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Non-Degeneracy of Kobayashi Volume Measures for

Singular Directed Varieties

Ya Deng

Abstract

In this note, we prove the generic Kobayashi volume measure hyperbolicity of singular
directed varieties (X,V ), as soon as the canonical sheaf KV of V is big in the sense of
Demailly.

1 Introduction

Let (X,V ) be a complex directed manifold, i.e X is a complex manifold equipped with a holo-
morphic subbundle V ⊂ TX . Demailly’s philosophy in introducing directed manifolds is that,
there are certain fonctorial constructions which work better in the category of directed mani-
folds (ref. [Dem12]), even in the “absolute case”, i.e. the case V = TX . Therefore, it is usually
inevitable to allow singularities of V , and V can be seen as a coherent subsheaf of TX such
that TX/V is torsion free. In this case V is a subbundle of TX outside an analytic subset of
codimension at least 2, which is denoted by Sing(V ). The Kobayashi volume measure can also
be defined for (singular) directed manifolds.

Definition 1.1. Let (X,V ) be a directed manifold with dim(X) = n and rank(V ) = r. Then
the Kobayashi volume measure of (X,V ) is the pseudometric defined on any ξ ∈ ∧rVx for
x /∈ Sing(V ), by

erX,V (ξ) := inf{λ > 0; ∃f : Br → X, f(0) = x, λf∗(τ0) = ξ, f∗(TBr) ⊂ V },
where Br is the unit ball in Cr and τ0 =

∂
∂t1

∧ · · · ∂
∂tr

is the unit r-vector of Cr at the origin. We
say that (X,V ) is generic volume measure hyperbolic if erX,V is generically positive definite.

In [Dem12] the author also introduced the definition of canonical sheaf KV for any singular
directed variety (X,V ), and he showed that the “bigness” of KV will imply that, any non-
constant entire curve f : C → (X,V ) must satisfy certain global algebraic differential equations.
In this note, we will study the Kobayashi volume measure of the singular directed variety (X,V ),
and give another intrinsic explanation for the bigness of KV . Our main theorem is as follows:

Theorem 1.1. Let (X,V ) be a compact complex directed variety (V is singular) with rank(V ) =
r and dim(X) = n. If V is of general type (see Definition 2.1 below), with the base locus
Bs(V ) ( X (see also Definition 2.1), then Kobayashi volume measure of (X,V ) is non-degenerate
outside Bs(V ). In particular (X,V ) is generic volume measure hyperbolic.

Remark 1.1. In the absolute case, Theorem 1.1 is proved in [Gri71] and [KO71]; for the smooth
directed variety it is proved in [Dem12].
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2 Proof of main theorem

Proof. Since the singular set Sing(V ) of V is an analytic set of codimension ≥ 2, the top
exterior power ∧rV of V is a coherent sheaf of rank 1, and is included in its bidual ∧rV ∗∗, which
is an invertible sheaf (of course, a line bundle). We will give an explicit construction of the
multiplicative cocycle which represent the line bundle ∧rV ∗∗.

Since V ⊂ TX is a coherent sheaf, we can take an open covering {Uα} satisfying that on

each Uα one can find sections e
(α)
1 , . . . , e

(α)
kα

∈ Γ(Uα, TX |Uα) which generate the coherent sheaf V

on Uα. Thus the sections e
(α)
i1

∧ · · · ∧ e
(α)
ir

∈ Γ(Uα,∧rTX |Uα) with (i1, . . . , ir) varying among all
r-tuples of (1, . . . , kα) generate the coherent sheaf ∧rV |Uα , which is a subsheaf of ∧rTX |Uα . Let

v
(α)
I := e

(α)
i1

∧ · · · ∧ e
(α)
ir

, then by Cod(Sing(V )) ≥ 2 we know that the common zero of all v
(α)
I is

contained in Sing(V ), and thus all v
(α)
I are proportional outside Sing(V ). Therefore there exists

a unique vα ∈ Γ(Uα,∧rTX |Uα), and holomorphic functions {λI} which do not have common

factors, such that v
(α)
I = λIvα for all I. By this construction we can show that on Uα ∩ Uβ, vα

and vβ coincide up to multiplication by a nowhere vanishing holomorphic function, i.e.

