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Abstract—Modern cars are transforming towards autonomous
cars capable to make intelligent decisions to facilitate our travel
comfort and safety. Such ‘“Smart Vehicles” are equipped with
various sensor platforms and cameras to collect, store and share
tremendous amount of heterogeneous data from urban streets.
This paper addresses the efficient collection and distribution
of such massive data by allowing a popular Smart Vehicle to
autonomously decide its user relevant importance in the vehicular
network without relying on the infrastructure network. There-
fore, we propose an Information-Centric algorithm, ‘“InfoRank”
for a vehicle to rank different location-dependent information
associated to it. It then uses the information importance to
analytically find its influence in the network. InfoRank is the first
step towards identifying the best information hubs to be used in
the network for the efficient collection, storage and distribution
of urban sensory information. Results from scalable simulations
using realistic vehicular mobility traces show that InfoRank is
an efficient ranking algorithm to find top information facilitator
vehicles in comparison to other ranking metrics in the literature.

Keywords—Information-Centric Vehicular Networking, Urban
Sensing and monitoring

I. INTRODUCTION

Autonomous cars are around the corner since vehicles,
nowadays are equipped with a plethora of electronic compo-
nents, sensors, cameras and wireless communication devices
to assist drivers regarding the travel safety and comfort. They
can be considered as an instance of the Internet of Things
(IoT) centered at “Smart Vehicle” to collect and share different
sensory and multimedia data from urban streets to offer various
Intelligent Transportation System (ITS) applications in a Smart
City. These include efficient traffic management, urban sensing
and vicinity monitoring [1].

The key challenge is the efficient collection, distribution
and storage of such massive amount of data with the inter-
mittent connectivity and the vehicles mobility. Most of the
content is of “local relevance” as the intended users lies
within the vehicular network. Relying on the infrastructure
network for the collection, storage and distribution of such
heterogeneous Big-Data from vehicles can thus prove costly
and inadequate to its usage. Pre-advertising or broadcasting all
the sensing data from each vehicle would result in a massive
advertising overhead and a redundant information storm within
the network.

To address this issue, we propose to use popular Infor-
mation Facilitator Vehicles (IFVs) with learning capabilities
to anticipate the user interests within the citywide VANET.
Selective IFVs are responsible for the efficient gathering,

storing and publishing of urban sensing data from source
vehicles and deliver it to end users upon request. Therefore,
for the first time in vehicular networks, we envision smart
vehicles capable of finding their relative importance in the
network as potential IFVs. Thus, the target of this paper is
to introduce a ranking algorithm facilitating the identification
of IFVs. First, the vehicle ranks the information associated to
it taking into consideration the relevance to the users interest.
It then considers the associated location-relevant information
popularity to find its relative influence in the network using
InfoRank algorithm as the Vehicle Centrality.

Our ranking algorithm considers Information-Centric Net-
working (ICN) [2] as the used communication paradigm.
ICN is a content-centric networking architecture proposed to
replace the current IP based Internet. In ICN, a user broadcasts
an interest for content by its name, any corresponding host in
the network replies back with the desired content. ICN aims
to decouple the service from the host, thus removing content
association to any physical location. Additionally, it offers In-
Network caching at intermediate nodes while forwarding and
responding to subsequent user interests. Our approach assumes
ICN in VANETs as we consider this as a viable candidate
in order to cater with the high mobility and intermittent
connectivity of vehicles. The major contributions to this paper
can be summarized as follows:

e  We propose a novel distributed algorithm enabling a
vehicle to rank important location-dependent infor-
mation associated to it based on the satisfied user
interests.

e The first vehicle ranking algorithm, “InfoRank”, is
proposed, where each vehicle can find its influence
in the network, without relying on any infrastructure
network.

e  We validate the scalability as well as ICN compli-
ance by performing extensive simulations comprising
around three thousand vehicles using realistic mobil-
ity traces to identify popular IFVs in time evolving
VANETs.

The obtained results show that the proposed algorithms are
well suited to help in the efficient identification of the top IFVs
in the network using information-centric vehicular networking.

The rest of the paper is organized as follows. The next
Section highlights the major related work. In Section III, we
propose InfoRank followed by the performance evaluation
discussing the simulations in Section IV. Section V concludes
the paper along some insight for future research.



