the

formation of a square droplet of a different phase. If it results that one of the four ground
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states is more easily perturbed, then we will conclude that this is the equilibrium phase at

finite temperature.

The energy cost of a square droplet of side length ` of one of the two homogeneous

ferromagnetic ground states plunged in one of the two checkerboards (or vice versa) is equal

to 8`. On the other hand if an homogeneous phase is perturbed as above by the other

homogeneous phases, or one of the two checkerboards is perturbed by the other one, then the

energy cost is 16`. Hence, from the energetic point of view the most convenient excitations are

those in which a homogeneous phase is perturbed by a checkerboard or vice versa. Moreover,

for each state d,u, ce, co there exist two possible energetically convenient excitations: there

is no entropic reason to prefer one of the four ground states to the others when a finite

low–temperature is considered. This is why it is possible to conjecture that at small finite

temperature the four ground states still coexist.

Finally we note that the Mean Field prediction for the ferro–checkerboard phase transi-

tion is that such a transition is discontinuous. And this result does not depend on the value

of the temperature.

5. Conclusions

In this paper we have discussed some general properties of the Hamiltonian associated with a

class of reversible Probabilistic Cellular Automata. We have focused our attention to the so–

called cross PCA model, which is a two–dimensional reversible PCA in which the updating

rule of a cell depends on the status of the five cells forming a cross centered at the cell itself.

This model had been extensively studied from the metastability point of view and many

interesting properties have been shown. In particular a suggestive analogy with the Blume–

Capel model had been pointed out in the metastability literature.

In this paper we focused our attention on the structure of the potentials describing the

microscopic interaction and on the zero and positive small temperature phase diagram. We

computed the zero–temperature phase diagram exactly with respect to the self–interaction

intensity and the magnetic field.

At finite temperature the phase diagram has been derived in the framework of a suitable

Mean Field approximation. We have discussed the variation of the critical temperature for

the transition between the ordered and the disordered phase at zero magnetic field as a func-

tion of the self–interaction intensity. We have shown that, in the Mean Field approximation,

such a temperature is an increasing function of the self–interaction intensity.

Moreover we have discussed the low–temperature phase diagram in the plane k0–h and

have shown that the topology of the zero temperature phase diagram is preserved when the

temperature is positive and small. Finally, we have shown that the Mean Field approximation
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is consistent with an entropic heuristic argument suggesting that the position of the zero–

temperature triple point is not changed at low–temperature.

A. Coupling constants

In this appendix we report the expression of the coupling constants defined in Section 3.1

(see also figure 3.3) as function of h, β, k0, k1, and k2. The scheme we adopted for the

computation is described in Section 3.1 as well. For the couplings in which we had to

distinguish between the horizontal and the vertical case we report only the horizontal one

and note that the corresponding vertical one can be obtained by exchanging in the formula

the role of k1 and k2.

J0
• =

1

5
h+

1

25β
log

{
cosh4[β(h+ k0)]

cosh4[β(h− k0)]

× cosh2[β(h+ k0 + 2k1)] cosh2[β(h+ k0 − 2k1)]

cosh2[β(h− k0 + 2k1)] cosh2[β(h− k0 − 2k1)]

× cosh2[β(h+ k0 + 2k2)] cosh2[β(h+ k0 − 2k2)]

cosh2[β(h− k0 + 2k2)] cosh2[β(h− k0 − 2k2)]

× cosh[β(h+ k0 + 2(k1 − k2))] cosh[β(h+ k0 − 2(k1 − k2))]

cosh[β(h− k0 + 2(k1 − k2))] cosh[β(h− k0 − 2(k1 − k2))]

× cosh[β(h+ k0 + 2(k1 + k2))] cosh[β(h+ k0 − 2(k1 + k2))]

cosh[β(h− k0 + 2(k1 + k2))] cosh[β(h− k0 − 2(k1 + k2))]

}
(A.36)

J0
◦1 =

1

5
h+

1

25β
log

{
cosh2[β(h− k0 + 2k1)] cosh2[β(h+ k0 + 2k1)]

cosh2[β(h− k0 − 2k1)] cosh2[β(h+ k0 − 2k1)]