vα = gαβvβ

on Uα ∩ Uβ 6= ∅, where gαβ ∈ O∗
X(Uα ∩ Uβ). This multiplicative cocycle {gαβ} corresponds to

the line bundle ∧rV ∗∗. Then fix a Kähler metric ω on X, it will induce a metric Hr on ∧rTX

and thus also induce a singular hermitian metric hs of ∧rV ∗∗∗ whose local weight ϕα is equal
to log |vα|2Hr

. It is easy to show that hs has analytic singularities, and the set of singularities
Sing(hs) = Sing(V ). Indeed, we have Sing(hs) = ∪α{p ∈ Uα|vα(p) = 0}. Now we make the
following definition.

Definition 2.1. With the notions above, V is called to be of general type if there exists a
singular metric h on ∧rV ∗∗∗ with analytic singularities satisfying the following two conditions:

(1) The curvature current Θh ≥ ǫω, i.e., it is a Kähler current.

(2) h is more singular than hs, i.e., there exists a globally defined quasi-psh function χ which is
bounded from above such that

eχ · h = hs.

Since h and hs has both analytic singularities, χ also has analytic singularities, and thus eχ is
a continuous function. Moreover, eχ(p) > 0 if p /∈ Sing(h). We define the base locus of V to be

Bs(V ) := ∩hSing(h),

where h varies among all singular metric on ∧rV ∗∗∗ satisfying the Properties (1) and (2) above.

Now fix a point p /∈ Bs(V ), then by Definition 2.1 we can find a singular metric h with
analytic singularities satisfying the Property (1) and (2) above, and p /∈ Sing(h).

Let f be any holomorphic map from the unit ball Br ⊂ Cr to (X,V ) such that f(0) = p,
then locally we have

f∗(
∂

∂t1
∧ · · · ∧ ∂

∂tr
) = a(α)(t) · vα|f ,
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where a(α)(t) is meromorphic functions, with poles contained in f−1(Sing(V )), and satisfies

|f∗(
∂

∂t1
∧ · · · ∧ ∂

∂tr
)|2ω = |a(α)(t)|2 · |vα|2Hr

≤ C.

Since f∗(
∂
∂t1

∧ · · · ∧ ∂
∂tr

) can be seen as a (meromorphic!) section of f∗ ∧r V ∗∗, then we define

δ(t) := |f∗(
∂

∂t1
∧ · · · ∧ ∂

∂tr
)|2h−1 = |a(α)(t)|2 · eφα ,

where φα is the local weight of h. By Property (2) above, we have a globally defined quasi-psh
function χ on X which is bounded from above such that

δ(t) = eχ · |f∗(
∂

∂t1
∧ · · · ∧ ∂

∂tr
)|2ω ≤ C1. (2.1)

Now we define a semi-positive metric γ̃ on Br by putting γ̃ := f∗ω, then we have

|f∗( ∂
∂t1

∧ · · · ∧ ∂
∂tr

)|ω
det γ̃

≤ C0(f(t)), (2.2)

where C0(z) is a bounded function on X which does not depend on f , and we take C2 to be its
upper bound. One can find a conformal λ(t) to define γ = λγ̃ satisfying

det γ = δ(t)
1

2 .

Combined (2.1) and (2.2) togother we obtain

λ ≤ C
1

r

2 · e χ

2r .

Since Θh ≥ ǫω, by (2.1) we have

ddc log det γ ≥ ǫ

2
f∗ω =

ǫ

2λ
γ ≥ ǫ

2C
1

r

2

e−
χ◦f

2r γ.

By Property (2) in Definition 2.1 of h, there exists a constant C3 > 0 such that

e−
χ

2r ≥ C3.

