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Degeneracy of entire curves into higher dimensional

complex manifolds

Ya Deng

Abstract

Pursuing McQuillan’s philosophy in proving the Green-Griffiths conjecture for certain
surfaces of general type, we deal with the algebraic degeneracy of entire curves tangent to
holomorphic foliations by curves. Inspired by the recent work [PS14], we study the intersec-
tion of Ahlfors current T [f ] with tangent bundle TF of F , and derive some consequences. In
particular, we introduce the definition of weakly reduced singularities for foliations by curves,
which requires less work than the exact classification for foliations. Finally we discuss the
strategy to prove the Green-Griffiths conjecture for complex surfaces.
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1 Introduction

In [McQ98], McQuillan proved the following striking theorem:

Theorem 1.1. Let X be a surface of general type and F a holomorphic foliation on X. Then
any entire curve F : C→ X tangent to F can not be Zariski dense.

The original proof of Theorem 1.1 is rather involved. Later on, several simplified proofs
appeared, cf. [Bru99] and [PS14]. The idea in proving Theorem (1.1) is to argue by contradiction.
One assumes that there exists a Zariski dense entire curve f : C → X which is tangent to F .
Then, one studies the intersection of the Ahlfors current T [f ], which can be treated as a (1, 1)-
cohomology class in X, with the tangent bundle and the normal bundle of the foliation F . The
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above works proved that both of the intersections numbers are positive. However, since KX is
big, then T [f ] ·KX > 0, and by the equality K−1

X = TF +NF , a contradiction is obtained.
In our paper, we give a generalization of McQuillan’s result dealing with entire curves on

higher dimensional complex manifolds, by pursuing the same philosophy. Firstly we obtain a
formula for T [f ] ·TF , which is an improvement of that of [PS14]. Our first result is the following
theorem:

Theorem 1.2. Let (X,F) be a Kähler 1-foliated pair. If f : C→ X is a transcendental entire
curve (see Definition 2.2 below) tangent to F whose image is not contained in Sing(F), then

〈T [f ], c1(TF )〉+ T (f,JF) = 〈T [f1],OX1
(−1)〉 ≥ 0,

where JF is a coherent ideal sheaf determined by the singularity of F , and T (f,JF ) is a non-
negative real number representing the “intersection” of T [f ] with JF ; this number will be defined
later.

If X is a complex surface, as is proved by McQuillan, Theorem 1.2 can be improved to the
extent that

T [f ] · TF ≥ 0. (1.1)

On the one hand, by pursuing his philosophy of “diaphantine approximation”, one can generalize
(1.1) to higher dimensional manifolds, under some assumptions on the foliation:

Theorem 1.3. Let F be a foliation by curves on the n-dimensional complex manifold X, such
that the singular set Sing(F) of the foliation F is a set of absolutely isolated singularities (this
will be defined later). If f : C→ X is an Zariski dense entire curve which is tangent to F , then
one can blow-up X a finite number of times to get a new birational model (X̃, F̃) such that

T [f̃ ] · TF̃ = 0.

Moreover, if F is a foliation by curves with absolutely isolated singularities that are simple
(see Definition 2.6), and whose canonical bundle KF is big, then every entire curve f : C→ X
that is tangent to F is algebraically degenerate.

On the other hand, Theorem 1.2 leads us to the fact that the error term T (f,JF) is control-
lable, if the singularities of F are not too “bad” (they are called weakly reduced singularities in
Section 2.5). The theorem is as follows:

Theorem 1.4. Let X be a projective manifold of dimension n endowed with a 1-dimensional
foliation F with weakly reduced singularities. If f is a Zariski dense entire curve tangent to F ,
satisfying 〈T [f ],KX〉 > 0 (e.g. KX is big), then we have

〈T [f̂ ], c1(NF̂ )〉 < 0

for some birational pair (X̂, F̂).
Remark 1.1. Our definition of “weakly reduced singularities” is actually weaker than the usual
concept of reduced singularities, which always requires a lot of checking (e.g. a classification of
singularities). We only need to focus on the multiplier ideal sheaf of JF , instead of trying to
understand the exact behavior of singularities.
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It is notable that the following strong result due to M. Brunella implies a conclusive contra-
diction in combination with Theorem 1.4, in the case of dimension 2.

Theorem 1.5. Let X be a complex surface endowed with a foliation F (no assumption is made
for singularities of F here). If f : C→ X is a Zariski dense entire curve tangent to F , then we
have

〈T [f ], NF 〉 ≥ 0.

Therefore, we get another proof of Theorem 1.1 without using the refined formula (1.1) im-
mediately. This leads us to observe that if one can resolve any singularities of the 1-dimensional
foliation F into weakly reduced ones, and generalize the previous Brunella Theorem to higher
dimensional manifolds, one could infer the Green-Griffiths conjecture for surfaces of general
type.

Theorem 1.6. Assume that Theorem 1.5 holds for a directed variety (X,F) where X is a base
of arbitrary dimension and F has rank 1, and that one can resolve the singularities of F into
weakly reduced ones. Then every entire curve drawn in a projective surface of general type must
be algebraically degenerate.

2 Proof of the Main Theorems

2.1 Notions and definitions

For any coherent ideal sheaf J ⊂ OX , one can construct a global quasi-plurisubarmonic function
ϕJ on X such that

ϕJ = log(
∑

i

|gi|2) +O(1)

where (gi) are local holomorphic functions that generate the ideal J . We call ϕJ the charac-
teristic function associated to the coherent sheaf. For any entire curve f which is not contained
in the subscheme Z(J ), we can write

ϕJ ◦ f(t)|B(r) =
∑

|tj |<r

νj log |t− tj|2 +O(1),

and here we call νj the multiplicity of f along J .
In a related way, we define the proximity function of f with respect to J by

mf,J (r) := −
1

2π

∫ 2π

0
ϕJ ◦ f(reiθ)dθ,

and the counting function of f with respect to J by

Nf,J (r) :=
∑

|tj |<r

νj log
r

|tj |
.

Let us take a log resolution of F with a birational morphism p : X̂ → X such that p−1(J ) =
OX̂(−D), let f̂ denote the lift of f to X̂ (so that p ◦ f̂ = f), and let ΘD be the curvature form
of D.

Now we recall the following formula, which will be very useful in what follows.
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Theorem 2.1. (Jensen formula) For r ≥ 1 we have

∫ r

1

dt

t

∫

B(t)
ddcϕ =

1

2π

∫ 2π

0
ϕ(reiθ)dθ − 1

2π

∫ 2π

0
ϕ(eiθ)dθ, (2.1)

in particular if ϕ is a quasi-plurisubharmonic function, then for r large enough we have

∫ r

1

dt

t

∫

B(t)
ddcϕ =

1

2π

∫ 2π

0
ϕ(reiθ)dθ +O(1).

Then the following First Main Theorem due to Nevanlinna is an immediate consequence.

Theorem 2.2. As r →∞, one has

Tf̂ ,ΘD
(r) = Nf,J (r) +mf,J (r) +O(1).

Let F be a 1-dimension foliation. Then we can take an open covering {Uα}α∈I such that on
each Uα there exists vα ∈ H0(Uα, TX |Uα) which generates F , and such that the vα coincide up
to multiplication by nowhere vanishing holomorphic functions {gαβ}:

vα = gαβvβ

if Uα ∩ Uβ 6= ∅. The functions {gαβ} define a cohomology class H1(X,O∗
X ) that corresponds to

the cotangent bundle of F , denoted here by T ∗
F . Let ω be a hermitian metric on X. Then ω

induces a natural singular metric hs on TF . Indeed, on each Uα the local weight ϕα is given by

ϕα = − log |vα|2ω = − log
∑

i,j

aiαa
j
αωij, (2.2)

where vα =
∑n

i=1 a
i
α

∂
∂zi

with respect to the coordinate system (z1, . . . , zn) on Uα.
We are going to define a coherent sheaf JF reflecting the behavior of the singularies of F :

on each Uα the generators of JF are precisely the coefficients (aiα) of the vector vα defining F ,
i.e.

vα =
n∑

i=1

aiα
∂

∂zi
.

If we fix a smooth metric h on TF , then there exists a globally defined function ϕs such that

h = hse
−ϕs

We know that
ϕs = log |vα|2ω (2.3)

modulo a bounded function, and ϕs is the characteristic function associated to the coherent
sheaf JF .

All the constructions explained above can be generalized to log pairs. We first begin with
the following definition.
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Definition 2.1. Let X be a smooth Kähler manifold, D a simple normal crossing divisor and
F a foliation by curves defined on X. We say that F is defined on the log pair (X,D) if each
component of D is invariant by F . For brevity we say that (X,F ,D) a Kähler 1-foliated triple.