× cosh[β(h+ k0 + 2(k1 − k2))] cosh[β(h− k0 + 2(k1 − k2))]

cosh[β(h+ k0 − 2(k1 − k2))] cosh[β(h− k0 − 2(k1 − k2))]

× cosh[β(h+ k0 + 2(k1 + k2))] cosh[β(h− k0 + 2(k1 + k2))]

cosh[β(h+ k0 − 2(k1 + k2))] cosh[β(h− k0 − 2(k1 + k2))]

} (A.37)

J0
〈〉1 =

1

25β
log

{
cosh2[β(h− k0 − 2k1)] cosh2[β(h+ k0 + 2k1)]

cosh2[β(h+ k0 − 2k1)] cosh2[β(h− k0 + 2k1)]

× cosh[β(h+ k0 + 2k1 − 2k2)] cosh[β(h− k0 − 2k1 + 2k2)]

cosh[β(h− k0 + 2k1 − 2k2)] cosh[β(h+ k0 − 2k1 + 2k2)]

× cosh[β(h− k0 − 2(k1 + k2))] cosh[β(h+ k0 + 2(k1 + k2))]

cosh[β(h+ k0 − 2(k1 + k2))] cosh[β(h− k0 + 2(k1 + k2))]

} (A.38)
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J0
〈〈〉〉 =

1

25β
log

{
cosh[β(h− k0 − 2(k1 + k2))] cosh[β(h+ k0 − 2(k1 + k2))]

cosh[β(h− k0 + 2k1 − 2k2)] cosh[β(h+ k0 + 2k1 − 2k2)]

× cosh[β(h− k0 + 2(k1 + k2))] cosh[β(h+ k0 + 2(k1 + k2))]

cosh[β(h− k0 − 2k1 + 2k2)] cosh[β(h+ k0 − 2k1 + 2k2)]

} (A.39)

J0
〈〈〈〉〉〉1 =

1

25β
log

{
cosh2[β(h− k0 − 2k1)] cosh2[β(h+ k0 − 2k1)]

cosh2[β(h− k0 − 2k2)] cosh2[β(h+ k0 − 2k2)]

× cosh2[β(h− k0 + 2k1)] cosh2[β(h+ k0 + 2k1)]

cosh2[β(h− k0 + 2k2)] cosh2[β(h+ k0 + 2k2)]

× 1

cosh4[β(h+ k0)] cosh4[β(h− k0)]

× cosh[β(h− k0 + 2(k1 − k2))] cosh[β(h+ k0 + 2(k1 − k2))]

× cosh[β(h− k0 − 2(k1 − k2))] cosh[β(h+ k0 − 2(k1 − k2))]

× cosh[β(h− k0 − 2(k1 + k2))] cosh[β(h+ k0 − 2(k1 + k2))]

× cosh[β(h− k0 + 2(k1 + k2))] cosh[β(h+ k0 + 2(k1 + k2))]

}

(A.40)

J0
41

=
1

25β
log

{
cosh2[β(h− k0 − 2k2)] cosh2[β(h+ k0 − 2k2)]

cosh2[β(h− k0 + 2k2)] cosh2[β(h+ k0 + 2k2)]

× cosh[β(h− k0 − 2k1 + 2k2)] cosh[β(h+ k0 − 2k1 + 2k2)]

cosh[β(h− k0 + 2k1 − 2k2)] cosh[β(h+ k0 + 2k1 − 2k2)]

× cosh[β(h− k0 + 2(k1 + k2))] cosh[β(h+ k0 + 2(k1 + k2))]

cosh[β(h− k0 − 2(k1 + k2))] cosh[β(h+ k0 − 2(k1 + k2))]

} (A.41)

J0
x =

1

25β
log

{
cosh[β(h− k0 + 2(k1 − k2))] cosh[β(h− k0 − 2(k1 − k2))]

cosh[β(h+ k0 + 2(k1 − k2))] cosh[β(h+ k0 − 2(k1 − k2))]