II. RELATED WORK

Urban Sensing and vicinity montioring using vehicles has
attracted lots of researchers in the past few years and several
schemes are proposed. One such scheme is Mobeyes [1] where
sensor-equipped vehicles monitor the surrounding and relay
aggregated summaries to mobile agents. Similarly [3] proposed
a compressive sensing based monitoring in a delay tolerant
vehicular network. In [4], real time multimedia data from
urban streets is collected using vehicles. CarSpeak [5] allows
vehicle to collaborate and access sensory information captured
by neighboring vehicles in the same manner as it can access its
own. Recently, we observe a shift towards ICN in [6], [7] and
[8] as the underlying routing protocol for Vehicular Networks.

Centrality measures such as Degree, Closeness, Between-
ness and Eigenvector centrality are used to find important
nodes in the complex networks. Degree centrality considers
the number of direct (one hop) neighbors of a node. Closeness
centrality is the inverse of the sum of the lengths of the
shortest paths from a node to the rest of the nodes in the
network. Betweenness centrality is the fraction of all pairs
of shortest paths passing through a node, where Eigenvector
centrality the node’s influence measure in the network [9].
Typical applications include social networks to identify influ-
ential information hubs for publishing/spreading information.
Another interesting application is found in medical sciences
to find epidemic disease spreaders [10]. Similarly, Google’s
PageRank [11] algorithm ranks the importance of a web-page
in an Internet search based on the number of directed links
towards it. In Delay Tolerant Networks (DTNs), BubbleRap
[12] is an example where nodes with high centrality score are
used for data dissemination.

Unlike social networks and Internet, it is unfeasible to use
centrality-based popularity schemes in VANETSs for multiple
reasons; First, The rapid topological changes due to the high
mobility of vehicles requires a continuous time varying analy-
sis of the VANETS which is unfeasible by a practical scheme.
Typical schemes assume a static graph topology with respect to
time where the temporal network characteristics of VANETSs
would be ignored. Second, centrality measures such as Be-
tweenness, Closeness and Eigenvector centrality computation
requires network wide parameters, while in VANETS a vehicle
cannot have such information to make run-time decisions.
Third, existing schemes consider shortest path metric to com-
pute a node’s importance, while the highly dynamic VANET
topologies does not ensure the availability of a stable path
between nodes. Therefore, a new vehicle ranking algorithm
adapted to VANETs and enabling vehicles to decide their
relative importance in the network by overcoming the above
mentioned constraints need to be thought about.

III. INFORANK: A FULLY DISTRIBUTED APPROACH

InfoRank is a centrality measure enabling each IFV to
autonomously find its importance in the network independent
of a centralized database. The rapid changes in the frequency
and duration of vehicle contacts cannot be used to decide its
importance in the time evolving vehicular network. Though,
the user’s interest satisfaction for content is considered as a
key metric for a vehicle’s importance as it regularly responds
to user interests. Therefore, we introduce a new metric where
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Figure 1: System Overview

each periodically finds its importance in the network with
respect to the user relevant information. Figure 1 shows the
final targeted system using selected IFVs for data collection,
storage and distribution within VANET. The name-based in-
terest is issued by user, which is forwarded to the nearby IFVs
within VANET. The corresponding IFV replies with the desired
content using the underlying ICN architecture. The following
section defines the network model enabling each vehicle to
compute its respective centrality.

A. Network Model

We consider a time varying VANET modeled as an undi-
rected vehicular graph G(V(t),E¥(¢)), where V(¢t) = {v} is
a set of vertices v, each representing a vehicle on the road at
time ¢t. EV(¢t) = {e;x(t) | vj,vx € V,j # k} is the set of edges
e;r(t) modeling the existence of a direct communication link
between vehicles j and & at time ¢. The number of edges E”(¢)
depends on the transmission range of each vehicle. We assume
it as a simple unit disk model bounded by the communication
range RR. The city map is represented by the undirected graph
G(X,E?"), the set of vertices X = {x} contains different urban
zones x and the set of edges E* = {e,, | 2p, 24 € X, p # ¢}
are their respective boundaries that connects different zones
through a road network.

Information Association: Information association is de-
fined as a bipartite graph G(V,X,E), where V is the set the
vertices v in the vehicular graph G(V(¢),E¥(¢)) and X is
the set of locations x in the city map G(X,E?*). The edge
E = {e;; |vi € V,z; € X} associates each vehicle to a set of
regions X, C X with respect to the user relevant content.