The logarithmic tangent bundle TX〈− logD〉 with respect to the pair (X,D) is the subsheaf
of TX whose local sections are given by

v =

k∑

j=1

zjvj
∂

∂zj
+

n∑

i=k+1

vi
∂

∂zi
,

where z1z2 . . . zk = 0 is the local equation of D.
We can take a hermitian metric ωX,D on TX〈− logD〉 defined as follows

ωX,D =
√
−1

k∑

i,j=1

ωij̄

dzi ∧ dz̄j
ziz̄j

+ 2Re
√
−1

∑

i>k≥j

ωij̄

dzi ∧ dz̄j
z̄j

+
√
−1

∑

i,j≥k+1

ωij̄dzi ∧ dz̄j ,

where (ωij̄) is smooth positive definite hermitian matrix. In other words, the local model of
ωX,D is given by

ωX,D ≡
√
−1

k∑

i=1

dzi ∧ dz̄i
|zi|2

++
√
−1

∑

i≥k+1

dzi ∧ dz̄i.

Assume that the foliation F is defined on (X,D). Locally we have

vα =

k∑

j=1

zja
j
α

∂

∂zj
+

n∑

i=k+1

aiα
∂

∂zi

as the generator of F . Then ωX,D induces a singular hermitian metric hs,D on TF whose local
weight is given by

ϕα,D = − log |vα|2ωX,D
= − log

∑

i,j

aiαa
j
αωij.

We denote by JF ,D the coherent sheaf defined by the functions (ajα). In general we have

JF ⊂ JF ,D,

and the inclusion may be strict. If we find a smooth metric h = hs,De
−ϕs,D on TF , then it is

easy to check that ϕs,D is the characteristic function associated with JF ,D.
We set X̄1 := P (TX〈− logD〉), then ωX,D induces a natural smooth metric h1 on OX̄1

(−1).

2.2 Basic results about Ahlfors currents

Let X be a compact complex manifold, and let f be an entire curve. Then we can associate a
closed positive current of (n− 1, n − 1) type as follows: for any smooth 2-form η, we let

〈Trk [f ], η〉 :=
Tf,η(rk)

Tf,ω(rk)
,
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where Tf,ω(r) :=
∫ r
1

dt
t

∫
B(t) f

∗ω. Here B(t) is the ball of radius t in C and S(t) is its boundary.

It is known that one can find a suitable sequence of (rk) that tends to infinity, such that the
weak limit of Trk [f ] is a closed positive current (ref. [Bru99]). It is denoted by T [f ] and called
the Ahlfors current of f . Indeed, to ensure that the weak limit of Trk [f ] is closed, we only need
rk to satisfy the following condition

lim
rk→∞

length(f(S(rk)))

area(f(B(rk)))
= 0. (*)

Remark 2.1. In the definition of the Ahlfors current, it is not indispensable to assume ω to be
a Kähler form. In fact, it suffices to assume that ω is a semi-positive form satisfying

lim
rk→∞

Tf,ω(rk)

Tf,ω̃(rk)
> C > 0

with respect to some Kähler form ω̃.

Theorem 2.3. Let L be a big line bundle on a Kähler manifold X. If f : C → X is an
entire curve on X such that its image is not contained in the augmented base locus B+(L) of L
(ref. [Laz04]), then 〈T [f ], c1(L)〉 > 0.

Proof. Since the image of f is not contained in B+(L), by the definition of the augmented base
locus one can find an effective divisor E whose support does not contain the image of f , such
that

L ≡ A+ E,

where A is an Q ample divisor, and “≡” means numerically equivalent. Then the counting
function of f with respect to E is non-negative and one can find a smooth hermitian metric hE
on E such that the proximity function of f with respect to E is also non-negative. Therefore

〈T [f ],ΘhE
(E)〉 ≥ 0.

By the ampleness of A, we have
〈T [f ], c1(A)〉 > 0,

and thus
〈T [f ], c1(L)〉 = 〈T [f ], c1(A) + c1(E)〉 > 0.

Definition 2.2. An entire curve f : C → X is said to be an algebraic curve iff f admits a
factorization in the form f = g ◦R, where R : C→ P1 is a rational function and g : P1 → X is
a rational curve; otherwise f will be called transcendental.

We have the following criterion for an entire curve to be algebraic (ref. [Dem97]):

Theorem 2.4. Any entire curve f : C → X is an algebraic curve if and only if Tf,ω(r) =
O(log r). In particular, if f is Zariski dense, then

lim
r→∞

Tf,ω(r)

log r
= +∞.
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From now on, for brevity we write Tf (r) in place of Tf,ω(r), where ω can be some semi-
positive (1, 1)-form satisfying the condition in Remark 2.1.

The following logarithmic derivative lemma will be very useful in our arguments.

Theorem 2.5. (Logarithmic derivative lemma) Let f be a meromorphic function on C. Then

1

2π

∫ 2π

0
log+ |f

′(reiθ)

f(reiθ)
|dθ ≤ O(log Tf (r) + log r). (2.4)

Let (X,V ) be a smooth directed variety. It is easy to see that there is a canonical lift of f
to X1 := P (V ), defined by f1(t) := (f(t), [f ′(t)]) and satisfying π(f1) = f , where π : X1 → X is
the natural projection map. Fix a hermitian metric ω on X. It induces a smooth metric h on
the line bundle OX1

(1). Then 0 < δ ≪ 1 , ω1 := π∗ω + δΘh(OX1
(1)) is a hermitian metric on

X1, and we have the following lemma:

Lemma 2.1. Assume that f is a transcendental entire curve on X. Let π : X1 → X be the
projection map. Then we have

lim
r→∞

Tf1,π∗ω(r)

Tf1,ω1
(r)
≥ 1.

In particular, we can define the Ahlfors current T [f1] with respect to π∗ω in such a way that
π∗T [f1] = T [f ].

Proof. Since f ′(τ) can be seen as a section of the bundle f∗
1 (OX1

(−1)), by the Lelong-Poincaré
formula we have

ddc log |f ′(τ)|2ω =
∑

|tj |<r

µjδtj − f∗
1Θh∗(OX1

(−1)) (2.5)

on B(r), where µj is the vanishing order of f ′(t) at tj. Thus we get

∫ r

1

dt

t

∫

B(t)
f∗
1Θh∗(OX1

(−1)) =
∑

|tj |<r

µj log
r

|tj |
−
∫ r

1

dt

t

∫

B(t)
ddc log |f ′(τ)|2ω

=
∑

|tj |<r

µj log
r

|tj|
− 1

2π

∫ 2π

0
log |f ′(reiθ)|2ωdθ +

1

2π

∫ 2π

0
log |f ′(eiθ)|2ωdθ, (2.6)

where the last equality is a consequence of the Jensen formula (2.1). Let (ϕα)α∈J be a partition
of unity subcoordinate to the covering (Uα)α∈J of X. We can take a finite family of logarithms
of global meromorphic fuctions (log uαj)α∈J,1≤j≤n as local coordinates for Uα, and by using the
logarithmic derivative lemma (2.4) we have

1

2π

∫ 2π

0
log+ |f ′(reiθ)|2ωdθ =

∑

α∈J

1

2π

∫ 2π

0
ϕα log

+ |f ′(reiθ)|2ωdθ

≤
∑

α∈J

n∑

j=1

C

∫ 2π

0
log+ |

u′αj(re
iθ)

uαj(reiθ)
|2dθ

≤ O(log+ Tf (r) + log r),
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where C is some constant. Since f is non-algebraic, from Theorem 2.4 we know that

lim
r→∞

Tf (r)

log r
= +∞,

thus we have

lim
r→∞

− 1

Tf (r)

∫ 2π

0
log |f ′(reiθ)|2ωdθ ≥ 0.

By (2.6) we have

lim
r→+∞

1

Tf (r)

∫ r

1

dt

t

∫

B(t)
f∗
1Θh∗(OX1

(−1)) ≥ lim
r→∞

− 1

Tf (r)

∫ 2π

0
log |f ′(reiθ)|2ωdθ ≥ 0. (2.7)

From the definition of ω1, we have

Tf1,ω1
(r) =

∫ r

1

dt

t

∫

B(t)
f∗
1ω1 = Tf1,π∗ω(r) + δ

∫ r

1

dt

t

∫

B(t)
f∗
1Θh(OX1

(1)).

By Tf,ω(r) = Tf1,π∗ω(r) we get

lim
r→∞

Tf1,π∗ω(r)

Tf1,ω1
(r)
≥ 1.

By Remark 2.1 we can replace ω1 by π∗ω in the definition of Ahlfors current T [f1], and the
equality Tf1,π∗η(r) = Tf,η(r) for any (1, 1) form η then yields

π∗T [f1] = T [f ].