Let A := ǫC3

2C
1
r
2

, and we know that it is a constant which does not depend on f . Then by

Ahlfors-Schwarz Lemma (see Lemma 2.1 below) we have

δ(0) ≤ (
r + 1

A
)2r.

Since p /∈ Sing(h), then we have eχ(p) > 0, and thus

|f∗(
∂

∂t1
∧ · · · ∧ ∂

∂tr
)|2ω(0) ≤ e−χ(p)δ(0) = e−χ(p) · (r + 1

A
)2r.

By the arbitrariness of f , and Definition 1.1, we conclude that (X,V ) is generic volume measure
hyperbolic and erX,V is non-degenerate outside Bs(V ).
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Lemma 2.1 (Ahlfors-Schwarz). Let γ =
√
−1

∑
γjk(t)dtj∧dtk be an almost everywhere positive

hermitian form on the ball B(0, R) ⊂ Cr of radius R, such that

−Ricci(γ) :=
√
−1∂∂ log det γ ≥ Aγ

in the sense of currents for some constant A > 0. Then

det(γ)(t) ≤ (
r + 1

AR2
)r

1

(1− |t|2

R2 )r+1
.

Remark 2.1. If V is regular, then V is of general type if and only if ∧rV is a big line bundle.
In this situation, the base locus Bs(V ) = B+(∧rV ), where B+(∧rV ) is the augmented base locus

for the big line bundle ∧rV (ref. [Laz04]).

With the notions above, we define the coherent ideal sheaf I(V ) to be germ of holomorphic
functions which is locally bounded with respect to hs, i.e., I(V ) is the integral closure of the ideal
generated by the coefficients of vα in some local trivialization in ∧rTX . Let ∧rV ∗∗∗ be denoted
by KV , and KV := KV ⊗ I(V ), then KV is the canonical sheaf of (X,V ) defined in [Dem12]. It
is easy to show that the zero scheme of I(V ) is equal to Sing(hs) = Sing(V ). KV is called to be
a big sheaf iff for some log resolution µ : X̃ → X of I(V ) with µ∗I(V ) = O

X̃
(−D), µ∗KV −D

is big in the usual sense. Now we have the following statement:

Proposition 2.1. V is of general type if and only if KV is big. Moreover, we have

Bs(V ) ⊂ µ(B+(µ
∗KV −D)) ∪ Sing(hs) = µ(B+(µ

∗KV −D)) ∪ Sing(V ).

Proof. From Definition 2.1, the condition that KV is a big sheaf implies that KV and µ∗KV −D
are both big line bundles. For m ≫ 0, we have the following isomorphism

µ∗ : H0(X, (mKV −A)⊗ I(V )m)
≈−→ H0(X̃,mµ∗KV − µ∗A−mD). (2.3)

Fix an very ample divisor A, then for m ≫ 0, the base locus (in the usual sense) B(mµ∗KV −
mD − µ∗A) is stably contained in B+(µ

∗KV − D) (ref. [Laz04]). Thus we can take a m ≫ 0
to choose a basis s1, . . . , sk ∈ H0(X̃,mµ∗KV −mD− µ∗A), whose common zero is contained in
B+(µ

∗KV −D). Then by (2.3) there exists {ei}1≤i≤k ⊂ H0(X, (mKV −A)⊗I(V )m) such that

µ∗(ei) = si.

Then we can define a singular metric hm on mKV − A by putting |ξ|2hm
:= |ξ|2∑k

i=1
|ei|2

for ξ ∈
(mKV −A)x. We take a smooth metric hA on A such that the curvature ΘA ≥ ǫω is a smooth

Kähler form. Then h := (hmhA)
1

m defines a singular metric on KV with analytic singularities,
such that its curvature current Θh ≥ 1

m
ΘA. From the construction we know that h is more

singular than hs, and Sing(h) ⊂ µ(B+(µ
∗KV −D)) ∪ Sing(hs).

