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Abstract

The “metric” structure of nonrelativistic spacetimes consists of a one-form

(the absolute clock) whose kernel is endowed with a positive-definite metric.

Contrarily to the relativistic case, the metric structure and the torsion do not

determine a unique Galilean (i.e. compatible) connection. This subtlety is

intimately related to the fact that the timelike part of the torsion is propor-

tional to the exterior derivative of the absolute clock. When the latter is not

closed, torsionfreeness and metric-compatibility are thus mutually exclusive.

We will explore generalisations of Galilean connections along the two corre-

sponding alternative roads in a series of papers. In the present one, we focus

on compatible connections and investigate the equivalence problem (i.e. the

search for the necessary data allowing to uniquely determine connections) in

the torsionfree and torsional cases. More precisely, we characterise the affine

structure of the spaces of such connections and display the associated model

vector spaces. In contrast with the relativistic case, the metric structure does

not single out a privileged origin for the space of metric-compatible connec-

tions. In our construction, the role of the Levi-Civita connection is played

by a whole class of privileged origins, the so-called torsional Newton-Cartan

(TNC) geometries recently investigated in the literature. Finally, we discuss a

generalisation of Newtonian connections to the torsional case.
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1 Introduction

As advocated by Élie Cartan after the birth of Einstein’s theory, the geometri-

sation of gravity induced by the equivalence principle is by no means restricted to

General Relativity [1] (cf. also [2]). In this light, Einstein’s and Newton’s theories of

gravity both admit geometrical formulations which are, in particular, diffeomorphism

invariant. Since the sixties, the corresponding Newton-Cartan geometry has known

a revival of interest among relativists and geometers (cf. e.g. [3, 4, 5, 6, 7, 8, 9] for

early contributions) but it is only recently that Newton-Cartan geometry has been

intensively applied to condensed matter problems1 such as the quantum Hall effect

[15] for which it proved a very efficient tool to construct effective field theories or

for computing Ward identities.

As celebrated in the famous quote2 of Wheeler, there are two facets of the in-

teraction between the geometry of spacetime and the motion of matter. We will

focus on the “kinematical” facet, i.e. the motion of test particles in a fixed grav-

itational background and will ignore the “dynamical” facet, i.e. gravitational field

equations. In this restricted case, the equivalence and relativity principles strongly

prescribe the geometric structures the spacetime is endowed with. On the one hand,

the equivalence principle imply that dynamical trajectories of free falling observers

are geodesics of a suitable connection, the latter providing a notion of parallelism on

the spacetime manifold. Furthermore, such unparameterised geodesics define a pro-

jective structure on spacetime. On the other hand, the relativity principle3 further

dictates the underlying structure group (Lorentzian vs Galilean4) of the reduced

frame bundle. The corresponding invariant tensor(s) define a metric structure on

spacetime. An important issue is the interplay between these two structures: metric

and connection. More precisely, one should answer the following question: What are

the ingredients (e.g. the torsion) one must add to the metric structure in order to
1Among the early applications of Newton-Cartan geometry to condensed matter systems is the

pioneering work [10] on superfluid dynamics. More recently, the related concept of “nonrelativistic
general covariance” was applied to the unitary Fermi gas [11].

2“Space[time] tells matter how to move. Matter tells space[time] how to curve.”
3As emphasised by many authors (e.g. [12]), the so-called “nonrelativistic” theories also embody

the principle of relativity, the only actual (but decisive) difference between Special and Galilean
relativity being the expression of (Lorentz vs Galilei) boosts. Although the terminology “nonrela-
tivistic” is rather unfortunate, we will use it following common practice.

4An exhaustive enumeration of homogeneous kinematical groups [13] must also include the
(homogeneous) Carroll group (cf. [12, 14]).
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fix uniquely the connection? Providing precise answers to this question (sometimes

referred to as the “equivalence problem” in the mathematics literature) for some

generalisations of Newton-Cartan geometry is the main subject of this paper.

In (pseudo)-Riemannian geometry, the answer is well known and provides a clear

relation between the various elements constituting the kinematical content of general

relativity which can be summarised in the following diagram:

Figure 1: Kinematical content of general relativity

Let us briefly make some comments in order to present the logic that will be gener-

alised in the less familiar nonrelativistic case. On top of the triangle sits the metric

structure of general relativity: a Lorentzian metric, i.e. a field of nondegenerate bi-

linear forms on the spacetime manifold. This metric structure uniquely determines

a compatible torsionfree connection known as the Levi-Civita connection (Arrow 1).

This connection provides the spacetime manifold with a notion of parallelism, thus

allowing the definition of a distinguished class of curves: the geodesics (Arrow 2). A

geodesic is thus defined as an autoparallel curve with respect to Levi-Civita’s paral-

lelism, i.e. the tangent vector stays parallel to itself along a geodesic. Alternatively,

the geodesics can be characterised as curves extremising locally the Lorentzian dis-

tance. As a result, the geodesic equation can be obtained as the equation of motion

derived from a Lagrangian density built in terms of the metric structure (Arrow 3).

The relations between these different structures can be abstractly summed up in

a commutative diagram which will be our leitmotiv:

Figure 2: Kinematical content of metrical theories of gravitation

Interestingly, the kinematical content of Newton-Cartan gravity (often referred to as
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Newton-Cartan geometry) can be equally described via a similar diagram, with the

important difference that the basic nonrelativistic analogue of the metric structure

consists in a degenerate contravariant metric hµν (a collection of absolute rulers)

whose radical is spanned by a nowhere vanishing 1-form ψµ 6= 0 (an absolute clock):

hµνψν = 0. Connections compatible with such a structure are called Galilean. Two

features of nonrelativistic compatible connections Γλµν are notably distinct from the

relativistic case.