Similarly we have the following lemma:

Lemma 2.2. Let p : Y → X be a bimeromorphic morphism between Kähler manifolds X and
Y , obtained by a sequence of blow-ups with smooth centers. If f : C → X is an entire curve
whose image is not contained in the critical value of p, then we can lift f as f̃ : C → Y and
define the Ahlfors current T [f̃ ] with respect to p∗ω in such a way that p∗T [f̃ ] = T [f ].

Proof. We first fix a Kähler metric on X. Since Y is obtained by a finite sequence of blow-ups,
we can find a Kähler metric ω̃ on Y defined by

ω̃ = p∗ω −
∑

i

ǫiΘhi
(Ei),

where all Ei are irreducible divisors supported in the exceptional locus of p, hi is some smooth
hermitian metric on Ei, and each ǫi is some positive real number. Since the image of f is not
contained in the critical value of p, the image of f̃ is not contained in the exceptional locus of p,
and a fortiori in any of the Ei. We claim that for all Ei we have

〈T [f ],Θhi
(Ei)〉 ≥ 0. (2.8)

Indeed, since the image of f̃ is not contained in Ei, the counting function of f with respect to
Ei is non-negative, and if we normalize the hermitian metric hi, the proximity function is also
non-negative. By Nevanlinna’s First Main Theorem, we infer (2.8).
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Therefore

lim
r→∞

T
f̃ ,p∗ω

(r)

T
f̃ ,ω̃

(r)
≥ 1,

and by Remark 2.1 we can define the Ahlfors current T [f̃ ] with respect to p∗ω in such a way
that p∗T [f̃ ] = T [f ].

Remark 2.2. For any coherent ideal sheaf J whose zero scheme does not contain the image of
f : C→ X, one can take a log resolution p : X̂ → X of J with p∗J = OX̂(−D), and by Lemma
2.2 one can find a suitable sequence (rk) such that

〈T [f̂ ],Θ(D)〉 = lim
rk→∞

Tf̂ ,Θ(D)(rk)

Tf̂ ,p∗ω(rk)
= lim

rk→∞

Tf̂ ,Θ(D)(rk)

Tf,ω(rk)
,

where f̂ is the lift of f to X̂ and Θ(D) is a curvature form of OX̂(D) with respect to some smooth

metric. By Theorem 2.2, we know that 〈T [f̂ ],Θ(D)〉 does not depend on the log resolution of
J . We will denote this intersection number by T (f,J ).

2.3 Intersection with the tangent bundle

Theorem 2.6. (Tautological inequality) Let f : (C, TC) → (X,V ) be a transcendental entire
curve in X, where (X,V ) is a smooth directed variety. We denote by f1 : C→ P (V ) the lift of
f . Let ω be a hermitian metric on X, and consider the smooth metric induced by h on the line
bundle OP (V )(1). Then we have

〈T [f1],OP (V )(−1)〉 = 〈T [f1],Θh∗(OP (V )(−1))〉 ≥ 0.

Proof. By (2.7) above we have

lim
r→+∞

1

Tf,ω(r)

∫ r

1

dt

t

∫

B(t)
f∗
1Θh∗(OP (V )(−1)) ≥ 0.

By Lemma 2.1 we can take π∗ω as the semi-positive form used in the definition of the Ahlfors
current of T [f1], where π : P (V ) → X is the natural projection. The equality Tf,ω(r) =
Tf1,π∗ω(r) then implies

〈T [f1],OP (V )(−1)〉 = lim
r→+∞

1

Tf1,π∗ω(r)

∫ r

1

dt

t

∫

B(t)
f∗
1Θh∗(OP (V )(−1)) ≥ 0.

Remark 2.3. Recall the following well known formula: if C ⊂ X is a smooth algebraic curve
and C̃ ⊂ P (TX) is its lift to P (TX), then c1(OP (TX )(−1)) · [C̃] = χ(C). Thus the above
tautological inequality intuitively means that the “Euler characteristic” of the transcendental
curve f : C→ X is non-negative.
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Theorem 2.7. Let X be a Kähler manifold endowed with a 1-dimensional foliation F , and
f : C → X be a transcendental entire curve tangent to F such that its image is not contained
in Sing(F). Then we have

〈T [f ], c1(TF )〉+ T (f,JF) = 〈T [f1],Θg(OX1
(−1))〉 ≥ 0, (2.9)

where g is the smooth metric on OX1
(−1) induced by ω.

Proof. Let (Uα) be a partition of unit of X, and let us denote Ωα = f−1(Uα). Then we have

f ′(τ) = λα(τ)vα|f(τ) (2.10)

for some holomorphic function λα(τ) on Ωα\f−1(Sing(F)) (notice that f−1(Sing(F))∩Ωα is a set
of isolated points since its image is not contained in Sing(F)). We denote by ηj the multiplicities
of λα(τ) at tj (they may be negative if f(tj) ∈ Sing(F), however we have ηj + νj ≥ 0), where νj
is the multiplicity of f along JF , i.e.

ddc log |vα|2ω ◦ f(τ)|B(r) =
∑

|tj |<r

νj log |τ − tj|2 +O(1).

Since vα = gαβvβ, then if tj ∈ Ωα ∩Ωβ, λα and λβ have the same multiplicity at tj , and thus ηj
does not depend on the partition on unity. By the Lelong-Poincaré formula and (2.10) we have

ddc log |f ′(τ)|2ω =
∑

|tj |<r

ηjδtj + ddc log |vα|2ω ◦ f(τ)

=
∑

|tj |<r

ηjδtj − f∗Θhs
, (2.11)

where hs is the singular metric on TF whose local weight is ϕα = − log |vα|2ω (see (2.2) above).
If we fix a smooth metric h on TF , then there exists a globally defined function ϕs such that

h = hse
−ϕs ,

and ϕs is the characteristic function associated to the coherent sheaf JF . By (2.11) we have

ddc log |f ′(τ)|2ω − f∗ddcϕs =
∑

|tj |<r

ηjδtj − f∗Θh(TF ).

on B(r). From (2.5) we know that

∑

|tj |<r

µjδtj − f∗
1Θg(OX1

(−1))− f∗ddcϕs =
∑

|tj |<r

ηjδtj − f∗Θh(TF ),

where g is the smooth metric on OX1
(−1) induced by ω, and µj is the multiplicity of f ′(τ) at

tj. Therefore, as µj − ηj = νj , we have

f∗Θh(TF ) = −
∑

|tj |<r

νjδtj + f∗
1Θg(OX1

(−1)) + f∗ddcϕs
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on each B(r). Then we have

〈Tr[f ],Θh(TF )〉 :=
1

Tf (r)

∫ r

1

dt

t

∫

B(t)
f∗Θh(TF )

=
1

Tf (r)

∫ r

1

dt

t

∫

B(t)
f∗
1Θg(OX1

(−1))− 1

Tf (r)

∑

|tj |<r

νj log
r

|tj|

+
1

Tf (r)

1

2π

∫ 2π

0
ϕs ◦ f(reiθ)dθ −

1

Tf (r)

1

2π

∫ 2π

0
ϕs ◦ f(eiθ)dθ

=
1

Tf (r)

∫ r

1

dt

t

∫

B(t)
f∗
1Θg(OX1

(−1))

− 1

Tf (r)
Nf,JF

(r)− 1

Tf (r)
mf,JF

(r), (2.12)

where Nf,JF
(r) and mf,JF

(r) are the counting and proximity function of f with respect to JF ,
and the second equality above is a consequence of the Jensen formula. Since T [f ] is the weak
limit of the positive current Trk [f ] for some sequence rk →∞, we have

〈T [f ],Θh(TF )〉 = lim
rk→+∞

〈Trk [f ],Θh(TF )〉.

From Theorem 2.2, Remark 2.2 and Lemma 2.1 we conclude that

〈T [f ],Θh(TF )〉+ T (f,JF ) = 〈T [f1],Θg(OX1
(−1))〉 ≥ 0.

In fact, KF ⊗ JF is the canonical sheaf KF of F defined in [Dem14], by using admissible
metric. We recall the following definition in [Dem14].

Definition 2.3. We say that the canonical sheaf KF is “ big” if there exists some birational
morphism να : (Xα,Fα) → (X,F) of (X,F) such that the invertible sheaf µ∗

αKFα is big in the
usual sense for some log resolution µα : Yα → Xα of JFα. The base locus Bs(F) of F is defined
to be

Bs(F) :=
⋂

α

να ◦ µαB+(µ
∗
αKFα),

where (Xα,Fα) varies among all the birational models with µ∗
αKFα big.

