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In this paper, we present an estimation of the conductivity of composites constituted of identical spheres
embedded in ahost material. A family of polarization integral equations for the localization problem is constructed
and the operator is then minimized to yield an optimal integral equation. As a result, the corresponding Neumann
series converges with the fastest rate and can be used to estimate the effective conductivity. By combining this
series and integral approximation, one can derive explicit expressions for the overall property using expansions
in Fourier domain. For random hard-sphere systems. relations to structure factors and triplet structure factors
have been made and Kirkwood superposition approximation is used to evaluate the effective conductivity, taking
into account third-order correlations. This presents an original means to account for the statistical information

up to third-order correlation when determining the effective properties of composite materials.

I. INTRODUCTION

Determining effective properties of heterogeneous mate-
rials from the constituents’ has enjoyed a long history [1.2
but is still a very active research area. Due to the variety of
microstructures and physical phenomena, different approaches
have been proposed to evaluate the overall behavior of the
homogenized materials. The usual procedure is to solve the
localization problem in a representative volume element (RVE)
and to find the relation between the average quantities, such as
stress-strain in elasticity or heat flux (J)-temperature gradient
(E) in conduction, which is the main focus of the present
paper. The RVE is chosen so as to represent the material
with all heterogeneity details. It can be assimilated to the
unit cell for periodic media [3], coated sphere models in
micromechanics [4,5], or a sufficiently large material volume
for random media [6]. For the latter, bounds on the effective
conductivity can be established using variational principles [7].
Since the localization problem can be written in the form of
integral equations [8], it is possible to expand it into Neumann
series and perform a truncation of that series to derive the
estimations [9]. This type of approximation is termed “weak
contrast expansion” due to the strict convergence condition.
Another type of approximation is proposed by Brown [10]
based on the polarization and cavity field integral equation.
This approach has been shown to estimate effectively the
conductivity for some suspensions of spheres [11-14]. How-
ever, this series expansion that is derived from the inversion
of a conditionally convergent series, can be subject to some
subtle issues such as singularities when the two phases are
identical and unclear convergence condition that depends on
microstructures, especially near the percolation limit [4].

In line with these works, the present paper considers two-
phase composite materials constituted of identical spherical
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inclusions embedded in a matrix. The arrangement of the
spheres can be either periodic, as for cubic distributions, or
randomly distributed, as in the case of hard-sphere suspen-
sions. In the periodic settings, a family of integral equations on
polarization p is constructed by linearly combining E-based
and J-based polarization equations [15,16]. When minimizing
the integral operator norm, we obtain an optimal integral
equation whose associated Neumann series always converges
with fast rate for the whole contrast range. It turns out that
the latter presents some similarities with Eyre and Milton’s
accelerated scheme [17]. Consequently, new estimations of
the conductivity based on this quickly convergent series have
been derived in this work. Our strategy, which is closely related
to the estimation of the remainder of the series [18], is to
apply n times the recurrence relation to obtain an integral
equation containing n leading terms of the Neumann series.
This provides an expression of the effective conductivity
tensor involving correlation functions at different orders. Next,
approximations can be made to estimate these correlation
functions. Compared to previous works in this field, a new
original feature is to use information on correlations in the
Fourier domain, more particularly the structure factor, and
to combine this information with a series expansion whose
convergence is optimized. For n =2 (two leading terms),
numerical results show that such an approach works very well
for cubic crystal system at a large range of volume fractions
and conductivity contrasts. For random distributions of hard
spheres, it is interesting to note that the derived estimation
is explicitly related to structure factors at different orders.
Our results compare relatively well with the other existing
estimations using information on third-order correlations in
the literature.

To develop these ideas, the content of our work is divided
into four parts. In Sec. Il we present the theory of integral equa-
tion based on the polarization and its use to estimate the overall
conductivity. The treatments of cubic crystal arrangements



or random materials as well as the approximation of the
triplet structure factor are studied. Section III is dedicated
to numerical applications of the theory and to comparisons
with the available theoretical and numerical results from the
literature. Finally, the paper ends with conclusions and remarks
in Sec. IV.