Firstly, the torsion of a Galilean connection obeys a compatibility condition: its

timelike part is proportional to the exterior derivative of the absolute clock (∇µψν =

0 ⇒ Γλ[µν]ψλ = ∂[µψν]). In particular, torsionfree (Γλ[µν] = 0) Galilean connections

are only defined for closed absolute clocks (∂[µψν] = 0). Such absolute clocks are

synchronised in the sense that they define a notion of absolute time t (locally, ψµ =

∂µt). The simultaneity leaves (t = constant) foliate spacetime.

Secondly, the uniqueness of the torsionfree compatible connection is lost. This

arbitrariness has a natural physical interpretation: the above “metric” structure is

too weak to determine the motion of particles. Indeed, motions can be measured

via absolute clocks and rulers, but are not constrained by them. In Newtonian

mechanics, the spacetime is a mere container and one should prescribe force fields

to determine motion.

Diagram 2 suggests to define a richer metric structure (dubbed here Lagrangian

structure) allowing to restore the uniqueness of the torsionfree compatible connection

(Arrow 1). This Lagrangian structure defines a unique Newtonian connection:

Figure 3: Kinematical content of Newton-Cartan theory

A Newtonian connection endows the spacetime with a notion of parallelism (differ-

ent from the Levi-Civita one) allowing in turn the definition of self-parallel curves,

similarly to the relativistic case. Such curves acquire the interpretation of dynami-

cal trajectories (Arrow 2) for Lagrangians which are of degree two in the velocities5:
5This class is natural in Newtonian mechanical systems with holonomic constraints. Recall that
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they can be derived from an action principle built in terms of the Lagrangian struc-

ture (Arrow 3). In a sense, the nonrelativistic analogue of the Lorentzian distance

between two events is in fact the value of the action
∫
L dt, which is a sort of “La-

grangian distance”.

When the absolute clock is not closed, metric-compatibility and torsionfreeness

are mutually exclusive. Therefore two alternatives open up: consider either non-

Galilean or torsional connections. We will explore these two alternative roads in a

series of papers. In a forthcoming work [21], we will investigate the first option when

the absolute clock is twistless, i.e. obeys to the Frobenius integrability condition

ψ[µ∂νψρ] = 0. In such case, the time units vary for each clock and the measured

time τ will depend on the observers. Nevertheless, spacetime is still foliated by

simultaneity slices and a notion of absolute time can be defined. We will show

that one can also define a Lagrangian structure in the case of a twistless absolute

clock associated with the action principle
∫
L dτ making use of the measured time

τ instead of the absolute one t. Furthermore, the latter Lagrangian structure is

conformally related to one for a closed absolute clock. Correspondingly, we will

generalise the diagram 3 by defining a torsionfree (non Galilean) connection which is

uniquely determined by the Lagrangian structure (Arrow 1) and projectively related

to a Newtonian connection whose geodesics describe dynamical trajectories (Arrow

2) extremising the corresponding action principle (Arrow 3).

Before addressing this issue, we explore the alternative route in the present paper

by considering generalisations of Newton-Cartan gravity characterised by torsional

connections which have known a recent surge of interest regarding applications in the

geometrisation of condensed matter problems [16, 17, 18] as well as in the context

of Lifshitz and Schrödinger holography [19, 20]. In such approaches, the torsion is

tuned in order to ensure compatibility with the absolute clock. Of particular math-

ematical interest for us are the works [18, 20] which exhibit a torsional connection

compatible with the metric structure, while remaining invariant under local Galilean

a dynamical system with Euclidean coordinates x1, . . . , xd+n is said holonomic if its constraints can
be put in the form fα

(
x1, . . . , xd+n, t

)
= 0, with α ∈ {1, . . . , n} and n the number of independent

constraints. The constraints of an holonomic system whose kinetic energy takes the standard form
T = 1

2δabẋ
aẋb (with a, b = 1, . . . , d+n) can always be solved. Such a system is therefore equivalent

to an unconstrained system with Lagrangian of the form L = 1
2γij(q)q̇

iq̇j + Ai(q)q̇
i − U(q) (with

i, j = 1, . . . , d). The corresponding class of Hamiltonians (of degree two in the momenta) are
nowadays called “natural Hamiltonians”, cf. [22].
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boosts (called Milne boosts) as it should since a connection is a geometrical object

independent of the frame used to represent it. We extend these torsional Newton-

Cartan geometries and make use of Lagrangian structures6 in order to identify the

necessary data which allows to uniquely fix these connections.

Outline

The plan of the paper is as follows:

In Section 2, we review various geometric structures of nonrelativistic spacetimes.

After a brief reminder of standard definitions and properties regarding relativistic

structures, we switch to the investigation of nonrelativistic ones by emphasising their

points of divergence with their relativistic counterparts. We focus on a nonrelativistic

metric structure (called Leibnizian structure) defined as a manifold endowed with a

degenerate contravariant metric whose radical is spanned by the absolute clock. The

role played by fields of observers in nonrelativistic physics is discussed at length as

well as related objects. We then discuss two restrictions that can be imposed on the

absolute clock, namely closure (Augustinian structure) or the Frobenius criterion

(Aristotelian structure).

In Section 3, we discuss the possibility of endowing nonrelativistic metric struc-

tures with a notion of parallelism, in the guise of a connection. We first focus on

torsionfree connections compatible with the underlying metric structure, thus re-

stricting the scope of the analysis to Augustinian structures. We thus review the

notions of torsionfree Galilean and Newtonian connections, with particular attention

given to the equivalence problem (i.e. the search for structures that uniquely de-

termine a given compatible connection). Apart from the standard characterisation

of Newtonian connections in terms of equivalence classes of field of observers and

gauge 1-forms, this motivation will lead us to review the less standard solution of

the equivalence problem making use of a Lagrangian structure. The latter can be
6Note however that the action principle for the geodesic equation becomes unclear whenever

torsion is involved, so that we will not consider the third arrow of diagram 2 in this case. Let
us remind here some related subtleties in the presence of torsion. Two connections defining the
same parameterised geodesics differ only by their torsion. However, in the presence of a metric, a
torsionful connection defining the same parameterised geodesics as the Levi-Civita connection is
not metric compatible. Conversely, a metric compatible torsionful connection does not define the
same parameterised geodesics as the Levi-Civita connection.
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thought of as the proper nonrelativistic analogue of the (pseudo)-Riemannian metric

structure in that it determines uniquely the compatible torsionfree connection.