The above Theorem 2.7 then gives another proof of the following Generalized Green-Griffiths
conjecture for rank 1 foliations formulated in [Dem12]. Moreover we can specify more precisely
the subvariety containing the images of all transcendental curves tangent to the foliation. The
theorem is as follows:

Corollary 2.1. Let (X,F) be a projective 1-foliated manifold and assume that KF is big. If
f : C → X is a transcendental entire curve tangent to F , its image must be contained in
Sing(F)∪Bs(F). In particular, any entire curve tangent to F must be algebraically degenerate.

11



Proof. Assume that the image of f is not contained in Sing(F) ∪ Bs(F). We proceed by con-
tradiction. By Definition 2.3, there exists a birational morphism να : (Xα,Fα) → (X,F) such
that the invertible sheaf µ∗

αKFα is big in the usual sense, for some log resolution µα : Yα → Xα

of JFα , and such that the image of fα is not contained in B+(µ
∗
αKFα), where fα is the lift of f

to Yα. We denote by f̃α the lift of f to Xα. By Theorem 2.3 we have

〈T [fα], c1(µ∗
αKFα)〉 > 0.

By Remark 2.2 and the fact that να∗T [fα] = T [f̃α]〉, we get

〈T [f̃α],KFα〉 − T (f̃α,JFα) = 〈T [fα], µ∗
αKFα〉 > 0.

However, since f is transcendental, by Theorem 2.7 we infer

〈T [f̃α], TFα〉+ T (f̃α,JFα) ≥ 0,

and the contradiction is obtained by observing that c1(KFα) = −c1(TFα).

Remark 2.4. In [Den15] we have generalized the above theorem to any singular directed variety
(X,V ) (without assuming V to be involutive), by applying the Ahlfors-Schwarz Lemma. In the
proof, the canonical sheaf plays a crucial role (and it arises in a natural way).

By a result due to Takayama (ref. [Tak08]) we know that on a projective manifold X of
general type, every irreducible component of B+(KX) is uniruled. It is natural to ask the
following analogous question:

Problem 2.1. Let (X,F) be a projective 1-foliated pair with KF big. Is every irreducible
component of Bs(F) uniruled?

From (2.9), we see that the positivity of T [f ] · TF is controlled by the error term T (f,JF).
This gives us the advantage that we only need to compute the coherent ideal sheaf JF instead
of knowing the exact form of F at the singularities.

Remark 2.5. If X is a complex surface endowed with a foliation F , and C is an algebraic curve,
then by Proposition 2.3 in [Bru04] we have the formula:

C · TF + Z(F , C) = χ(C), (2.13)

where Z(F , C) is the multiplicity of the singularities of F along the curve C. By Remark 2.3,
we know that 〈T [f1],OX1

(−1)〉 can be seen as the “Euler characteristic” of f . Thus (2.9) is
a transcendental version of the above formula, and we have the following metamathematical
correspondences between any algebraic leaf C and any transcendental leaf f : C→ X:

Z(F , C) ∼ T (f,JF ),
C · TF ∼ 〈T [f ], c1(TF )〉,

χ(C) ∼ 〈T [f1],OX1
(−1)〉.

We also need the following logarithmic version of Theorem 2.7:
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Theorem 2.8. Let (X,F ,D) be a Kähler 1-foliated triple, and let f : C→ X be a transcendental
entire curve tangent to F such that its image is not contained in Sing(F)∪ |D|, where |D| is the
support of D. Then we have

〈T [f ], c1(TF )〉+ T (f,JF ,D) = 〈T [f̄1],OX̄1
(−1)〉 ≥ − lim inf

r→∞

N
(1)
f,D(r)

Tf (r)
=: −N (1)(f,D),

where f̄1 is the lift of f on X̄1 := P (TX〈− logD〉), and N
(1)
f,D(r) is the truncated counting

function of f with respect to D defined by

N
(1)
f,D(r) :=

∑

|tj |<r,f(tj)∈D

log
r

|tj |
.

Proof. Since the image of f is not contained in |D|, the condition that f(tj) ∈ D implies
f(tj) ∈ Sing(F).

We use the notation and concepts introduced in Section 2.1. Let (Uα) be a partition of unity
on X. On each Uα we have

vα =
k∑

j=1

zja
j
α

∂

∂zj
+

n∑

i=k+1

aiα
∂

∂zi

as the generator of F , where z1 · · · zk = 0 is the local equation of D in Uα. The hermitian metric
ωX,D induces a singular metric hs,D on TF with local weight

ϕα,D = − log |vα|2ωX,D
= − log

∑

i,j

aiαa
j
αωij.

If h = hse
−ϕs,D is a smooth metric on TF , then ϕs,D is the characteristic function associated

with JF ,D.
Since the image of f is not contained in Sing(F) ∪ |D|, on Uα we have

f̄ ′(τ) := (
f ′
1

f1
, . . . ,

f ′
k

fk
, f ′

k+1, . . . , f
′
n) = λα(τ)(a

1
α(f), . . . , a

n
α(f)), (2.14)

where λα(τ) is the meromorphic functions with poles contained in f−1(Sing(F)∪|D|). By (2.14)
we know that f(tj) ∈ D implies f(tj) ∈ Sing(F). Indeed, if f(tj) ∈ D, then λα has a pole of
order at least 1 at tj , and such a pole can only occur at a point of Sing(F).

Observe that f̄ ′(τ) can be seen as a meromorphic section of f̄∗
1OX̄1

(−1), where f̄1(τ) is the
lift of f to X̄1, and denote Ωα = f−1(Uα). Then on Ωα ∩B(r) we have

ddc log |f ′(τ)|2ωX,D
=

∑

|tj |<r,tj∈Ωα

ηjδtj + f∗ddc log |vα|2ωX,D
,

where ηj is the vanishing order of λα(τ) on tj . Since vα = gαβvβ, we see that ηj does not depend
on the partition of unity, and thus on B(r) we have

ddc log |f ′(τ)|2ωX,D
=
∑

|tj |<r

ηjδtj − f∗Θh(TF ) + f∗ddcϕs,D. (2.15)
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On the other hand, since ωX,D induces a natural smooth metric on TX〈− logD〉, it also
induces a smooth hermitian metric h̄1 on OX̄1

(−1), thus

ddc log |f ′(τ)|2ωX,D
= ddc log |f̄ ′(τ)|2h̄1

=
∑

0<|tj |<r

µjδtj − f̄∗
1Θh̄1

(OX̄1
(−1)) (2.16)

on B(r), where µj is the vanishing order of f̄ ′(t). By (2.14) we know that µj = −1 if and only
if f(tj) ∈ |D|, and otherwise µj ≥ 0. Then by using the logarithmic derivative lemma again as
in Lemma 2.1, we find

〈T [f̄1],OX̄1
(−1)〉 ≥ − lim inf

r→∞

N
(1)
f,D(r)

Tf (r)
. (2.17)

We can combine (2.15) and (2.16) together to obtain

f∗Θh(TF ) = −
∑

0<|tj |<r

µjδtj +
∑

|tj |<r

ηjδtj + f̄∗
1Θh̄1

(OX̄1
(−1)) + f∗ddcϕs,D

on B(r). By arguments very similar to those in the proof of Theorem 2.7, we get

〈T [f ],Θh(TF )〉 = 〈T [f̄1],OX̄1
(−1)〉 − T (f,JF ,D),

and the theorem follows from (2.17).

2.4 Siu’s refined tautological inequality

In [Siu02] Y-T. Siu proved McQuillan’s “refined tautological inequality” by applying the tradi-
tional function-theoretical formulation. We will give here an improvement of this result. First
we begin with the following lemma due to Siu.

Lemma 2.3. Let U be an open neighborhood of 0 in Cn and π : Ũ → U be the blow-up at 0.
Then π∗(OU (Ω

1
U )) ⊂ IE⊗(Ω1

Ũ
〈− logE〉), where IE is the ideal sheaf of the exceptional divisor E.

Theorem 2.9. Let H be an ample line bundle on a projective manifold X of dimension n. Let
Z be a finite subset of X and f : C → X be an entire curve. Let σ ∈ H0(X,SlΩX ⊗ (klH)) be
such that f∗σ is not identically zero on C. Let W be the zero divisor of σ in X1 := P (TX), and
π : Y → X be the blow-up of Z with E := π−1(Z). Then we have

1

l
Nf1,W (r) + Tf̂ ,ΘE

(r)−N
(1)
f,mZ

(r) ≤ kTf,ΘH
(r) +O(log Tf,ΘH

(r) + log r), (2.18)

where N
(1)
f,mZ

(r) is the truncated counting function with respect to the ideal mZ, and ΘH (resp.
ΘE) is the curvature of H (resp. ΘH) with respect to some smooth metric hH (resp. hE).