II. HOMOGENIZATION OF THE PERIODIC
THERMAL CONDUCTION PROBLEM AND
APPROXIMATION METHOD

A. Class of integral equations based on polarization

In the framework of the homogenization theory, we con-
sider the thermal conduction problem within a cubic unit cell
V =a x a x a, governed by the system of equations [19]

Vxe=0, V.-j=0, j=ke, (nH

where the heat flux j and temperature gradient e and
conductivity k are V-periodic functions of coordinate x. The
materials are constituted of spherical particles (inclusion 7)
embedded in a host material (matrix m), the conductivity k
being constant in each phase and equal to

k = k,, in matrix, k = k; in inclusion. (2)

The effective conductivity &, is then determined via the linear
relation between the cell average, notation (... )y, of flux J
and of temperature gradient E:

J=kE, J={jx)v,

We note here that although the original setting of our problem
is the thermal conduction phenomena, the same formulation,
Egs. (1)~(3), and the subsequent results can be applied to
diffusion, electrostatic, dielectric, magnetic, or electromag-
netic wave in the quasistatic limit [4]. For the latter case, all
constants and fields present in the above equations are complex
and depend on the excitation frequency .

Due to the periodicity of the problem, Eq. (1) can be solved
using the Fourier transform technique. We define the two
projection operators G and H as the I'’s operator in Ref. [4],
p. 247, by

E = (e(x))v. (3)

£
§

Using these complementary projection operators, each
vector field v can be decomposed as

GE)=(RE HE=I-tE &= )

v==Gv+ Hv, S)
and it is easy to check that
V.-Hv=0,
VxGv=0.

Therefore, projectors G, H produce irrotational and solenoidal
fields. So, we can rewrite the Fourier transform of the first two
equations of Eq. (1) in the form

H(&e(E)=0, G()j&) =0, VE#O. ()

These two equations show that e(&) is collinear with the wave
vector & of norm § and j(£) is normal to it. In the reciprocal

lattice, & are the points whose coordinates are given by

2mn;

&= .o =0,£1.£2, ...,
a

i=123 (7
Now adopting the matrix as the reference material, we define
the polarization fields p and ¢,

e=j/klll+q‘ (8)

which are both vanishing in the matrix and finite in the
inclusion. Substituting Eq. (8) into Eq. (6) and accounting
for Eq. (4) yields the relation

j =kme+p'

e§) =G&)q&), j&) =HE)pE), )
valid for all & # 0. Equivalently, in the physical space we have
e=E+Gq, j=J+Hp, (10)

where Gq and H p represent convolution integrals. In the real
space, Eq. (10) can be written as

ex)=E+)_ G&)q&e*,
££0

J)=J+ Y HEpEe .
£#0

(11)

Making use of the definitions of p and ¢ in relation to e and
J and the property p = —k,q. we obtain two dual integral
equations in terms of p

p=ay(—k,E+Gp), p=pBx(J+Hp). (12)

In Eq. (12), @ and g are coefficients depending uniquely on
the ratios between material properties,
ki km
a=1-—, B=1——, (13)
km ki
and y is the characteristic function
x = 0in matrix, yx = | in inclusion. (14)

A class of integral equations based on polarization p can be
generated by linearly combining the two equations of Eq. (12).
Using two arbitrary coefficients A and Ay with 4 + 4, = 1,
we obtain the general form

p=xA+xBp, (15)
in which
A = (—naky + 2Pk )E, B =x1aG+ BH. (16)

As long as the operator norm |[B| < 1, we can apply
successively the relation Eq. (15) to derive the exact Neumann
series expansion of p,

o0
=x ) _(Bx)\A. (a7
0

This series presents some features that are original. Like
in several works using the conductivity tensor of the matrix
as reference materials [5,20], this series involves only the
characteristic function x. However, unlike in these previous
works, the series can always be chosen to be convergent, as
shown thereafter.