× cosh[β(h+ k0 − 2(k1 + k2))] cosh[β(h+ k0 + 2(k1 + k2))]

cosh[β(h− k0 − 2(k1 + k2))] cosh[β(h− k0 + 2(k1 + k2))]

} (A.42)
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J0
:1

=
1

25β
log

{
cosh4[β(h− k0)] cosh2[β(h+ k0 − 2k1)] cosh2[β(h+ k0 + 2k1)]

cosh4[β(h+ k0)] cosh2[β(h− k0 − 2k1)] cosh2[β(h− k0 + 2k1)]

× cosh2[β(h− k0 − 2k2)] cosh2[β(h− k0 + 2k2)]

cosh2[β(h+ k0 − 2k2)] cosh2[β(h+ k0 + 2k2)]

× cosh[β(h+ k0 + 2(k1 − k2))] cosh[β(h+ k0 − 2(k1 − k2))]

cosh[β(h− k0 + 2(k1 − k2))] cosh[β(h− k0 − 2(k1 − k2))]

× cosh[β(h+ k0 − 2(k1 + k2))] cosh[β(h+ k0 + 2(k1 + k2))]

cosh[β(h− k0 − 2(k1 + k2))] cosh[β(h− k0 + 2(k1 + k2))]

}
(A.43)

J0
⊥1

=
1

25β
log

{
cosh2[β(h+ k0 − 2k2)] cosh2[β(h− k0 + 2k2)]

cosh2[β(h− k0 − 2k2)] cosh2[β(h+ k0 + 2k2)]

× cosh[β(h− k0 + 2(k1 − k2))] cosh[β(h+ k0 − 2(k1 − k2))]

cosh[β(h+ k0 + 2(k1 − k2))] cosh[β(h− k0 − 2(k1 − k2))]

× cosh[β(h− k0 − 2(k1 + k2))] cosh[β(h+ k0 + 2(k1 + k2))]

cosh[β(h+ k0 − 2(k1 + k2))] cosh[β(h− k0 + 2(k1 + k2))]

} (A.44)

J0
♦ =

1

25β
log

{
cosh4[β(h− k0)] cosh4[β(h+ k0)]

× cosh[β(h− k0 − 2(k1 + k2))] cosh[β(h+ k0 − 2(k1 + k2))]

cosh2[β(h− k0 − 2k1)] cosh2[β(h+ k0 − 2k1)]

× cosh[β(h− k0 + 2(k1 + k2))] cosh[β(h+ k0 + 2(k1 + k2))]

cosh2[β(h− k0 + 2k1)] cosh2[β(h+ k0 + 2k1)]

× cosh[β(h− k0 + 2(k1 − k2))] cosh[β(h+ k0 + 2(k1 − k2))]

cosh2[β(h− k0 − 2k2)] cosh2[β(h+ k0 − 2k2)]

× cosh[β(h− k0 − 2(k1 − k2))] cosh[β(h+ k0 − 2(k1 − k2))]

cosh2[β(h− k0 + 2k2)] cosh2[β(h+ k0 + 2k2)]

}
(A.45)

J0
+ =

1

25β
log

{
cosh4[β(h+ k0)] cosh2[β(h− k0 − 2k1)] cosh2[β(h− k0 + 2k1)]

cosh4[β(h− k0)] cosh2[β(h+ k0 − 2k1)] cosh2[β(h+ k0 + 2k1)]

× cosh2[β(h− k0 − 2k2)] cosh2[β(h− k0 + 2k2)]

cosh2[β(h+ k0 − 2k2)] cosh2[β(h+ k0 + 2k2)]

× cosh[β(h+ k0 + 2(k1 − k2))] cosh[β(h+ k0 − 2(k1 − k2))]

cosh[β(h− k0 + 2(k1 − k2))] cosh[β(h− k0 − 2(k1 − k2))]

× cosh[β(h+ k0 − 2(k1 + k2))] cosh[β(h+ k0 + 2(k1 + k2))]

cosh[β(h− k0 − 2(k1 + k2))] cosh[β(h− k0 + 2(k1 + k2))]

}
(A.46)
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