Remark 2.6. In [Siu02] and [McQ98], a slightly weaker inequality is obtained comparatively

to (2.18), with mf,mZ
(r) in place of Tf̂ ,ΘE

(r)−N
(1)
f,mZ

(r).
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Proof of Theorem 2.9. Let τ = π∗σ. By Lemma 2.3, τ is a holomorphic section of Sl(ΩY (logE))⊗
π∗(klH) over Y and τ vanishes to order at least l on E. Let sE be the canonical section of E. If
we divide τ by s⊗l

E , then τ̃ := τ
s⊗l
E

is a holomorphic section of Sl(ΩY (logE))⊗ π∗(klH)⊗ (−lE)

over Y . We now prove that

‖τ( ¯̂f ′(t))‖π∗h⊗kl
H

= ‖σ(f ′(t))‖h⊗kl
H

, (2.19)

where
¯̂
f ′(t) is the derivative of f̂ in TX̂〈− logE〉 (see Definition 2.14). To make things simple

we assume l = 1. Let p be a point in Z and let U be a small open set containing p such that
locally we have

σ =

n∑

i=1

aidzi ⊗ e⊗k,

where e is the local section of H and p is the origin. The blow-up at p is the complex submanifold
of U×Pn−1 defined by wjzk = wkzj for 1 ≤ j 6= k ≤ n, where [w1 : · · · : wn] are the homogeneous
coordinates of Pn. In the affine coordinate chart w1 6= 0 we have the relation

(z1, z1w2, . . . , z1wn) = (z1, z2, . . . , zn),

thus

τ = z1

(
(a1 +

n∑

i=2

aiwi)d log z1 +

n∑

i=2

aidwi

)
⊗ (π∗e)⊗k,

and f̂(t) = (f1,
f2
f1
, . . . , fnf1 ) in the local coordinate (z1, w2, . . . , wn). Thus

¯̂
f ′(t) :=

(
f ′
1

f1
, (
f2
f1

)′, . . . , (
fn
f1

)′
)

with respect to the local section (z1
∂

∂z1
, ∂
∂w2

, . . . , ∂
∂wn

) of TX̂〈− logE〉. It is easy to check the
equality (2.19).

By the logarithmic derivative lemma again we know that 1
2π

∫ 2π
0 log+‖τ( ¯̂f ′(reiθ))‖π∗h⊗kl

H
and

1
2π

∫ 2π
0 log+‖τ̃( ¯̂f ′(reiθ))‖π∗h⊗kl

H
⊗h∗⊗l

E
are both of the order O(log Tf,ΘH

(r) + log r). Using log x =
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log+ x− log+ 1
x for any x > 0, we obtain

2lmf̂ ,E(r) =
1

2π

∫ 2π

0
log+

1

‖s⊗l
E ◦ f̂(reiθ)‖2hE

≤ 1

2π

∫ 2π

0
log+

1

‖τ( ¯̂f ′(reiθ))‖2
π∗h⊗kl

H

+
1

2π

∫ 2π

0
log+‖τ̃( ¯̂f ′(reiθ))‖2

π∗h⊗kl
H

⊗h∗⊗l
E

+O(1)

= − 1

2π

∫ 2π

0
log‖τ( ¯̂f ′(reiθ))‖2

π∗h⊗kl
H

+
1

2π

∫ 2π

0
log+‖τ( ¯̂f ′(reiθ))‖2

π∗h⊗kl
H

+
1

2π

∫ 2π

0
log+‖τ̃ ( ¯̂f ′(reiθ))‖2

π∗h⊗kl
H

⊗h∗⊗l
E

+O(1)

= − 1

2π

∫ 2π

0
log‖τ( ¯̂f ′(reiθ))‖2

π∗h⊗kl
H

+O(log Tf,ΘH
(r) + log r)

= − 1

2π

∫ 2π

0
log‖σ(f ′(reiθ))‖2

h⊗kl
H

+O(log Tf,ΘH
(r) + log r), (2.20)

where the last equality is due to equality (2.19). Observe that there is a natural isomorphism
betweem H0(X,Sl(ΩX)⊗(klH)) and H0(X1,OX1

(l)⊗p∗(klH)), where X1 := P (TX) and p is its
projection to X. We denote by Pσ the corresponding section of σ in H0(X1,OX1

(l)⊗ p∗(klH)),
whose zero divisor is W . Then we have

‖Pσ(f1(t)) · (f ′(t))l‖
p∗h⊗kl

H

= ‖σ(f ′(t))‖
h⊗kl
H

,

and thus on B(r) we have

N(σ(f ′(t)), r) = Nf1,W (r) + l
∑

|tj |<r

µj
r

|tj |
,

where N(σ(f ′(t)), r) is the counting function of σ(f ′(t)) and µj is the vanishing order of f ′(t)
at tj. Therefore, by applying the Jensen formula to the last term in (2.20) we obtain

2lmf̂ ,E(r) + 2N(σ(f ′(t)), r) ≤ 2klTf,ΘH
(r) +O(log Tf,ΘH

(r) + log r)). (2.21)

Since we have
N

(1)
f,mZ

(r) +
∑

|tj |<r,f(tj)∈Z

µj
r

|tj|
= Nf,mZ

(r) = Nf̂ ,E(r),

then by applying Nevanlinna’s First Main Theorem to (f̂ , E) we get

Tf̂ ,ΘE
(r) = Nf̂ ,E(r) +mf̂ ,E(r) +O(1),

and we can combine this with (2.21) to obtain

Tf̂ ,ΘE
(r)−N

(1)
f,mZ

(r) +
1

l
Nf1,W (r) ≤ kTf,ΘH

(r) +O(log Tf,ΘH
(r) + log r)).
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Now we have the following refined tautological equality:

Theorem 2.10. Let X be a Kähler manifold of dimension n and f : C→ X be a transcendental
entire curve. Then for any finite set Z we have

T [f1] · OX1
(−1) ≥ T (f,mZ)−N

(1)
f,mZ

≥ m(f,mZ) := lim
r→∞

mf,mZ
(r)

Tf,ΘH
(r)

.

Proof. First we choose k large enough, in such a way that OX1
(1) ⊗ p∗(kH) is ample over X1.

When we choose l sufficient large, OX1
(l) ⊗ p∗(lkH) will be very ample over X1. Hence there

exists a section σ ∈ H0(X1,OX1
(l)⊗ p∗(lkH)) whose defect is zero, i.e.

N(f1,W ) := lim
rk→∞

Nf1,W (rk)

Tf,ΘH
(rk)

= 〈T [f1],OX1
(l)⊗ p∗(lkH)〉 = 〈T [f1],OX1

(l)〉+ kl,

where W is the zero divisor of σ, and where the last equality comes from 〈T [f ],ΘH〉 = 1. Since
f is transcendental, by Theorem 2.4 we have

lim
r→∞

Tf,ΘH
(r)

log r
= +∞.

We can thus divide both sides in (2.18) by Tf,ΘH
(r) and take r →∞ to obtain

1

l
N(f1,W ) + T (f,mZ)−N

(1)
f,mZ

≤ k,

and we obtain the formula in the theorem.

2.5 Intersection with the normal bundle

As an application for Theorem 2.7, we will study the intersection of T [f ] with the normal bundle;
i.e. with c1(NF ). Before anything else, we begin with the following definition.

Definition 2.4. Let X be a Kähler manifold endowed with a foliation F by curves. We say
that F has weakly reduced singularities if

1. For some log resolution π : X̂ → X of JF , we have TF̂ = π∗TF , where F̂ is the induced
foliation of π∗F ;

2. the L2 multiplier ideal sheaf I(JF) of JF is equal to OX , i.e., at each p ∈ X, assume that
v is the local generator of F around p, then for any f ∈ OX,p, we have

|f |2
|v|2ω

∈ L1
loc,

where ω is any smooth hermitian metric on X.

With the previous definition, we have the following theorem.
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Theorem 2.11. Let X be a projective manifold of dimension n endowed with a foliation F by
curves with weakly reduced singularities. If f : C → X is a transcendental entire curve tangent
to F , whose image is not contained in Sing(F) and satisfies 〈T [f ],KX〉 > 0 (e.g. KX is big),
then we have

〈T [f̂ ], c1(NF̂ )〉 < 0

for some birational modification (X̂, F̂) of (X,F).

Proof. From the standard short exact sequence

0 −→ TF −→ TX −→ NF −→ 0

that holds outside of a codimension 2 subvariety, we find

c1(KX) + c1(TF ) = −c1(NF ).