Here, we note that the operator (B x) acting on ¢ yields

(Bx)p =) ¢ BE)Y  x(E—E9E).  (18)
& &

while the Fourier transform of the constant A admits the simple
form

AE#0)=0, A@0) = A. (19)

Using Eqs. (18) and (19), one can write explicitly all the terms
in series Eq. (17). Regarding the convergence rate, the optimal
series can be obtained by minimizing ||B|| (hence [|Byx||) in
Eq. (16) with | and X, (see Appendix A). In this case, we

have
(k) = (ﬂfa,ﬂ__"a).
B ki —k 20
«a, \i — Km
1Bl = =|—
.B - ]\i +I\m
and
i= “ﬂﬂ(k(, —k)E, B=-2_1_2). o
a— _

Certainly, by setting (A;,A;) = (1,0) and (%,4;) = (0,1), we
recover the two original equations in Eq. (12). However, the
two associated Neumann series, called, respectively, E series
(ES) and J series (JS) can diverge if || > 1 or [f] > 1. On
the contrary, the optimized series (OS) associated to Eq. (21)
having operator B in a form that is similar to the one in Eyre
and Milton’s accelerated scheme [4,17], always converges with
a faster rate. These arguments suggest that estimations based
on OS could yield better results than those based on ES or
JS[15].

B. Estimation based on N series exp
and integral equation

To determine the effective property k.. we need to find the
average polarization p over the inclusion domain Q = fV.
Indeed, from Eq. (8), we have the relation

(Pla=f""ke—kn)E. (22)
Next, from the solution Egs. (17) and (16), we have
o0
(Pa = Gapk, = hak,) ) CIE. (23)
j=0

With the effective behavior being isotropic and f being the
volume fraction, combining Eqs. (22) and (23) yields

ke - km > j
_Kemh Ty, 24)
/"Zﬂke — haky, 3 =0

The explicit expressions of C” are given below:

=1, C'= 1Y x(=HBEXE).
£

C =71 x(=HBE) Y x(6 —EBE &,
§ &

C=f" 3 x(—EE -8 - )
gl g2 e

xx(EHB(E")... B(&). (25)

In numerical practice, we can only keep a finite number n of
leading terms of the infinite series, or

ke - km f . j
— == ) (). 26
Pk, —haky 3 g (e (26)

On the other hand, the average (p)g can be estimated by
making an approximation directly to the integral equation at
order n,

n—1
p=xY (Bx)YA+(xB)p. (27)
j=0
This equation is obtained by repeating the recurrence relation
at step n as shown in Eq. (17). By replacing p with its inclusion
phase average (p)q.

P =x{ple. (28)

in the last integral term of Eq. (27), we obtain an equation for
(P)a-
n—1
(p)Q ] (AZﬂke _)\lakm)ZCIE"'C"(p)SL (29)
j=0
Different from the series truncation approximation, the present
approximation includes the information of the remainder of
the series and is expected to provide better results [18].
Consequently, the final equation for the effective conductivity
is the following:

-1
ke - km f X i
— I -C")! c’ . 30
Mfke — Aok, 3 ( ) ;ZO 0
In the numerical applications, we shall use only the integral
equation approximation since it provides better results than

the series truncation scheme.

C. Cubic and random distribution of spherical particles

We now assume that our unit cell V =a* contains N
identical nonoverlapping spherical particles of radius R and
volume V, = 47 R*/3. The shape functions (&) become

v, N
— S — —i&.x;
X®) = FF@p®), p&) = ’;e .

sinn —ncosn

where x; is the location of the sphere numbered 7 in the cell. In
statistical mechanics, the term F(£) corresponds to the form
factor of the spherical particle and p is the microscopic density,
N
p(x)=26(X—x,-). (32)
i=1
For cubic arrangements of spheres, the explicit formulas of
x (&) are known analytically:



simple cubic (SC),
sinn —ncosn
X =3f

body-centered cubic (BCC),

3f sinn —ncos
X(§)=Tf%“+(_l)u|+n:+nsl; (34)

face-centered cubic (FCC),

3fsinng—ncosn

4 n3

X[(=D)" 4 (=12 4 (= 1) 4 (=1t (35)

These expressions allow us to compute numerically C" at any
order n. It is also possible to derive analytical expressions for
the first two orders C° = I and C', that is a lattice sum. For
C', it can be evaluated by keeping some leading fluctuating
terms near the origin and approximate the remainder with
a continuous integral [15]. Finally, we obtain a closed-form
expression that is accurate for finite fraction f and exact at
the infinite volume limit f = 0. However, for higher orders
n > 1, only a numerical computation is available.