Remark 2.2. From Proposition 2.1 we can take Definition 2.1 as another equivalent definition
of the bigness of KV , and it is more analytic. From Theorem 1.1 we can replace the condition
that V is of general type by the bigness of KV , and it means that the definition of canonical
sheaf of singular directed varieties is very natural.
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A direct consequence of Theorem 1.1 is the following corollary, which was suggested in
[GPR13]:

Corollary 2.1. Let (X,V ) be directed varieties with rank(V ) = r, and f be a holomorphic map
from Cr to (X,V ) with generic maximal rank. Then if KV is big, the image of f is contained in
Bs(V ) ( X.

The famous conjecture by Green-Griffiths stated that in the absolute case the converse of
Theorem 1.1 should be true. It is natural to ask whether we have similar results for any directed
varieties. A result by Marco Brunella (ref. [Bru10]) gives a weak converse of Theorem 1.1 for
1-directed variety:

Theorem 2.1. Let X be a compact Kähler manifold equipped with a singular holomorphic
foliation F by curves. Suppose that F contains at least one leaf which is hyperbolic, then the
canonical bundle KF is pseudoeffective.

Indeed, Brunella proved more than the results stated in the theorem above. By putting on
KF precisely the Poincaré metric on the hyperbolic leaves, he construct a singular hermitian
metric h (maybe not with analytic singularities) on KF , such that the set of points where
h is unbounded locally are polar set Sing(F) ∪ Parab(F), where Parab(F) are the union of
parabolic leaves, and the curvature Θh of the metric h is a positive current. Therefore, it seems
that Brunella’s theorem can be strengthened, i.e., not only KF is pseudo-effective, but also the
canonical sheaf KF is pseudoeffective. However, as is shown in the following example, even if
all the leaves of F are hyperbolic, the canonical sheaf can not be pseudoeffective.

Example 2.1. A foliation by curves of degree d on the complex projective space CPn is gener-
ated by a global section

s ∈ H0(CPn, TCPn ⊗O(d− 1)).

From the results by Lins Neto and Soares [LS96] and Brunella [Bru06], we know that a generic

one-dimensional foliation F of degree d satisfies the following property:

(a) the set of the singularities Sing(F) of F is discrete;

(b) each singularity p ∈ Sing(F) is non-degenerate, i.e. the Milnor number of F at p is 1;

(c) no d+ 1 points in Sing(F) lie on a projective line;

(d) all the leaves of F are hyperbolic.

Hence the Baum-Bott formula states that

#Sing(F) = cn(TCPn +O(d− 1))

=
n∑

i=0

cn−i(CP
n)c1(O(d− 1))i

=
n∑

i=0

(
n+ 1

i+ 1

)
(d− 1)i

=
dn+1 − 1

d− 1
,
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and thus the canonical sheaf KF = O(d − 1) ⊗ ISing(F), where ISing(F) is the maximal ideal of
Sing(F). By property (c) above it is easy to prove that for d ≫ 0 KF is not pseudo-effective.

Remark 2.3. In [McQ08] the author introduces the definition canonical singularities for fo-
liations, in dimension 2 this definition is equivalent to reduced singularities in the sense of
Seidenberg. The generic foliation by curves of degree d in CPn is another example of canonical
singularities. In this situation, one can not expect to improve the “bigness” of canonical sheaf
KF by blowing-up. Indeed, this birational model is “stable” in the sense that, π∗KF̃

= KF for

any birational model π : (X̃, F̃) → (X,F). However, on the complex surface endowed with a
foliation F with reduced singularities, if f is an entire curve tangent to the foliation, and T [f ] is
the Ahlfors current associated with f , then in [McQ98] it is shown that the positivity of T [f ] ·TF

can be improved by an infinite sequence of blowing-ups, due to the fact that certain singularities
of F appearing in the blowing-ups are “small”, i.e. the lifted entire curve will not pass to these
singularities. Since T [f ] · TF is related to value distribution, and thus these small singularities
are negligible. In [Den16] this “Diophantine approximation” idea has been generalized to higher
dimensions.
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