By the definition of multiplier ideal sheaves (ref. [Laz04]) we have

I(JF) = π∗(KX̂/X −D),

where π : X̂ → X is a log resolution of JF such that π∗JF = OX̂(−D). We know that
I(JF) = OX if and only if KX̂/X − D is effective. By the assumption that the image of f is

not contained in Sing(F), i.e. in the zero scheme of JF , we know that the image of f̂ is not
contained in the support of the exceptional divisor, and thus

〈T [f̂ ],KX̂/X −D〉 ≥ 0.

Therefore we have

〈T [f̂ ],KX̂ + TF̂ 〉 = 〈T [f̂ ], π∗KX + π∗TF +KX̂/X〉
≥ 〈T [f̂ ], π∗KX + π∗TF +D〉
= 〈T [f ],KX + TF 〉+ T (f,JF),

where the last equality follows from the fact that π∗T [f̂ ] = T [f ] and T (f,JF) = 〈T [f̂ ],D〉 (see
Remark 2.2). By Theorem 2.7 we have

〈T [f ], TF 〉+ T (f,JF ) ≥ 0,

thus
−〈T [f̂ ], c1(NF̂ )〉 = 〈T [f̂ ],KX̂ + TF̂ 〉 ≥ 〈T [f ],KX〉 > 0.

The theorem is proved.

By the reduction theorem of singularities for surface foliations due to Seidenberg, for any
pair (X0,F0) there exists a finite sequence of blow-ups such that the induced pair (X,F) has
singularities of one of the following two types:

18



• a non-degenerate singular point x0, in the sense that

log
|a1|2 + |a2|2
|z1|2 + |z2|2

= O(1).

• a degenerate singular point x1 “of type k”, such that

log
|a1|2 + |a2|2
|z1|2 + |z2|2k

= O(1),

where k ≥ 2 (we also call this a “type k” singularity).

Moreover

• Any singular point of F is either non-degenerate or degenerate of type k.

• For any blow-up π : X̂ → X of a point on X, we have π∗TF = TF̂ for the induced foliation

F̂ .

• For any blow-up of the non-degenerate point x0, F̂ has two singularities on the exceptional
divisor and both of them are non-degenerate.

• For the blow-up of a degenerate point x1 of type k, on the exceptional divisor F̂ has a
non-degenerate singular point and a degenerate one with the same type as x1.

By the property above it is easy to show that I(JF) = OX if F is reduced, thus F is weakly
reduced in the sense of Definition 2.4. Then we can get another proof of McQuillan’s theorem
without using his “Diophantine approximation analysis” (still, we will make use of “Diophantine
approximation” in the next section):

Theorem 2.12. Let X be a complex surface endowed with a foliation F . If 〈T [f ],KX〉 > 0
(e.g. if KX is big), then any entire curve tangent to F is algebraically degenerate.

Proof. Assume that we have a Zariski dense entire curve f : C→ X tangent to F . We proceed
by contradiction.

By Seidenberg’s theorem there is a sequence of blow-ups π : X̃ → X such that the singular-
ities of F̃ = π−1F are reduced, and the lift f̃ of f to X̃ is still Zariski dense. Thus J̃ is weakly
reduced and by Theorem 2.11 we have

〈T [f̂ ], c1(NF̂ )〉 < 0

for some birational pair (X̂, F̂) which is obtained by resolving the ideal JF̃ . However, Theorem
1.5 tells us that

〈T [f̂ ], c1(NF̂ )〉 ≥ 0

and we get a contradiction.
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2.6 A generalization of McQuillan’s theorem

Thanks to the above theorems, we can obtain certain generalizations of McQuillan’s theorem to
higher dimensional manifolds, under some assumptions for the foliations. We start with some
relevant definitions and properties (and refer to [CCS97] and [Tom97] for further details).

Definition 2.5. Let F be a foliation by curves on a n-dimensional complex manifold X. We say
that p0 ∈ Sing(F) is an absolutely isolated singularity (A.I.S.) of F if and only if the following
properties are satisfied:

1. p0 is an isolated singularity,

2. If we consider an arbitrary sequence of blowing-up’s

(X,F) π1←− (X1,F1)
π2←− · · · πn←− (Xn,Fn)

where the center of each blow-up πi is a singular point pi−1 ∈ SingFi−1, then #Sing(Fn) <
+∞.

Since locally the foliation F is generated by a holomorphic vector field v =
∑n

i=1 ai
∂
∂zi

, we
can define the algebraic multiplicity mp(F) of F at p to be the minimum of the vanishing orders
ordp(ai). Recall that the linear part of F at p is defined by

Lv : mp/m
2
p → mp/m

2
p.

A singular point p ∈ SingF is called reduced if mp(F) = 1 and the linear part of F at p has at
least one non-zero eigenvalue.

We shall say that p ∈ SingF is a non-dicritical singularity of F if π−1(p) is invariant by F ,
where π is the blow-up of p. Otherwise p is called a dicritical singularity.

Let (X,F ,D) be a 1-foliated triple. We assume that all singularities of F lie on D (this
can be achieved after we take a log resolution of JF ). Fix a point p ∈ Sing(F) and denote by
e = e(D, p) the number of irreducible components of D through p. Since Sing(F) ⊂ D, we have
e ≥ 1. Then the vector fields which generate F are given by

v =
e∑

j=1

zjaj
∂

∂zj
+

n∑

i=e+1

ai
∂

∂zi
,

where z1z2 . . . ze = 0 is the local equation of D at p.

Definition 2.6. Assume that e = 1. Then p is a simple point iff one of the following two
possibilities occurs:

(A) a1(0) = 0, the curve (z2 = . . . = zn = 0) is invariant by F (up to an adequate formal choice
of coordinates) and the linear part Lv|D of v|D is of rank n− 1.

(B) a1(0) = λ 6= 0, the multiplicity of the eigenvalue λ is one and if µ is another eigenvalue of
the linear part of Lv, then µ

λ /∈ Q+.
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Assume that e ≥ 2. Then p is a simple corner iff (up to a reordering of (z1, . . . , zn)), we
have a1(0) = λ 6= 0, a2(0) = µ and µ

λ /∈ Q+.
We say that p is a simple singularity iff it is a simple point or a simple corner.

The simple singularities are “stable” under blowing-up:

Proposition 2.1. Assume that p is a simple singularity of the 1-foliated triple (X,F ,D). Let
µ : X̃ → X be the blow-up of X with the center p, D̃ := µ−1(D ∪ {p}) and F̃ be the induced
foliation. Then:

(a) Each irreducible component of D̃ is invariant by F̃ .

(b) If p′ ∈ F̃s ∩ µ−1(p), then p′ is also a simple singularity of F̃ with respect to the induced
1-foliated triple (X̃, F̃ , D̃). More precisely:

(b-1) if p is a simple point, there is exactly one simple point p′ ∈ F̃ ∩ µ−1(p). The other
points in F̃ ∩ µ−1(p) are simple corners. Moreover, p and p′ have the same type (A)
or (B) of Definition 2.6.

(b-2) If p is a simple corner, then all points in Sing(F) ∩ µ−1(p) are simple corners.

In [Tom97] and [CCS97], the following resolution theorem for absolutely isolated singularities
has been proved.

Theorem 2.13. Let F be a foliation by curves on the n-dimensional complex manifold X, such
that the singularities Sing(F) of the foliation F is a set of absolutely isolated singularities. Then
there exists a finite sequence of blow-up’s

(X,F) π1←− (X1,F1)
π2←− · · · πn←− (Xn,Fn)

satisfying the following property:

1. the center of each blow-up πi is a singular point pi−1 ∈ Sing(F).

2. (Xn,Fn,Dn) is a 1-foliated triple with only simple singularities (which are, of course ab-
solutely isolated singularities).

3. All the singularities of Fn are non-dicritical.

In [Tom97], the author also gave a classification of the linear part Lv : mp/m
2
p → mp/m

2
p of

reduced, non-dicritical A.I.S.

Proposition 2.2. Let p be a reduced, non-dicritical A.I.S of the foliation F , then its linear part
can be written

Lv = diag[M(λ1), . . . ,M(λs)]

where M(λk) = λkIrk + Rrk(1) for 1 ≤ k ≤ s. (Here Irk is the identity matrix of Crk×rk and
Rrk(1) ∈ Crk×rk is the upper triangle matrix of order 1).

Moreover, if we denote by F̃ the induced foliation of F after the blow-up at p, then we have

Sing(F̃) ∩ µ−1{p} = {p̃1, . . . , p̃s}

where p̃l is the zero at the charts z̃j = zj , z̃i = zi/zj for i = 1, . . . , n and j = r1 + . . .+ rl−1 + 1.
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Definition 2.7. Let F be a foliation by curves defined on some open domain U ⊂ Cn. A
separatrix of the singular holomorphic foliation F at the point p ∈ Sing(F) is a local leaf L ⊂
(U, p) \ Sing(F) whose closure L ∪ p is a germ of analytic curve.