In Section 4, we discuss the extension of “torsional Newton-Cartan geometry”

[16, 17, 18, 20] to the class of all torsional Galilean connections. Furthermore, we

introduce a torsional generalisation of Newtonian connections. We then discuss

in details the affine structure of the space of torsional Galilean connections and

thereby identify the necessary data which allows to uniquely fix torsional Galilean

connections.

The Section 5 is our conclusion where we briefly summarise our main results

and announce some future ones. In a forthcoming paper, we will show how the

generalisations of Newton-Cartan geometry we have discussed can be obtained as

null dimensional reductions of suitable Lorentzian geometries.

Two appendices close the paper. A detailed discussion of the equivalences be-

tween the Trautman and Duval-Künzle conditions is provided in Appendix A. Ap-

pendix B consists in a short review on affine spaces while several technical proofs

have been relegated to Appendix C.

Notations

Let V be a vector space and v, w ∈ V two vectors. We will denote by v ∨ w =

1
2

(v ⊗ w + w ⊗ v) (respectively v ∧ w = 1
2

(v ⊗ w − w ⊗ v)) the (anti)symmetric

product, and similarly for higher products. The (anti)symmetrisation of indices is

performed with weight one and is denoted by round (respectively, square) brackets,

e.g. Φ(µν) ≡ 1
2

(Φµν + Φνµ) and Φ[µν] ≡ 1
2

(Φµν − Φνµ).

The spacetime manifold will be written M and is of dimension d + 1. Let V be a

vector bundle over M with typical fibre the vector space V . By Γ(V), we will denote

the space of its sections, i.e. globally defined V -valued fields on M . For instance,

Γ(∧pT ∗M ) = Ωp(M ) is the space of p -forms on M .
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2 Nonrelativistic metric structures

We start by reviewing some standard material about relativistic structures in order

to draw comparison with nonrelativistic ones and fix some terminology.

2.1 Relativistic structures

Definition 2.1 (Riemannian structure). A Riemannian structure designates a man-

ifold endowed with a positive-definite metric.

Although this definition restricts to the case of signature (+, . . . ,+), a similar one

can be given in the (pseudo)-Riemannian case:

Definition 2.2 (Lorentzian structure). A Lorentzian structure consists in a mani-

fold endowed with a nondegenerate metric of signature (−,+, . . . ,+).

These structures are therefore characterised by a metric structure but, as such, are

not endowed with a notion of parallel transport. This supplementary notion of par-

allelism can be implemented under the features of a Koszul connection7 compatible

with the metric structure. We are thus led to define:

Definition 2.3 (Riemannian/Lorentzian manifold). A Riemannian (Lorentzian)

manifold consists in a Riemannian (Lorentzian) structure supplemented with a metric-

compatible Koszul connection on the tangent bundle.

We will retain this terminology in the sequel and use the word “structure” in order

to designate a manifold endowed with a metric-like structure while keeping the term

“manifold” for cases where a Koszul connection is added. However, in the present

case the distinction drawn here is only relevant when the Koszul connection has

torsion due to the following well-known theorem:

Theorem 2.4 (Space of metric compatible connections). The space of Lorentzian

connections compatible with a given Lorentzian structure (M , g) forms a vector space
7We will prefer the denomination “Koszul connection” to the more widespread designations of

“affine connection” or “covariant derivative” in order to avoid confusion with the slightly different
meanings of these terms in some of the mathematical literature. For the sake of completeness,
let us remind that a Koszul connection on a vector bundle E over M is a C∞(M )-linear map
∇ : Γ (TM )→ End

(
Γ (E)

)
such that, for any vector field X ∈ Γ (TM ), the endomorphism ∇X on

the space Γ (E) of sections obeys to the Leibniz rule: ∇X (fσ) = X [f ]σ+ f∇Xσ for any function
f ∈ C∞(M ) and section σ ∈ Γ (E). If the vector bundle is unspecified, it will be implicitly assumed
to be the tangent bundle: E = TM .
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which is isomorphic to the vector space Γ (∧2 T ∗M ⊗ TM ) of torsion tensors and

the origin of which is the Levi-Civita connection.

In order to pave the way to the next Section, we now provide a detailed proof

of the previous Theorem in a guise suited for its extension to the nonrelativis-

tic case. We start by recalling that, when no metric structure is involved, the

space of Koszul connections on a manifold M possesses the structure of an affine

space modelled on the vector space of 2-covariant, 1-contravariant tensor fields

Γ (T ∗M ⊗ T ∗M ⊗ TM ). This translates the well-known fact that the difference

between two Koszul connections on the same manifold is a tensor field
(
an element

of Γ (T ∗M ⊗ T ∗M ⊗ TM )
)
although a Koszul connection is not. Let (M , g) be

a Lorentzian structure and denote D (M , g) the space of compatible connections.

The compatibility condition ∇g = 0 restricts the difference S ≡ Γ′ − Γ of two com-

patible connections Γ′,Γ ∈ D (M , g) to be such that S(λ
µν gρ)ν = 0. The following

Proposition then holds:

Proposition 2.5. The space D (M , g) of compatible Lorentzian connections pos-

sesses the structure of an affine space modelled on the vector space

V (M , g) ≡
{
S ∈ Γ (T ∗M ⊗ T ∗M ⊗ TM ) / S(λ

µν g
ρ)ν = 0

}
.