For a random distribution (RD), at infinite volume limit
(both N and V — 00) and under ergodicity hypothesis, the
tensors C/ are identical to their ensemble average, notation
(...). As a result, we obtain a statistical relations,

x(§) =

V, N
= Y FEF(—§)BE)SPE).
&

V?.
€= 35 ) F@OFEF(E —§)BEBE)SV(-£.8),
&8
etc., (36)

with §@, §@ being the structure factor and the triplet structure
factors given by

SPE) = —(p(&)p(—=E)).

SVEE) = —(p(E)p(Ep(—E —E), ete.  (37)

i

In the present work, we are not interested in higher-order
structure factors that are complicated and hard to determine
in practice. Furthermore, in many numerical applications,
using only S@(&) and S®(&) have already yielded satisfactory
results. Posing » = R& and ' = RE’ and considering that for
large domains we can rewrite the lattice sums Eq. (36) as
integrals in the Fourier space, we obtain

=L / FEF(—§)BE)S® ),
67T~
2 l ! !
c —W/ F(&)F(E)F (& — &)
xB(&)B(E)SD(—&.Edydy' . (38)

For isotropic distributions of hard spheres, we have the
following property:

1
P / FY&)SP(&)dy = (1 - f). (39)
p)

regardless the local pair distribution S?). As a result, we can
evaluate directly C'!,

C' = 120B + a1 — I (40)

With this expression, the first-order approximation Eq. (30)
with (n = 1) based on ES. JS, or OS all coincide with the
Clausius-Mossoti equation. Regarding S or the three particle
distribution g associated to €2, due to the lack of accurate
analytical solution, it is usually approximated from statistical
information at lower levels, for example, the radial distribution
function g? or the structure factor S®. For hard-sphere
systems in equilibrium, both g? and S are known from
the solution of Ornstein-Zernike equation [21] and Percus-
Yevick closure approximation [22,23]. In literature, there are
two popular approximations for terms involving third-order
correlations. The first one is the Kirkwood superposition
approximation (KSA) [6,24,25],

g(Jl(x.xr) ~ g(Z)(x )gll)(x/)g(?.b(x/ —x), (41)

and the second one has been used for the triplet structure
factor [25],

SG)(E.&I) ~ S(Z)(E)S(Z)(EI)S(Z)(E _ E/)- (42)

Despite the fact that the second approximation provides a direct
approximation of S®(&,£"), it violates the core condition, i.e.,
that it does not avoid the ovelapping of spheres [25]. This can
result in a bad estimation of the overall conductivity. The KSA
scheme does not suffer from this limitation but it is formulated
in physical space and must be translated to & space. From the
link between S and g and the KSA scheme, we propose the
following alternative approximation, justified in Appendix B:

S(l)(E'EI): S(Z)(E)S(ID(E'). (43)

D. Integral evaluation of C? for random distribution
with S approximation
Regarding €2, it is impossible to derive such a simple
analytical formula, independently of S®. However, using
approximation Eq. (43), we can convert the sixfold integral

1
= @f T(mTm")F(n —n'DBm B0 )dndy',

(44)

with T(n) = F(£)S@(&). into a twofold integral involving
n and n'. Indeed, we fix first n, n’, and I = |y — y’| and
integrate over a circle C,, of radius R, = n’sing (see Fig. 1).
By denoting m; = A and m, = A, . we have

/ B(y')ds
Cy

= 7rm|Rw[2cos2 eG(y) + sin? @H ()]
+amaR,y[(2 — sin? @) H(p)+2 sin® eG(p)].  (45)



FIG. 1. Integral over a sphere surface.

Now, multiplying B(n) with Eq. (45) yields

B(ﬂ)/ B(y')ds
C,

=2m i Ry[m cos® ¢ + m sin® ¢|G(y)

+ mam Ry[ma(2 — sin? @)+ m sin? @|H(y). (46)

Next, integrating with 5’ running over the sphere surface S,/
of radius n’ and then with » running over the sphere surface
S, of radius 7, we obtain

f f F(y—n")B)B(y')dSdS'
S’/ Sy

=77rmln'2f G(r])dS/‘ F()
s 0

0

X [m sin® ¢ + m cos? @] sin pdep
+7tmgn'2[ H(r])dS/ F()
Sy 0
x[ma(2 = sin® @) + m sin® ¢| sinpdg,
I =n?+n?—=2nn cos . (47)
With the surface integral identities,
1 2 N
f GpdS = =S,1, / HpdS = =8,1, S, =4mn",
5 3 5 3