We can summarize Proposition 2.1 and Proposition 2.2 to state a proposition in the following
final form:

Proposition 2.3. Let (X,F ,D) be a 1-foliated triple. Let p be an absolutely isolated and simple
singularity of F and let w1w2 . . . we = 0 be the local equation of D at p. Then we can find a
new coordinate system (z1, . . . , zn) such that the linear part Lv of a generator of F at p can be
written in the following Jordan form:

Lv =

s∑

i=1

λizi
∂

∂zi
+

k∑

j=1

s+r1+...+rj−1∑

p=s+r1+...+rj−1+1

(λs+jzp + zp+1)
∂

∂zp
+ λs+jzs+r1+...+rj

∂

∂zs+r1+...+rj

where rj ≥ 0 are the sizes of the Jordan blocks, z1z2 . . . ze = 0 (of course, e ≤ s) is the local
equation of D at p. λj 6= 0 for j = 2, . . . , s + k; λi

λj
/∈ Q+ for i 6= j, i, j = 1, . . . , s + k, j 6= 1.

Here, the local generator of F is

v =

e∑

j=1

zjaj
∂

∂zj
+

n∑

i=e+1

ai
∂

∂zi
,

and aj(0) = λj for j = 1, . . . , e. If we denote by F̃ the foliation induced by F after taking the
blow-up at p, then we have

Sing(F̃) ∩ E = {p̃1, . . . , p̃s+k}
where p̃l is the zero at the charts z̃j = zj , z̃i = zi/zj for i = 1, . . . , n and j = l if l ≤ s or
j = s + r1 + . . . + rl−1 + 1 if l = s +m; E is the exceptional divisor of the blow-up. Moreover,
at each p̃i the linear part Lṽ of a generator of F̃ is similar to that Lv, since simple singularities
are stable under blowing-up.

As a consequence of Proposition 2.3 we get the following theorem:

Theorem 2.14. With the above notation, let p be an absolutely isolated and simple singularity
of F and let z1z2 . . . ze = 0 be the local equation of D at p. Then

(a) if p is a simple corner (i.e. e ≥ 2), each separatrix of F at p must be contained in D.

(b) Let (X̃, F̃ , D̃) be the induced 1-foliated triple by the blow-up at p with the exceptional divisor
E, and C be a separatrix at p which is not contained in D. If p is a simple point (i.e. e = 1),
then the lift C̃ of each separatrix C to X̃ intesects with E at p̃1, which is still a simple point
with respect to (X̃, F̃ , D̃).

Proof. Assume that we have a separatrix C of F at p which is not contained in D. We take a
local parametrization f : (C, 0)→ (C, p) for this separatrix, then in the local coordinate system
(z1, . . . , zn) introduced in Proposition 2.3, we have

(
f ′
1(t), . . . , f

′
n(t)

)
= η(t) · (f1(t)a1(f), . . . , fe(t)ae(f), ae+1(f), . . . , an(f))
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for some meromorphic function η(t) whose poles only appear at 0. By the assumption that C
is not contained in D, fi(t) is not identically equal to zero for i = 1, . . . , e. We denote by νi the
vanishing order of fi(t) at 0 for i = 1 . . . , n, which are all positive integers.

If p is a simple corner, then e ≥ 2 and λ2 = a2(0) 6= 0, and we have

η(t)a2(t) =
f ′
2(t)

f2(t)
.

This implies that the order of pole of η(t) at 0 must be 1. If we denote by η(t) = b(t)
t with b(t)

some germ of holomorphic function satisfying b(0) 6= 0, then

b(0) · λ2 = ν2.

Similarly we have
b(0) · λ1 = ν1 > 0,

thus λ1

λ2
= ν1

ν2
∈ Q+, which is a contradiction. Therefore any separatrix at the simple corner

must be contained in D, and p only can be a simple point (i.e. e = 1).
Suppose now that p is a simple point. Since C̃ ∩ E ∈ Sing(F̃) ∩ E = {p̃1, . . . , p̃s+k}, we can

assume that C̃ ∩ E = {p̃l} for some l ≥ 2. Since p̃l is the zero at the charts z̃j = zj , z̃i = zi/zj
for i = 1, . . . , n and j = l if l ≤ s or j = s+ r1 + . . .+ rm−1 +1 if l = s+m, the lift f̃(t) of f(t)
to X̃ is (

f̃1(t) . . . , f̃n(t)
)
=

(
f1(t)

fcl(t)
, . . . ,

fcl−1(t)

fcl(t)
, fcl(t),

fcl+1(t)

fcl(t)
, . . . ,

fn(t)

fcl(t)

)
,

where

cl =

{
l if l ≤ s,

j = s+ r1 + . . . + rm−1 + 1 if l = s+m,

and it satisfies
f̃(0) = 0.

Hence we have
νi > νcl

for i 6= cl. Therefore from the linear part of acl we have

acl(f(t)) = λclfcl(t) + higher order term,

where the higher order term is with respect to t. Thus we can denote by η(t) = b(t)
t with

b(0) 6= 0, and
b(0) · λcl = νcl ,

which implies
b(0) · λ1 = ν1 > 0,

thus λ1

λcl

= ν1
νcl
∈ Q+. This is a contradiction, and claim (b) of the theorem is proved.

Thanks to the previous theorem, we can prove the following result, which can be seen as a
generalization of McQuillan’s “Diaphantine approximation”.
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Theorem 2.15. Let (X,F ,D) be a 1-foliated triple with absolutely isolated singularities, H an
ample divisor over X, and p0 a simple point of F . We take a sequence of blow-up’s

(X,F ,D)
π1←− (X1,F1,D1)

π2←− · · · πk←− (Xk,Fk,Dk)
πk+1←−−− · · ·

such that the center of each blow-up πi is the simple point pi−1 ∈ Sing(Fi−1)∩Ei−1, where Ei−1

is the exceptional divisor of the blow-up πi−1 (from Proposition 2.1 we know that pi−1 exists and

is unique). Then there exists a positive integer α > 0 such that ⌈k 1

n ⌉αµ∗
kH − kEk is effective in

Xk for any k > 0, where µk := πk ◦ . . . ◦ π1.

Proof. With the above notation, we can assume that p1 is the origin of the charts z
(1)
1 =

z1, z
(1)
j z

(1)
1 = zj for j 6= 1, where z1 = 0 is the local equation of D at p0. Inductively pk is

the origin of the charts z
(k)
1 = z

(k−1)
1 , z

(k)
j z

(k)
1 = z

(k−1)
j for j 6= 1, and z

(k)
1 = 0 is the local

equation of Ek. Thus we have

µk(z
(k)
1 , . . . , z(k)n ) = (z

(k)
1 , z

(k)k
1 z

(k)
2 , . . . , z

(k)k
1 z(k)n ),

which implies
OXk

(−kEk) ⊂ µ∗
km(zk

1
,z2,...,zn)

,

wherem(zk
1
,z2,...,zn)

⊂ OX,p is the ideal generated by (zk1 , z2, . . . , zn) at p. From the exact sequence

0 −→ OX(⌈k 1

n ⌉αH) ·m(zk
1
,z2,...,zn)

−→ OX(⌈k 1

n ⌉αH) −→ OX,p/m(zk
1
,z2,...,zn)

−→ 0,

and the Riemann-Roch theorem we can choose a fixed positive integer α > 0 such that

H0(X,OX (⌈k 1

n ⌉αH) ·m(zk
1
,z2,...,zn)

) 6= 0

for any k > 0. If we choose a divisor Rk ∈ H0(X,OX (⌈k 1

n ⌉αH) ·m(zk
1
,z2,...,zn)

), then µ∗
kRk−kEk

is effective.

Theorem 2.16. Let F be a foliation by curves on a n-dimensional complex manifold X, such
that the singularities Sing(F) of the foliation F is a set of absolutely isolated singularities. If
f : C → X is an Zariski dense entire curve which is tangent to F , then we can blow-up X
finitely many times to get a new birational model (X̃, F̃) such that

T [f̃ ] · T
F̃
= 0.

Proof. First we assume that all singularities of F are simple and non-dicritical, and that the
linear forms of the generator of F are like those described in Proposition 2.3. Then, by Definition
2.6, we know that the coherent ideal sheaf JF ,D is not trivial at p if and only if p is a simple

point of type (A). We denote by ηp the least integer k such that ∂ka1
∂zk

1

(0) 6= 0 (if p is a simple

point of type (B) , let ηp = 0). Without loss of generality we can assume that p is the unique
simple point among all singularities.
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If we take a sequence of blow-ups as described in Theorem 2.15, by Proposition 2.1 we know
that on each Xk, pk is the unique simple point, and it is easy to verify that

ηp = ηp1 = · · · = ηpk = · · · .