The associated information is classified by cluster-
ing the regions using ICN hierarchical naming convention
“/region/road-section/information-type”. Lane rules for road
sections are usually defined by the city municipality while
information type comprises different Intelligent ITS applica-
tions (Safety warnings, Road congestion information, Info-
tainment...) with varying content popularity and priority. The
regions are clustered using voronoi tessellation [13] where the
vehicles concentrated in an zone closer to a point are associated
to the set of roads in a single voronoi region x € G(X,E®) as
shown in Figure 1. For temporal VANET analysis, the time T’
is divided into set of regular time-slots ¢ = tg41 — tg, wWhere
each vehicle finds its centrality at the time instant ¢;; based
on the known information in the current time-slot where ¢;, is
the time instant at the beginning of the time-slot ¢.



The information distance d(x,zy) is the Euclidean norm
between the content location x and xj, the vehicles current
position at time instant ¢4, where z,z; € X,. We assume
each vehicle knows the map of the city, i.e. G(X,E”). How-
ever, it only knows information relevant to itself, i.e. scope
of the network information maintained in its cache. This is
due to each vehicle’s limited storage and coverage scope as
it is unlikely for instance that it visited, and thus stored data,
of all the traversable roads in the city. The content source
could be either the vehicle itself (data sensed) or another
vehicle for which it acted as an intermediate relay node. We
will refer to content/information or location interchangeably in
the text since content (information related to safety or traffic
congestion) are associated to locations in the urban map.

B. Information Importance

Information importance measures the vehicle relevance to
users for a particular content. The interest-response frequency
is a vital factor to classify content’s importance. A vehicle
holding popular content is considered as an important infor-
mation hub in the network.

Definition 1: (Interest Satisfaction Frequency) We define
I2(t) = %(;) as the frequency of user interests satisfied in
the previous slot ¢, where r,(t) are the number of successful
responds in the previous slot and R, are the total successful

responds for the content x € X, associated to the vehicle
veV.

IFVs regularly updates each content importance value de-
pending on the interest satisfaction frequency. We assume that
each IFV is capable to record the time and position each time
it responds as the content provider to a user interest. Interest
for each content specify the temporal scope of information
validity, For instance, road congestion information is only
valid during congestion. Therefore, in order to ensure the
information importance is not substantially augmented after the
desired deadline, let tgj be the last successful respond time for
the content x and the average interest deadline as t; = % Sty

n
associated with each content, where n are the total number of
interests in the previous time-slot and ¢, is the deadline of
each interest for content .

Definition 2: (Information Timeliness) The information

1 gy <t]+1a
e~ Otd trt1 > tg; +1q
sure of the temporal information validity scope where ¢ is the
tuning parameter depending on the application needs (E.g. 1
hour for accident information validity).

timeliness 7(txt+1) = is the mea-

If there are no active interests and the average interest
validity time has passed, the information importance adapts an
exponential delay since the information is of less importance
in the network. However, 7 is set to unity for content to be
always available in the network.

The corresponding content importance at the next time
instant ¢, is updated as follows:

CYty1) = CL(t) + T(trep ) L0 (B) (1 + d(z, 21))
+55(tkt1)

The content importance depends on C?(t) at the beginning
of the time-slot (time instant ). If it is not responded in the

ey

previous slot, then I?(¢) = 0 ensures the content importance
is not increased unnecessarily. Here 0 < s(tx4+1) < 1 is the
percentage of time the vehicle itself acted as the original source
for any content x. The term s ({y4+1) is updated regularly to
ensure the content relevant to vehicle retain its value in case the
vehicle does not respond in the previous slot. The interest later
in time could finally route to the vehicle which maintains its
value as the original source for particular content. The tuning
parameter A decide the value with respect to the associated
content.

C. Vehicle Centrality

The vehicle considers its importance with respect to the
associated information in order to measure its influence in
the networks. Besides information importance in Equation 1,
we also consider the overall coverage scope as an important
parameter to decide a vehicle importance in an urban environ-
ment.