Indeed, given two Lorentzian connections Γ′,Γ ∈ D (M , g), the element S ≡ Γ′ − Γ

belongs to V (M , g). In order to reduce the structure of D (M , g) from that of an

affine space to that of a vector space, one needs to pick an origin
0

Γ ∈ D (M , g) thus

allowing to put D (M , g) and V (M , g) in bijective correspondence by representing

each Γ ∈ D (M , g) as

Γ =
0

Γ + S

where S ∈ V (M , g). Obviously, such a choice is arbitrary since any element of

D (M , g) can equivalently be used as origin. However, as is well-known, the Levi-

Civita connection is defined solely in terms of the metric structure and can be taken

as a privileged connection. As we will see, the existence of such a naturally privileged

connection will constitute a major point of discrepancy with the nonrelativistic case.

We now provide a line of reasoning that motivates, retrospectively, the definition

8



of the Levi-Civita connection, starting with the following Lemma:

Lemma 2.6. The vector space V (M , g) is canonically isomorphic to the space

Γ (∧2T ∗M ⊗ TM ).

The term canonical is here understood in the sense that the isomorphism only de-

pends on the Lorentzian structure (M , g). Explicitly, it is given by

ϕ : V (M , g)→ Γ
(
∧2T ∗M ⊗ TM

)
: Sλµν 7→ T λ[µν] = Sλ[µν]

while its inverse takes the form

ϕ−1 : Γ
(
∧2T ∗M ⊗ TM

)
→ V (M , g) : T λ[µν] 7→ Sλµν = T λ[µν] + T ρ[σµ]g

σλgρν + T ρ[σν]g
σλgρµ.

Proposition 2.5 together with Lemma 2.6 then ensure the following:

Proposition 2.7. The space D (M , g) of compatible Lorentzian connections pos-

sesses the structure of an affine space modelled on the vector space Γ (∧2T ∗M ⊗ TM )

of tangent-valued 2-forms.

The next step consists in defining an affine map (cf. Definition B.3) denoted

Θ : D (M , g) → Γ (∧2T ∗M ⊗ TM ) modelled on the linear map ϕ : V (M , g) →
Γ (∧2T ∗M ⊗ TM ), i.e. such that

Θ (Γ′)−Θ (Γ) = ϕ (Γ′ − Γ)

for all Γ′,Γ ∈ D (M , g). Note that the fact that ϕ is a bijective map ensures that Θ

is too. In particular, there exists a (necessarily unique) element
0

Γ ∈ Ker Θ, which

is given by
0

Γ = Γ − ϕ−1 (Θ(Γ)) for any Γ ∈ D (M , g). This element
0

Γ provides an

origin for D (M , g) which thereby acquires a structure of vector space.

From the expression of ϕ, a natural choice consists in defining:

Θ : D (M , g)→ Γ
(
∧2T ∗M ⊗ TM

)
: Γλµν 7→ Γλ[µν].

Geometrically, the map Θ associates to each Lorentzian connection its torsion tensor

field. Recall that given a Koszul connection ∇, the associated torsion tensor field

9



T ∈ Γ (∧2 T ∗M ⊗ TM ) is defined by its action on vector fields X, Y ∈ Γ (TM ) as

T (X, Y ) = ∇XY −∇YX − [X, Y ] .

In components, the previous equality reads T λµν ≡ 2 Γλ[µν]. Given the previous results,

the following Theorem arises as a corollary of Proposition B.4:

Theorem 2.8 (Fundamental Theorem of (pseudo)-Riemannian geometry). There is

a unique torsionfree Koszul connection compatible with a given (pseudo)-Riemannian

metric called the Levi-Civita connection.

The Levi-Civita connection thus provides the affine space D (M , g) with an ori-

gin, so that the latter acquires a structure of vector space. The map Θ is thus an

isomorphism of vector spaces which puts the elements of D (M , g) in bijective cor-

respondence with tangent-valued 2-forms T ∈ Γ (∧2T ∗M ⊗ TM ). We stress that

Theorem 2.8 involves no restriction on the metric structure, so that any Lorentzian

structure induces a unique torsionfree Koszul connection. As we will see, this prop-

erty is lost when one deals with degenerate metric structures.

In local coordinates, if one writes ∇µY
λ = ∂µY

λ + ΓλµνY
ν , then the components

0

Γλµν

defining the Levi-Civita connection are the usual Christoffel symbols:

0

Γλµν =
1

2
gλρ (∂µgρν + ∂νgρµ − ∂ρgµν) . (2.1)

Note that the Christoffel symbols are canonical, in the sense defined above (the

Christoffel symbols are defined in terms of the metric only). Making use of the

explicit form of the isomorphism ϕ−1 then allows to represent each Lorentzian con-

nection Γ ∈ D (M , g) using the Levi-Civita connection by its associated torsion

tensor field T ∈ Γ (∧2T ∗M ⊗ TM ) as

Γλµν =
1

2
gλρ (∂µgρν + ∂νgρµ − ∂ρgµν) +

1

2

[
T λ[µν] + T ρ[σµ]g

σλgρν + T ρ[σν]g
σλgρµ

]
. (2.2)

The previous expression can be reformulated as the Koszul formula:

2 g (∇XY, Z) = X [g (Y, Z)] + Y [g (X,Z)]− Z [g (X, Y )]

+g ([X, Y ] , Z)− g ([Y, Z] , X)− g ([X,Z] , Y ) (2.3)

+g (T (X, Y ) , Z)− g (T (Y, Z) , X)− g (T (X,Z) , Y )

10



with X, Y, Z ∈ Γ (TM ).

We emphasise that, given a particular metric structure, there is no restriction on

the possible torsion tensor field T which can span the whole vector space of vector-

field-valued 2-forms.

We conclude this brief review of relativistic structures by mentioning a special class

of bases of the tangent space:

Definition 2.9 (Lorentzian basis). Let (M , g) be a (d+ 1)-dimensional Lorentzian

structure with nondegenerate covariant metric g. A Lorentzian basis of the tangent

space TxM at a point x ∈ M is an ordered basis Bx = {e0|x, . . . , ed|x} which is

orthonormal with respect to gx.