If ηp = 0, then JFk,Dk
= OXk

for any k; now we assume that ηp > 0. Fix a k, repeat the blow-up
procedure ηp times, and resolve the coherent ideal sheaf JFk,Dk

, i.e.,

µ∗
k+ηp,k+1JFk,Dk

= OXk+ηp
(−Ẽk+1 − . . .− Ẽk+ηp−1 − Ek+ηp), (2.22)

where µk+ηp,k+1 = πk+ηp ◦· · · ◦πk+1, and Ẽi is the strict transform of Ei under πk+ηp ◦· · · ◦πi+1 :
Xk+ηp → Xi (by Proposition 2.3 we have an explicit linear part of the local generator of Fk at
the simple point, it is easy to examine this).

From Theorem 2.15 we know that ⌈k 1

n ⌉µ∗
kH − kEk is effective for some ample divisor H and

any k > 0. Thus we have

T [fk] · (µ∗
kH −

k

⌈k 1

n ⌉
Ek) ≥ 0.

By the equality µk∗T [fk] = T [f ] we get

T [fk] ·Ek → 0

as k →∞. By Theorem 2.8

〈T [fk], c1(TFk
)〉+ T (fk,JFk,Dk

) ≥ −N (1)(fk,Sing(Fk) ∩Dk),

where N (1)(fk,Sing(Fk) ∩ Dk) is the truncated counting function. By Theorem 2.14 (a) we
know that the image of f contains no simple corners, otherwise f(C) would be contained in D;
therefore simple corners do not contribute to N (1). If p ∈ f(C) for the unique simple point p,
then Theorem 2.14 (b) tells us that fk(C) ∩ Sing(Fk) = {pk}, and thus

N (1)(fk,Sing(Fk) ∩Dk) ≤ T [fk+1] ·Ek+1.

From (2.22) we obtain

T (fk,JFk ,Dk
) =

ηp∑

j=1

T [fk+j] · Ek+j,

and thus

〈T [fk], c1(TFk
)〉 ≥ −2T [fk+1] ·Ek+1 −

ηp∑

j=2

T [fk+j] ·Ek+j.

The right hand of the preceding inequality tends to 0 as k → ∞. Since all singularities are
non-dicritical, we have µ∗

k(TF ) = TFk
and

T [fk] · c1(TFk
) = T [f ] · c1(TF ),

thus T [f ] · c1(TF ) ≥ 0.
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Now we come to the general case: there are some singularities which may not be simple
singularities. By Theorem 2.13 we can take a finite sequence of blow-ups with centers only
at singularities, to get a new 1-foliated triple (X̃, F̃ , D̃) with simple singularities which are all
non-dicritical. By the proof above we have

T [f̃ ] · c1(TF̃ ) ≥ 0.

However, a theorem of Brunella implies that KF̃ is pseudo-effective, since F̃ contains a
transcendental leaf. Therefore

T [f̃ ] · c1(KF̃ ) ≥ 0.

If we combine the two inequalities, we obtain

T [f̃ ] · c1(TF̃ ) = 0.

3 Towards the Green-Griffiths conjecture

In order to pursue the similar strategy and prove the Green-Griffiths conjecture for any complex
surface X of general type, one needs to know the existence of a 1-dimensional foliation directing
any given Zariski dense entire curve f : C → X. The condition of c1(X)2 − c2(X) > 0 ensures
the existence of multi-foliation on X such that any entire curve should be tangent to it. The
difficulty in proving the general case is that, we can not ensure that there exists such a (multi)-
foliation on X itself. However, inspired by a very recent work of Demailly [Dem15], we believe
that his definition of a variety “strongly of general type” is in some sense akin to the construction
of foliations. Although one cannot construct foliations on X directly, one can prove the existence
of some special multi-foliations in certain Demailly-Semple tower of X. Indeed, in [Dem10] the
following theorem has been proved:

Theorem 3.1. Let (X,V ) be a directed variety of “general type” (cf. [Dem12] for the definition
of general type when V is singular), then OXk

(m) ⊗ π∗
k,0O(−m

kr (1 + 1
2 + . . . + 1

k )A) is big thus
has sections for m≫ k ≫ 1, where Xk is the k-th stage of Demailly-Semple tower of X and A
is an ample divisor on X.

By the Fundamental Vanishing theorem we know that for every entire curve f : C→ X, the
k-jet fk : C→ Xk satisfies

fk(C) ⊂ Bs(H0(Xk,OXk
(m)⊗ π∗

k,0A
−1)) ( Xk.

Assume that we have an entire curve f : (C, TC) → (X,TX )) such that its image in X is
Zariski dense. By the above theorem of Demailly, there exists an N > 0 such that the lift of f on
the Nth-stage Demailly-Semple tower can not be Zariski dense in XN , therefore we can find an
integer k ≥ 0 such that fj is Zariski dense in Xj for each 0 ≤ j ≤ k, while the Zariski closure of
the image of fk+1 is Z ( Xk+1 which project onto Xk. Since rankTX = 2, Z is a divisor of Xk+1.
From the relation between Pic(Xk) and Pic(X) we know that OXk

(Z) ≃ OXk
(a)⊗ π∗

k,0(B), for
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some B ∈ Pic(X), a ∈ Zk and ak = m. Therefore the projection πk+1,k : Z → Xk is a ramified
m : 1 cover, which defines a rank 1 multi-foliation Fk ⊂ Vk on Xk, and fk : (C, TC)→ (Xk, Vk)
is tangent to this foliation. We define the linear subspace W ⊂ TZ ⊂ TXk+1

|Z to be the closure

W := TZ′ ∩ Vk+1

taken on a suitable Zariski open set Z ′ ⊂ Zreg where the intersection TZ′ ∩ Vk+1 has constant
rank and is a subbundle of TZ′ . As is observed in [Dem15], we know that rankW = 1 which is an
1-dimensional foliation. We first resolve the singularities of Z to get a birational model (Z̃, F̃)
of (Z,W ) such that Z̃ is smooth, then by the assumption in Theorem 1.6 we take a further
finite sequence of blow-ups to get a new birational model (Y,F) of (Z̃, F̃), such that F has only
weakly reduced singularities. We now obtain a generically finite morphism p : Y → Xk, and
the lift of f to Y denoted by g : C → Y is still a Zariski dense curve tangent to F satisfying
g = p ◦ fk. Then we have

KY ∼ p∗KXk
+R,

where R is an effective divisor whose support is contained in the ramification locus of p. We
will call Xk the critical Demailly-Semple tower for f .

Now we state our conjectures about reduction of singularities to weakly reduced ones, and
the generalization of Brunella Theorem to higher dimensional manifolds:

Conjecture 3.1. Let X be a Kähler manifold equipped with a foliation F by curves. Then one
can obtain a new birational model (X̃, F̃) of (X,F) by taking finite blowing-ups such that F̃ has
weakly reduced singularities.

Remark 3.1. From Proposition 2.3 it is easy to show that foliations with absolutely isolated
singularities can be resolved into weakly reduced ones after finite blowing-ups.

Conjecture 3.2. Let (X,F) be a Kähler 1-foliated pair. Suppose that there is a Zariski dense
entire curve f : C→ X tangent to F , then we have

T [f ] · c1(detNF ) ≥ 0.

Remark 3.2. If the singular set of F is not discrete, it is difficult to construct a smooth
2-form in c1(detNF ) as that appearing in Baum-Bott Formula (see Chapter 3 in [Bru04]).
Probably we should find some representation in the leafwise cohomology, i.e. cohomology group
for laminations.

Based on the conjectures above, we can prove the Green-Griffiths conjecture for complex
surfaces:

Proof of Theorem 1.6. Since we have

detTXk
= kπ∗

k,0 detTX ⊗OXk
(k + 1, k, . . . , 2),

πk,j∗T [fk] = T [fj] for k ≥ j,
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by the tautological inequality and the condition of general type we have

〈T [fk],detTXk
〉 = −

k∑

j=1

(k − j + 2)〈T [fj ],OXj
(−1)〉 − k〈T [f ],KX〉 < 0.

Thus we obtain
〈T [g],KY 〉 = 〈T [fk],KXk

〉+ 〈T [g], R〉 > 0.

Conjecture 3.1 tells us that we can find a new birational pair (Ŷ , F̂) of (Y,F) with weakly
reduced singularities, then by Theorem 1.4 we have

〈T [ĝ], c1(NF̂ )〉 < 0,

which is a contradiction to Conjecture 3.2, thus any entire curve must be algebraic degenerate.
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