Definition 3: (Coverage Entropy) We define HY =

— Y p(z)logp(z), as the coverage entropy of the vehicle
VxeX
periodically computed with respect to the entire city map (i.e

vehicle associated sub-graph X, € G(X,E?)). The probability
p(x) is the visiting frequency to each region = € X before the
importance computation time ¢ 1.

Assume the vehicle’s coverage in the map can be repre-
sented as a set of mobility between regions. The vehicles A
and B coverage scope are bounded by the set of regions M4 =

{3, 2, w0, 23,75, 12} and MP = {@1, 29,23, 25,24,71}.
A visits the regions xo,x3 and x5 with probabilities 2,3
and %, while B visits the regions z1,r2 3,74, and x5 with
probabilities Z,%,%,4 and ¢ respectively. The corresponding
coverage entropy is calculated as:
el Tt B PR
=—zlogz 60g6*4)—0.639,

Vehicle A has a narrow coverage scope due to its limited geo-
graphical coverage, while B has a wider geographical coverage
with respect to the urban map. Therefore, we consider coverage
entropy as the coverage metric for the vehicle importance with
respect to all locations in the city.

Algorithm 1 shows the steps allowing a vehicle to find the
respective InfoRank. For a given location-dependent content in
cache, the corresponding information importance is updated for
the next time-slot at time instant ¢5;. The information-centric
centrality function is as follows:

(1 + 15, (trt1)) ™

f})(tk—i-l): ‘X |

D Colthgr) we+H (t41)

reX,

€3
For all contents x € X, associated to v, IV, (t;+1) are the ratio
of missed interest to the total interests received by the vehicle
while € is the tuning parameter. Missed interest provides the
vehicle reliability regarding successful respond to the incoming
interests. C'¥ (1) is the respective content importance at time
instant 41, wy = 7= is the edge weight of information
association graph G(V, X E) considering the interest satisfied
for the content = among all the contents in cache. R, is the



number of responds for z and Ry is the number of responds
for all contents in the cache. | X, | is the cardinality of the sub-
graph X, C X, all regions associated to the vehicle v € V.

The vehicle centrality at the time instant ¢ is updated as
the Exponential Weighted Moving Average (EWMA) function:

Co(trs1) = (1 = 0)Co(tr) + 017 (tht1)

where 0 is a tuning parameter to adjust the value for the past
centrality score and the corresponding InfoRank in the current
time-slot.

Algorithm 1 InfoRank
INPUT: G(V,X,E) : information association graph
OUTPUT: Updated InfoRank for the next time-slot at time-
instant ¢y 4
for each vehicle v € V do
for each content x € X, in cache do
Find d(xa “Lk)v T(tk‘—H)J Sg (tk-‘rl)a Wy
Compute IV (%) « %(;)
if I?(¢) # 0 then
Update C¥(tx, 1) using Equation 1
else
Ci (k1) = CF (k) + s3(trt),
end if
end for
Find missed interests ratio I, (¢x+1), Coverage entropy
H"(tg41)
Compute f}(tx+1) using Equation 2
end for
return C,(tg, 1)

IV. PERFORMANCE EVALUATION

One of the basic requirement for evaluating the effi-
ciency of InfoRank is scalability. Therefore, we use Network
Simulator-3 (NS-3)[14] as a scalable simulation platform for
about three thousand vehicles vehicles. The performance of
InfoRank is validated by a set of simulation runs under a
realistic mobility scenario. We perform each simulation five
times by analyzing different set of nodes as information
producers and consumers in order to compute 95% confidence
intervals. We rank the top information facilitators vehicles
in the network by comparing their InfoRank score with the
respective Degree, Closeness, Betweenness and Eigenvector
centrality score.

Moreover, we consider a realistic mobility traces from
Cologne, Germany to evaluate our proposed algorithms. To the
best of our knowledge, it is considered as the most accurate
mobility trace available for Vehicular Networks [15]. Starting
from this trace, we regenerate a more easily usable version
of it considering an area of 6X6km? for Cologne city center
for 1-hour duration with a granularity of one second . The
simulation parameters are summarized in Table I, followed
by a description of the simulation scenarios used for the
performance evaluation.