(48)
it is now ready to rewrite C2 in a simple form,

”

21 ’ sy 2 ’
C=—= /f TT () )RG>y dndn’. (49
27m=

with the function R(n,n’) being defined by

|
R(n.n’)=/ F(/n>+ 0% —=2nm't)
-1

X [m%(l +tH)+ 2mymy(1 — )+ mfrz]dt. (50)
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FIG. 2. Radial distribution function of hard sphere in equilibrium
at f = 0.4. The inset is a snapshot of a typical sample.

Numerical examples will show thereafter that the second-order
approximation Eq. (30) with (» = 2) and Eq. (44) based on OS
provides improved result with respect to the CM estimates.

E. Sample generation and direct computation of C*
for random distributions

As shown above, the calculation of the effective properties
based on the integral form encounters difficulties due to
the lack of accurate information on S®. Although many
approximations of S® (or its dual functions g, h®) have
been proposed in the literature [26,27], each approximation
scheme is subject to its own limitation and can only capture
certain aspects of S In this work, it has been chosen to
determine directly C? from the ensemble average of real
samples. To this aim, we use the ensemble average version
of Eq. (25),

C’= f"<Z X(—EBE) Y x(& - 5')B<e')x<e’>>, 1)
£ &

with x (&) being defined by Eq. (31). All calculations are done
in Fourier space including the discrete convolution. The event-
driven molecular dynamics (EDMD) method [28] is used to
generate systems of 500 hard spheres in equilibrium at the unit
temperature. The final results are then obtain by averaging over
50 samples and will be compared with other estimations. As an
example of intermediate result, the radial distribution function
(RDF) of the system with a snapshot of a typical sample is
shown in Fig. 2.

III. NUMERICAL APPLICATIONS
A. Cubic lattice arrangements

We apply first the approximation schemes to cubic lattice
arrangements of spheres: simple cubic (SC) and face-centered
cubic (FCC). The reference results for comparison are the
exact numerical solutions obtained from a standard FFT
numerical method. The details of the latter has been described
elsewhere [18,29] and shall not be discussed further here.

From results for SC arrangement in Table I. we find that the
OS approximation performs significantly better at all order
n=1 or 2 and contrast ratio k;/k, when compared with



TABLE 1. Comparison the effective conductivity (ke/km) of SC
lattice structure between the approximation schemes based on series
0S. ]S, and ES and the FFT solution.

ki/kw  f FFT JS-1 05-1 1S-2 08-2
0.10 13416 13298 13316 13306 13325
020 17730 17422 17460 17454 17514
1000 030 23674 22717 22781 22874 23119
040 33389 2976 2986  3.0466  3.1526
050 66200 3958 3976 4247 4718
0.10 12444 12419 12429 12423 12433
020 15337 15269 15288  1.5284  1.5311
10 030  1.8913 1867  1.8700 1.8738  1.8832
040 23708 22798 22843 23069 23408
050 31575 2791 2797 28850  3.0009
ki/kw  f FFT ES-1 0S-1 ES-2  08-2
0.10 08765 08769 08766 0.8768 0.8764
020 07624 07634 07630 0.7631  0.7623
0.1 030  0.6560 0.6585 06581  0.6574  0.6551
040 05541 05613 05608 0.5578  0.5518
050 04537 04710 04704 04622 04487
0.10 08568 0.8576 08572 08575  0.8569
020 07263 07280 07275  0.7276  0.7262
0.001 030 06052 0609 06090 0.6080  0.6040
040 04897 05011 05004 04961 04855
0.50 03723 04012 04005 03889  0.3648

ES and JS approximation. The second-order approximation
(n = 2) yields better results than the first order (n = 1) except
for ES series for k; /k, = 10,1000 and IS series for k; /k,, =
0.1,0.001 (not shown in Table I). This can be explained by the
fact that the associated series diverge, making higher-order ap-
proximation meaningless. For k; /k,, = 0.1,0.001, there is lit-
tle difference between the approximation schemes and the ex-
act results. At very high contrast ratio k; /k,, = 1000 and very
high volume fraction, the series approximations work less well.
The best one, OS approximation, is only acceptable at f < 0.4.
It means that a higher-order approximation n > 2 is needed to
achieve a better precision, for example, within 5% error.