The basis vectors ea|x ∈ TxM , with a ∈ {0, . . . , d} thus satisfy the condition

gx (ea|x, eb|x) = ηab, with ηab the Minkowski metric. The denomination Lorentzian

is justified by the fact that at each point x ∈ M , the group of endomorphisms of

TxM mapping each Lorentzian basis into another one is isomorphic to the Lorentz

group O(d, 1).

2.2 Nonrelativistic structures

As mentioned in the introduction, a distinguishing feature of nonrelativistic space-

times is the existence of a degenerate metric8 structure [1, 2], in the guise of a con-

travariant degenerate metric (absolute rulers) whose radical is spanned by a given

1-form (absolute clock), which must be separately specified. More precisely, one

defines:

Definition 2.10 (Absolute clock [5, 6]). An absolute clock ψ on a manifold M is

a nowhere vanishing 1-form ψ ∈ Ω1 (M ).

An absolute clock allows to distinguish between timelike tangent vectors Xx ∈ TxM
for which ψx (Xx) 6= 0 from spacelike tangent vectors Yx ∈ TxM satisfying ψx (Yx) =

0. The distribution Ker ψ is the vector subbundle of TM spanned by spacelike

vectors.
8Throughout this work, the term “metric” will be used in a slightly broader sense than the

customary one in the physics literature. Namely, we will employ the term to designate a field of
covariant or contravariant symmetric bilinear forms of constant rank being either degenerate or
nondegenerate.
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Definition 2.11 (Absolute rulers [5, 6]). A collection of absolute rulers on a man-

ifold M endowed with an absolute clock ψ is a positive semi-definite contravariant

metric h ∈ Γ (∨2 TM ) on M whose radical is spanned by the absolute clock i.e.

Rad h = Span ψ . (2.4)

Alternatively, a collection of absolute rulers can be defined as a field γ ∈ Γ (∨2 (Ker ψ)∗)

on M of positive-definite covariant symmetric bilinear forms acting on spacelike vec-

tors.

These two definitions can be shown to be equivalent. In components, the condition

(2.4) reads hµνψν = 0. Armed with these notions of clocks and rulers, we can now

define the nonrelativistic analogue of a Riemannian structure as:

Definition 2.12 (Leibnizian structure [5, 6, 23]). A Leibnizian structure consists of

a triplet composed by the following elements:

• a manifold M

• an absolute clock ψ

• a collection of absolute rulers h (or, equivalently, γ)

Such a Leibnizian structure will be interchangeably denoted L (M , ψ, h) or L (M , ψ, γ).

As mentioned previously, Leibnizian structures are purely “metric” structures and

as such, do not involve a notion of parallelism. Before addressing nonrelativistic

connections, we must digress a little on the role played by observers in nonrelativistic

physics. This discussion will justify the introduction of two refinements of Leibnizian

structures, namely Aristotelian and Augustinian structures.

2.3 Observers

A map λ : I ⊆ R→ N from a subset I ⊆ R of the real line into a manifold N will

be called a parameterised curve on N , while a 1-dimensional submanifold C of N

will be called an unparameterised curve on N . A parameterised curve λ : I → C

on an unparameterised curve C will be called a parameterisation of C when λ is

invertible. If the unparameterised curve C on N is defined by the embedding9

9In this paper, an embedding will be defined in the weak sense: an injective immersion. There-
fore, strictly speaking a submanifold is here an immersed submanifold.
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i : C ↪→ N then n ≡ i ◦ λ is called the corresponding parameterised curve on N .

In the following, we let L (M , ψ, γ) be a Leibnizian structure. We start by defining

the notion of (nonrelativistic) observer and its vector field generalisation:

Definition 2.13 (Observer [6]). A (nonrelativistic) observer is a timelike parame-

terised curve n : I ⊆ R → M : s 7→ n (s) normalised such that the tangent vector

Nn(s) ∈ Tn(s)M (defined10 as Nn(s) ≡ n∗Ds) satisfies:

ψn(s)

(
Nn(s)

)
= 1, ∀ s ∈ I. (2.5)

The parameter s will soon acquire the interpretation of (nonrelativistic) proper time

of the observer n (cf. Proposition 2.16). In local coordinates, the observer n is a

timelike curve xµ(s) with parameterisation chosen such that ψµ dx
µ

ds
= 1. This notion

can be generalised to define vector fields whose integral curves are observers:

Definition 2.14 (Field of observers [6]). A field of (nonrelativistic) observers is a

vector field N ∈ Γ (TM ) such that ψ (N) = 1. The space of all fields of observers

on M is denoted FO (M , ψ).

Definition 2.15 (Proper time [23]). Let C be a timelike unparameterised curve on

M defined by the embedding i : C ↪→M . We will call (nonrelativistic) proper time

any function τ ∈ C∞ (C ) satisfying dτ = i∗ψ.

The fact that the submanifold C is of dimension 1 ensures that the 1-form i∗ψ is

closed, so that locally there always exists a function τ such that dτ = i∗ψ. Obviously,

this condition only defines the proper time up to a constant. The parameter s in

Definition 2.13 is closely related to the proper time τ of the unparameterised curve

associated with an observer:

Proposition 2.16. Let C be an unparameterised curve on M defined by the em-

bedding i : C ↪→M . Let τ ∈ C∞ (C ) be a proper time on C .

The parameterised curved n = i ◦λ defined by the parameterisation λ : I ⊆ R→ C :

s 7→ λ (s) is an observer if and only if.

τ ◦ λ (s) = s+ a, ∀s ∈ I (2.6)

10The vector Ds ∈ TRs is defined by its action on functions f ∈ C∞ (R) as Ds [f ] = ∂f
∂t

∣∣∣
t=s

.
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with a ∈ R a constant.

The proof is a straightforward application of the previous definitions.

The proper time on an unparameterised curve is defined up to a constant thus,

without loss of generality one may assume a = 0. In such case, the parameterisation

λ is the inverse function of the proper time τ , so that it is natural to identify the

parameter s with the value τ of the proper time at the corresponding point on the

curve.