A. Simulation Scenario

We use the ndnSIM [16] module available for NS-3 to
integrate Named Data Networking (NDN). The simulation

Table I: Simulation Parameters

Parameter Value

Simulation platform NS-3

Number of nodes 2986

Mobility trace Cologne, Germany
Area 6X6km? city center
Duration 1 hour
Communication range | 100m

Packet size 1024 bytes

Time granularity 1 sec

Simulation Runs 5

Table II: InfoRank in different set of Simulations

1 2 3 4 5
D Score  ID Score  ID  Score ID Score  ID Score  Mean
34 1 1013 1 59 1 1210 1 10 1 1

2414 09719 1051 0.9966 63 09984 113  0.9930 56 0.9957 09911
1239 0.9639 543  0.9958 108 0.9969 14 0.9923 1195 0.9838 0.9865
108 09612 442 09919 348 0.9967 2372 0.9883 127  0.9833 0.9843
517 09567 2366 0.9808 392 09958 184  0.9881 577  0.9801 0.9803
414 0.9557 318 09788 152 09917 157 0.9875 658 09754 0.9778
31 09516 2728 0.9770 48  0.9890 189 09834 5 0.9749  0.9752

571 0.9506 268 09738 26 09839 197 09808 54 0.9742  0.9727
502 09501 54 09735 37 09821 196 09803 1888 0.9718 0.9716
2174 09489 150  0.9729 137 09819 30 0.9789 192 09714 0.9708

=0 0N AW —

=)

scenario implements the following two applications:

Producer: Producer vehicle is the information source in
the network where the areas visited in a time-slot before
the InfoRank computation time are considered as content
associated with the producer.

Consumer: Consumer vehicles are the potential user nodes
planning to visit an area. Each consumer vehicle generates
an interest for a content associated to a location in the city,
which is routed to producer vehicles using the underlying ICN
architecture.

It is crucial to choose a suitable scenario for analyzing
the performance of InfoRank. For this reason, we consider
urban sensing as our use case scenario as a special case of
typical VANET operation. The city map is divided into voronoi
zones/regions. The producers declare themselves as content
source for the areas visited in the map. Consumers generate
interests for the content associated with the area. We assume
the interests follows a Zipf distribution, where interests for
popular contents are more frequent [17]. This results in a
high interests probability for popular locations in the city. The
tuning parameters A, § and € are set to 0.5 in order to regulate
the corresponding metrics. t4 is set to 1 hour considering an
urban sensing validity scope.

B. Simulation Results

The objective of our simulation study is to find answers
to the fundamental question: How well can it identify the top
IFVs? InfoRank score for the top 10 IFVs from five simulation
runs are shown in Table II. For each rank, the average score
lies within a confidence interval of 0.01 for a confidence level
of 95%. Simulation traces for the top 100 nodes are obtained
from five runs but here we show only the top ten nodes IDs
and their score in each simulation for brevity. The centrality
score is normalized with respect to the top identified node,
i.e. the top node with a unity score followed by the relative
score of other vehicles. We will use the same convention to
interpret results in the later sections. In the first simulation, the
vehicle 34 is identified to have the top InfoRank score among
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Figure 2: Cumulative Satisfied Interests by top identified nodes
using each scheme over an average of five different simulation
scenarios

the selected IFVs in the network as it satisfied the incoming
interests more frequently throughout the simulation.

We consider the following performance metrics in compar-
ison with the state of the art importance computation schemes
( Degree, Closeness, Betweenness and Eigenvector centrality):

e  Cumulative Satisfied Interests (CSI) for the top iden-
tified nodes by each scheme

e  Comparison of top nodes identified by each scheme
with their respective centrality scores

e  Average aggregated throughput of the identified top
ranked nodes by each scheme

e Cache hit rate for the top nodes by each scheme
to evaluate InfoRank along ICN in VANET mobility
scenarios

1) Cumulative Satisfied Interests: Cumulative Satisfied In-
terests refers to the total number of user interests satisfied after
one hour. Figure 2 shows the CSI score of the top five nodes
identified by all these schemes in an average of five set of
simulations. Typical ranking schemes only takes into account
physical topology towards computing a node importance in
the network, ignoring the satisfied user interests. Nevertheless,
InfoRank satisfied more user interests than other schemes in
all the five set of simulations due to the consideration of
user interest satisfaction as a key factor towards a vehicle
importance in the network.