Figure 3 for FCC arrangement shows that the OS approx-
imation still performs very well for n as low as 2, k; /k,, as
high as 100 and volume fraction up to f = 0.6. While the
second-order approximation has significantly improved the
first order, there is a very slight difference between the third
order and the second order. This agrees with the very fast
convergence rate of the OS series: i.e., the final solution is not
far from the sum of several initial terms in the series.

All the results obtained for cubic lattice arrangement have
confirmed our belief on the performance of the coupling
between the OS series and integral equation approximation.
We shall proceed with the random distribution of spheres in
the next section.

B. Randomly distributed spheres

The approximation based on triplet structure factors and
Neumann series is now applied to determine the effective con-
ductivity for a random distribution of spheres in equilibrium.

[
55
[ S —— Solution FFT
—6—0S order 1
45k - —#— OS order 2
: —&— OS order 3

Effective conductivity kK

i i i
0 0.1 0.2 0.3 0.4 05 0.6 0.7
Volume fraction f

FIG. 3. Comparison the effective conductivity (k,/k,,) of FCC
lattice structure between the approximation OS and FFT complete
solution with ratio k; / k,, = 100.

These results are then compared with previous works on the
same system from the literature. The first one is the Torquato
expression [11] (TO) based on another expansion [10] that
gives rise to the microstructure parameter ¢. The latter is
intrinsically linked to three-point correlation function and
can be evaluated from KSA approximation Eq. (41) or by
a direct simulation [30]. As mentioned earlier, this series
expansion can yield good result by keeping two or three
leading terms but does not guarantee the convergence of the
whole series, especially near the percolation limit. Regarding
numerical simulations, Bonnecaze and Brady [13,14] (BB)
using multipole expansions of particle potential and Kim and
Torquato [12] (KT) using random-walk method have obtained
precise estimations of the effective conductivity of the system.

It is clear that our OS-1 approximation coincides with the
Clausius-Mossoti expression. This is a good starting point
since one can expect that higher-order approximations will
improve the latter. From results given in Table II, we find that

TABLE II. The effective conductivity (k,./k,) of randomly dis-
tributed spheres. Comparison of the second-order OS-2 estimations
(with and without §® approximation) and Torquato’s expression [ 11]
(TO). Kim and Torquato [ 12] (KT). the simulation data of Bonnecaze
and Brady [13] (BB). The Clausius-Mossoti (CM) approximation
coincides with first-order OS approximation OS-1 (n = 1).

0S-2 0S-2

ki/kn f CM (approx.) (exact) TO[11] KT [12] BB[13]
0.10 1.333  1.343 1344 1.35 1.34 1.35
0.20 1.750 1.774 1.793 1.82 1.83 1.82

00 0.30 2286 2336 2438 246 2.48 2.53
0.40 3.000 3.101 3327 336 342 3.59
0.50 4.000 4210 4560 4.69 4.78 497
0.10 1.243  1.248 1248  1.25 1.25 1.25
020 1.529 1.540 1545 1.55 1.54 1.54

10 0.30 1.871 1.892 1.924 1.93 1.93 1.89
040 2286 2323 2389 239 241 2.30

0.50 2.800 2.866 2951 297 3.02 2.82




our OS-2 estimation with or without S® approximation is in
very good agreement with the numerical results issued from
previous works at moderate contrast k; /k,, < 10 for whole
range of volume fraction f. For infinite contrastk; /k,, = 00, a
significant deviation can be observed at f = 0.5 for OS-2 with
S approximation. This can be explained from the fact that,
near the jamming state f = 0.5, the difference between the
theoretical Percus-Yevick (PY) solution and the RDF curves
have been found already significant [13,14], while the OS-2
estimation with S approximation relies heavily on the PY
solution. In this case, the direct computation based on the
real samples should be used. Indeed. numerical results have
shown that the direct calculation is in very good agreement
with the literature results even for the case of infinite contrast
and volume fraction as large as f = 0.5.