Definition 2.17 (Spacelike projection of vector fields [5]). Let N ∈ FO (M , ψ) be

a field of observers. The field of endomorphisms PN : Γ (TM )→ Γ (Ker ψ) defined

as

PN (X) = X − ψ (X)N (2.7)

where X is any vector field, is called a spacelike projector of vector fields.

The transpose of a spacelike projector can be defined as the field of linear maps11

P̄N : Ω1 (M )→ Γ (Ann N) defined as P̄N (α) = α− α (N)ψ, with α ∈ Ω1 (M ). In

components, these two spacelike projectors read as: P µ
ν = δµν −Nµψν = P̄ν

µ.

2.4 Absolute time and spaces

As such, a Leibnizian structure does not allow generically a global definition of ab-

solute time and space since it only provides a set of local clocks and rulers. This

drawback can be circumvented by restricting the class of absolute clocks. The suit-

able restriction comes in two versions, a weak one and a strong one. Denoting D
the distribution of spacelike hyperplanes Dx ≡ Ker ψx (∀x ∈M ), the weak version

consists in imposing that the distribution D is involutive. One is then led to define

what we called an Aristotelian structure12 as:

Definition 2.18 (Aristotelian structure [24]). An Aristotelian structure is a Leib-

nizian structure whose absolute clock induces an involutive distribution, i.e. satisfies

the Frobenius integrability condition: ψ ∧ dψ = 0.
11At each point x ∈ M , Ann Nx stands for the annihilator of Span Nx in T ∗xM and Ann N

is thus to be understood as the subbundle of T ∗M spanned by 1-forms annihilating the field of
observers N .

12In the terminology of [23], it would be called a Leibnizian structure with locally synchronizable
absolute clock.
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This supplementary condition ensures, by Frobenius Theorem, that the kernel of ψ

defines a foliation of M by a family of hypersurfaces of codimension one called abso-

lute spaces. These are the maximal integral submanifolds of D, so that the tangent

space TxM at each point x of the simultaneity slice is isomorphic to Ker ψx. Locally,

the 1-form ψ can be written as ψ = Ω dt where Ω ∈ C∞ (M ) is a positive function

called time unit and the function t ∈ C∞ (M ) will be referred to as the absolute

time. The absolute time has a fixed value on each absolute space. Therefore, abso-

lute spaces can be identified with simultaneity slices t =const. In contradistinction

with M , absolute spaces are Riemannian manifolds since they are endowed with the

positive-definite metric γ. As pointed out in [16], the causal structure of nonrela-

Figure 4: Foliation of an Aristotelian structure by absolute spaces.

tivistic spacetimes in the non-Aristotelian case is somewhat pathological: indeed, a

Leibnizian structure which is not Aristotelian does not possess a well defined notion

of absolute space, as is clear from the definitions, but the situation is even more

bizarre since all points in some neighborhood are simultaneous to each other. 13

Now, let C be an unparameterised curve on M defined by the embedding i : C ↪→
M . The local condition ψ = Ω dt allows to write dτ = i∗ψ = (i∗Ω) d(i∗t), where

τ ∈ C∞ (M ) is a proper time on C while i∗Ω = Ω◦ i and i∗t = t◦ i are the pullbacks
on C of the time unit and absolute time, respectively. Integrating the pullback of

the absolute clock on a curve joining the events A and B, one finds the proper time
13It is very natural to consider two events that can be joined by a spacelike curve to be simulta-

neous. In fact, for an Aristotelian structure, this provides one way to define the simultaneity slice
Σ through an event p ∈ M which cuts any neighborhood B of p in “past” and “future” (while Σ
is “present”). However, Caratheodory’s theorem (cf. e.g. [25]) implies that if ψ ∧ dψ 6= 0 at p
then there exists a neighborhood B of p such that all points are simultaneous (in the sense of the
previous definition) i.e. for any point q of B, there exists a spacelike curve joining p to q.
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interval τA→B =
∫ B
A
i∗ψ. Any observer on an Aristotelian structure can make use

of the time unit Ω in order to compare or “synchronise” its proper time τ with the

absolute time t.

The situation regarding synchronisation is even clearer when considering the more

restrictive case in which the absolute clock is a closed 1-form. We thus define an

Augustinian structure14 as:

Definition 2.19 (Augustinian structure). An Augustinian structure is a Leibnizian

structure whose absolute clock ψ is closed.

This stronger condition allows locally to write ψ = dt, so that any

observer of an Augustinian structure is automatically synchronised15

with the absolute time (τ = i∗t = t◦i). Consequently, if the spacetime

is simply connected then two observers sharing the same endpoints

A,B ∈ M will agree when comparing the proper time passed when

going from A to B, since the integral

τA→B =

∫ B

A

i∗ψ =

∫ B

A

d (t ◦ i) = t (i (B))− t (i (A))

does not depend on the path followed.

Example 2.20 (Aristotle spacetime). The most simple example of a Leibnizian

structure is given by a (d+ 1)-dimensional Aristotle spacetime characterised by a

closed absolute clock and flat absolute spaces:ψ = dt

γ = δij dx
i ∨ dxj

where i, j ∈ {1, . . . , d} and δij the Kronecker delta. Equivalently, one may consider

the following contravariant metric: h = δij ∂
∂xi
∨ ∂

∂xj
(cf. [26]).

In the Aristotle spacetime, time is absolute and space is Euclidean. Obviously,

this spacetime was the only arena where physical events were conceived to take
14We chose to refer to Augustine of Hippo (also known as “Saint Augustine”) in order to pay

tribute to the role he played regarding the philosophy of time, cf. Book X of his Confessions.
15Indeed, in the terminology of [23] it would be called a Leibnizian structure with proper time

locally synchronizable absolute clock.
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place before the breakthroughs of non-Euclidean geometry in the 19th century and

special relativity in the 20th century.

The hierarchy

Augustinian ⊂ Aristotelian ⊂ Leibnizian

of the three types of nonrelativistic “metric” structures introduced so far is sum-

marised in Table 1.