2) Temporal behavior analysis of top nodes: It is im-
portant to efficiently analyze the time varying behavior of

comparing top identified nodes by each schemes

our algorithm due to the dynamic VANET environment. The
time varying behavior of the relative score of the top five
nodes identified by all schemes are shown by periodic network
snapshots after each 15 minutes interval in Figure 3. We
consider the top node identified by each scheme as benchmark
by assigning it a unity score. At the beginning, vehicle 693 is
ranked as top IFVs by InfoRank, thought the other schemes
underrated it. Vehicles also change places along the ranking
order. For example, around 30 minutes, the node 543 replaced
693 as the top IFV, then it is replaced by the node 975 around
45 minutes and finally it regained the top position.

An interesting results was observed around 15 minutes:
Only one node yields a high Eigenvector centrality score. We
investigate this effect and found that the principle eigenvalue
yields the top node where the eigenvector is shifted towards
the principle component. Thus, resulting in one major central
node. This shows that the famous Eigenvector centrality fails
to assign significant score to a large fraction of nodes in a large
network, while InfoRank do not reflect such behavior. Other
centrality schemes result in different set of top nodes at every
snapshot since such schemes only consider the instantaneous
shortest paths requiring complete topological information.
However, such complete network information is not available
to an individual vehicle in highly unstable VANETSs. InfoRank
is not affected by such network dynamics since we are able to
rank each vehicle considering relatively stable metrics.

3) Aggregated Per Node Throughput: We also evaluate
the ranking scheme by analyzing the throughput at important
nodes in the network. Figure 4 shows the aggregated per node
throughput of the top nodes identified by each scheme. The
average aggregated throughput (Kbps) is computed over the
entire simulation duration for five set of simulations. The top
nodes identified by InfoRank yields more throughput compared
to other schemes. We observe that the throughput of the third
node is relatively higher, thus inferring a variation between dif-
ferent ranks. Similar variation is seen for Degree, Betweenness
and Eigenvector centrality. However, InfoRank outperformed
all schemes as it incorporates information importance factor
towards vehicle importance computation, while other schemes
rely only on topological measures (node degree or shortest
paths) towards vehicle importance computation.

4) ICN Evaluation - In-Network Caching: We evaluate the
ICN built-in feature of In-Network caching at the intermediate
nodes by computing the cache hit rate at the top nodes
identified by each scheme as shown in Figure 5. A second
successful response by a node for the same content is consid-
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Figure 4: Average aggregated throughput by the top identified
nodes using each scheme in five simulations
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Figure 5: Average cumulative cache hit rate by the top identi-
fied nodes using each scheme in five simulations

ered a cache hit. The cumulative cache hit rate is computed
for the entire simulation duration for five set of simulations.
The top nodes identified by InfoRank yield a higher hit rate
than all the other schemes in all the five simulations. This
is because InfoRank considers information importance as a
key factor, thus, the vehicle containing important information
responds and subsequently cache more frequently compared to
other vehicles. This proves that In-Network caching offered by
ICN in InfoRank implementation overcomes the mobility and
intermittent connectivity constraints in VANETSs for efficient
content access.

Responding to the question posed before, How well can
it identify the top IFVs? From the simulation results, It is
clear that a relatively stable set of top IFVs are identified by
InfoRank compared to the other schemes in dynamic VANETSs.
It is also shown that InfoRank can identify nodes which
satisfied more user interests with higher aggregated per node
throughput and more cache hit rate compared to the other
schemes. Thus, the overall comparative analysis of InfoRank
with different network ranking schemes in the literature proved
it as an efficient vehicle ranking algorithm.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We introduced the first vehicle ranking algorithm “In-
foRank”, enabling popular Smart vehicles to rank themselves
in a fully distributed VANET. InfoRank first ranks important
location-dependent information based on the user interests
satisfaction frequency. We then employed InfoRank using

content-centric networking architecture supporting in-network
caching to cater high mobility and intermittent connectivity in
VANETs. Extensive simulations were performed using realistic
mobility traces to evaluate the efficiency of the proposed
algorithm and a time varying network behavior is analyzed.
Results by comparing with state of the art centrality schemes
revealed that InfoRank is best suited to efficiently identify
important information facilitator vehicles in VANETSs.

Identification of top IFV can be helpful in different smart
city applications such as urban sensing mentioned in the paper.
Popular IFVs can be used for efficient data collection, storage
and distribution in VANETs. Designing such efficient schemes
will be the subject of our future research.
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