IV. FINAL REMARKS AND DISCUSSION

To summarize, we have developed an estimation scheme
for conductivity of composite materials made of spherical
particles and matrix. To do that, we derive first the optimal
integral equation on polarization p from a family of integral
equations of the same type, i.e., the one whose corresponding
Neumann series converges the fastest. Then, a new integral
equation is constructed including the first n — 1 terms of
the series and an integral operator of power n acting on the
polarization. By applying approximations to the latter, one
can expect a good estimation of the average polarization and
hence the effective conductivity. Indeed, numerical examples
have provided a supporting evidence for this conclusion.

Another interesting result of the present work concerning
random media is that we have established the statistical
connection between all terms of the Neumann series, solution
of the optimized integral equation, with the structure factors,
the triplet structure factors and higher-order structure factors,
etc. These quantities are very important since they provide
useful information on the local distribution of particles.
For the case of colloidal suspensions, they can be obtained
experimentally via the scattering techniques [31] or via particle
simulation methods [32]. Such a dual formulation, using
wave-vector formulation instead of a formulation directly in
the physical space, has thus given an alternative way to the
use of correlation function [6] in order to characterize the
properties of random media.

Based on the estimation of the remainder of the Neumann
series that is closely related to FFT numerical method, the

present method improves the limitations of the effective
medium approximation. It is known that the latter fails when
the inclusion strongly interact especially at high inclusion
volume fraction and high contrast ratio. Without limiting to
spherical inclusions, the present method is general enough
to deal with complex microstructures, for example, those
constituted of cylindrical, ellipsoidal shape inclusions, which
will be subject to our future study.
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APPENDIX A: OPERATOR NORM MINIMIZATION

The norm of the self-adjoint operator B is the maximal
eigenvalue A satistying

Bv = )v. (Al)

Making use of Eq. (16), we have the following relations in
Fourier space:

[Mie = A]GE) (&) + [228 — AH (E)v(§) = 0. (A2)
Since G(&) and H(&) are projection operators, there are two
possibilities:

GEWE)=0, A=xp or HEWE =0, A=A

(A3)
As a result, the operator norm || B || admits the expression
I Bl = max {2 1], |228]}. (A4)

Optimizing || B|| with A} and A, and accounting for Ay + 4> =
1, we have

S P )

B-—a ° p-a 1B —al
Regarding the operator By in the Neumann series, we can
estimate its norm via the inequality from the previous result,

A=

. (AS5)

1Bxvll < IBlllxvll < IBllx vl < IBllv]l.  (A6)
From this sequence of inequalities, we conclude that
|(Xﬁ| ki - km
1Bl < 1Bl = = <1, (A7)
h |ﬂ - al ki + km

which ensures the convergence of the series.

APPENDIX B: TRIPLET STRUCTURE FACTOR APPROXIMATION

Using the definition of the triplet structure factor and after some mathematical manipulations, we obtain the expression for

5(3’(—55’)-
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or equivalently,

| . at
5(31(_€'£/) — S(£)+S(I;")— 1+ ﬁ< Z ol xi—xr) p—ik .1x,—n)>. (B2)

i#j#k

Here, x;, x;, and x; are, respectively, the locations of the particles , j. and k. We shall now continue with the last term in

Eq. (B2) that is equal to

1 : Mmoo
N /f/ e/t —x") i (x'—x '< Z S(x —x)8(x" — x;)8(x" — xk)>dxdx'dx"

i#j#k

53
_ % /// e g (e 4 x" ¥ 4 x" x")dxdx'dx"

=p° /f e’e"e‘ifl”'g‘3’(x.x')dxdx' ~ p* /:/ e't’e"‘é""g(x —x")g(x)g(x")dxdx’, (B3)

with p = (p(x)) = N/V being the average particle density. To derive the last equation of Eq. (B3), we have applied the KSA
scheme to g@. This is the exact expression of S®(—&,&’) based on KSA. However, this expression is still difficult to use since
it is a double integral in 3D space. For simplification, we approximately replace g(x — x’) with its average 1 and obtain

-2

P f f e g(x — x)g(x)g(x)dxdx' = f / &5 e g (x)g(x")dxdx' = [S(§) — 1][S(E) — 1]. (B4)

Finally, the triplet structure factor S)(—&,£’) can be recast in the approximate simplified form of Eq. (43).
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