Nonrelativistic structure Absolute clock

Leibnizian Arbitrary ψ

Aristotelian Frobenius ψ ∧ dψ = 0

Augustinian Closed dψ = 0

Table 1: Absolute clocks of nonrelativistic structures

2.5 Milne boosts

Consider an Augustinian structure (locally, ψ = dt). One may introduce an adapted

coordinate system xµ = (t, xi) where the first coordinate is the absolute time and

xi are coordinates on the absolute spaces. In this coordinate system, a field of

observers decomposes as N = ∂
∂t

+ vi ∂
∂xi

. The integral curves of N are such that

vi = dxi

dt
. By analogy with the proper velocity spacetime vector, a field of observers

is then sometimes called a “velocity vector” (e.g. [15]). For an Aristotelian structure

(ψ = Ω dt), the analogous expression reads N = 1
Ω

(
∂
∂t

+ vi ∂
∂xi

)
= 1

Ω
∂
∂t

+ ṽi ∂
∂xi

and

its integral curves are such that ṽi = 1
Ω
vi = dxi

dτ
where τ is the proper time.

Let us turn back to the general case of a Leibnizian structure. Given two fields

of observers N ′ and N , their difference V = N ′ − N is a spacelike vector field, i.e.

it belongs to the kernel of the absolute clock, ψ (V ) = 0. Therefore, the differ-

ence V ∈ Γ (Ker ψ) is not a field of observer.16 This observation prevents the space
16 Rather, it can be thought as the relative spacelike velocity between two fields of observers, e.g.

in the case of some adapted coordinates for an Aristotelian structure, one has N ′ −N = vi ∂
∂xi .
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FO (M , ψ) of all fields of observers FO (M , ψ) from being a vector space. However,

FO (M , ψ) possesses a natural structure of affine space [23] with associated vector

space Γ (Ker ψ). Consequently the space of field of observers is a principal homo-

geneous space for the additive (Abelian) group Γ (Ker ψ), called the Milne group.

In other words, the action of the Milne group Γ (Ker ψ) on the space FO (M , ψ) of

field of observers is free and transitive. The action of Γ (Ker ψ) on FO (M , ψ) as

N 7→ N + V will be referred to as a Milne boost parameterised by the spacelike vec-

tor field V ∈ Γ (Ker ψ).17 Milne boosts are sometimes referred to as “local Galilean

boosts”, denomination that will be justified in Proposition 2.24.

Fields of observers are bestowed upon a greater importance in nonrelativistic physics

in comparison with the relativistic case, since a great deal of structures can only be

defined by making use of a particular choice of field of observers N (thus in a non-

canonical way). Indeed, since the contravariant metric h of a Leibnizian structure is

degenerate, there is no natural covariant metric defined on the whole tangent bundle

TM (remember that the absolute rulers γ are only defined on Ker ψ). However,

the gift of a field of observers N allows to uniquely define a (degenerate) covariant

metric N
γ transverse to N as:

Definition 2.21 (Transverse metric). Let L (M , ψ, γ) be a Leibnizian structure and

N ∈ FO (M , ψ) a field of observers on M . The transverse metric
N
γ ∈ Γ (∨2 T ∗M )

is defined by its action on vector fields X, Y ∈ Γ (TM) as

N
γ (X, Y ) = γ

(
PN (X) , PN (Y )

)
(2.8)

where γ ∈ Γ (∨2 (Ker ψ)∗) is the collection of absolute rulers and PN stands for the

spacelike projector associated to the field of observers N .

The right-hand side of eq.(2.8) is well-defined since the image of a spacelike projector

lies in Γ (Ker ψ). The epithet “transverse” is justified by the fact thatN ∈ Rad N
γ , i.e.

∀X ∈ Γ (TM): Nγ(X,N) = 0. Furthermore, it is easy to show that the contraction of
N
γ with the contravariant metric h satisfies the relation: h

(
N
γ (X)

)
= PN (X) ,∀X ∈

17AMilne boost can be alternatively parameterised by a 1-form χ ∈ Ω1 (M ) (cf. e.g. [10, 27, 28])
so that the action reads N 7→ N ′ = N + h (χ). However, it should be noted that this action of
Ω1 (M ) is not free. Given a field of observers N , a free action can be recovered by restricting χ to
belong to Γ (Ann N).

18



Γ (TM ). In components, we thus have the two relations:
N
γµν N

ν = 0

N
γνλ h

λµ = δµν −Nµψν .
(2.9)

In fact, these two conditions completely determine N
γ , as expressed by:

Proposition 2.22 (cf. e.g. [6]). Let L (M , ψ, γ) be a Leibnizian structure and

N ∈ FO (M , ψ) a field of observers on M . There is a unique covariant metric
N
γ ∈ Γ (∨2 T ∗M ) satisfying the conditions (2.9).

As suggested by the superscript, the covariant metric N
γ depends on the choice of

field of observers N . More precisely, it can be shown that under a change of field

of observers N 7→ N + V via the Milne boost parameterised by the spacelike vector

field V ∈ V (M , ψ, γ), the covariant metric N
γ varies as

N
γµν 7→

N
γµν + γ (V, V )ψµψν − 2V λNγλ(µψν). (2.10)

A nonrelativistic avatar of a Lorentzian basis (cf. Definition 2.9) can be formulated:

Definition 2.23 (Galilean basis [6]). Let L (M , ψ, γ) be a Leibnizian structure. A

Galilean basis of the tangent space TxM at a point x ∈M is an ordered basis Bx =

{Nx, e1|x, . . . , ed|x} with Nx the tangent vector of an observer and {e1|x, . . . , ed|x} a
basis of Ker ψx which is orthonormal with respect to γx.

Explicitly, the basis Bx = {Nx, e1|x, . . . , ed|x} must satisfy the conditions:

1. ψx (Nx) = 1

2. ψx (ei|x) = 0 , ∀ i ∈ {1, . . . , d}

3. γx (ei|x, ej|x) = δij ,∀ i, j ∈ {1, . . . , d}.

A basis of T ∗xM dual to Bx = {Nx, ei|x} is given by B∗x ≡ {ψx, θix}, where the d

one-forms θix satisfy the requirements θix (ej|x) = δij and θix (Nx) = 0.

The reference to Galilei in Definition 2.23 is justified by the following Proposition:
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Proposition 2.24 (cf. e.g. [23]). At each point x ∈M , the set of endomorphisms

of TxM mapping each Galilean basis into another one forms a group isomorphic to

the homogeneous Galilei group.

We detail the proof since it clarifies the interpretation of Milne boosts as local

Galilean boosts.

Proof:

Let us denote by T : TxM → TxM one of the endomorphisms considered.

Since T maps bases into bases, it must be a vector space isomorphism so that

it can be represented by an element of GL (TxM ) as the invertible matrix

T ≡

a cT

b R

 (2.11)

where a ∈ R, b, c ∈ Rd and R ∈ GL
(
Rd
)
. Let Bx = {Nx, eix} be a Galilean

basis of TxM , the basis T (Bx) = {N ′x, e′ix} reads (dropping the index x for

notational simplicity):

T (N, ei) = (N, e)

a cT

b R

 =
(
aN + biei, cTi N + Rj

iej
)
. (2.12)

Requiring that T (Bx) is a Galilean basis (Conditions 1-3 following Definition

2.23) imposes that T satisfy:

1. ψx (N ′x) = 1⇒ a = 1

2. ψx (e′ix) = 0 ,∀ i ∈ {1, . . . , d} ⇒ cTj = 0

3. γx
(
e′ix, e

′
jx

)
= δij ,∀ i, j ∈ {1, . . . , d} ⇒ R ∈ O (d).

The set of matrices representing the set of isomorphisms T is thus of the form

T =

1 0

b R

 (2.13)
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with b ∈ Rd andR ∈ O (d). This set of matrices form a subgroup ofGL (TxM )

isomorphic to the homogeneous Galilei group Gal0 (d+ 1). The homogeneous

Galilei group therefore acts regularly on the space of Galilean basis via the

group action:

{N, ei} 7→
{
N + biei,R

j
iej
}
. (2.14)

Proposition 2.24 together with Definition 2.23 can be generalised in a straightforward

way from the tangent space at a point of M to the tangent bundle of M . A Galilean

basis of TM is thus defined as the ordered set of fields B = {N, e1, . . . , en} with N a

field of observers and {e1, . . . , en} a basis of Γ (Ker ψ), orthonormal with respect to

γ. Two Galilean bases {N ′, e′i} and {N, ei} are mapped via a local transformation

where R : M → O (d) parameterises a local rotation and bi : M → Rd a local

Galilean boost. Explicitly, one has:N
′ = N + biei

e′i = Rj
iej

(2.15)

where the first expression is a Milne boost.
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3 Torsionfree Galilean connections

We now switch to the definition of nonrelativistic manifolds, i.e. Leibnizian struc-

tures endowed with a compatible Koszul connection and discuss some of the pecu-

liarities arising, which are absent in the relativistic case.

3.1 Galilean manifolds

It should first be noted that the compatibility condition with the metric-like struc-

ture must apply to both the absolute rulers and clock. One then defines:

Definition 3.1 (Galilean manifold [6]). Given a Leibnizian structure L (M , ψ, γ),

a Galilean manifold is a a quadruple G (M , ψ, γ,∇) with ∇ a Koszul connection

compatible with the absolute clock ψ and rulers γ. The Koszul connection ∇ is then

referred to as a Galilean connection.

When the absolute rulers are formulated in terms of a field h ∈ Γ (∨2 TM ), the

compatibility conditions read

1. ∇ψ = 0

2. ∇h = 0.

These two conditions can be more explicitly stated as:

1. X [ψ (Y )] = ψ (∇XY ), for all X, Y ∈ Γ (TM )

2. X [h (α, β)] = h (∇Xα, β) + h (α,∇Xβ), for all X ∈ Γ (TM ) and α, β ∈
Ω1 (M ).

When the absolute rulers are formulated in terms of a field γ ∈ Γ (∨2 (Ker ψ)∗), the

second condition can be restated as ∇γ = 0 or equivalently:

X [γ (V,W )] = γ (∇XV,W ) + γ (V,∇XW ) for all X ∈ Γ (TM ) and V,W ∈ Γ (Ker ψ) .

The right-hand-side of the previous equation is well defined since V ∈ Γ (Ker ψ)

implies ψ (∇XV ) = 0 (cf. Condition 1.) which in turn, ensures that ∇XV ∈
Γ (Ker ψ), for all X ∈ Γ (TM ) and V ∈ Γ (Ker ψ).
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In components, these two sets of equivalent conditions read:∇µψν = 0

∇µh
αβ = 0

⇐⇒

∇µψν = 0

∇µγij = 0
(3.16)

where the last equality is written in adapted coordinates xµ = (t, xi).

A first peculiarity of a Galilean manifold, in contradistinction with the relativistic

case, is the fact that not all the torsion tensors are compatible with a given Leibnizian

structure, as the following Proposition shows:

Proposition 3.2 (cf. [6, 23]). Let G (M , ψ, γ,∇) be a Galilean manifold and denote

T the torsion of the Galilean connection ∇. The following relation holds:

ψ
(
T (X, Y )

)
= dψ (X, Y ) (3.17)

for all X, Y ∈ Γ (TM ).

In components, relation (3.17) reads ψλΓλ[µν] = ∂[µψν], where the torsion T decom-

poses as T ≡ 2 Γλ[µν] dx
µ ∧ dxν ⊗ ∂λ.

In particular, the previous Proposition implies that only Augustinian structures (i.e.

satisfying dψ = 0) admit a torsionfree Koszul connection. This is clearly a distinctive

feature of nonrelativistic structures as there exists no such restriction in the rela-

tivistic case. Furthermore, while in the relativistic case, Theorem 2.8 ensures that a

torsionfree Lorentzian manifold is uniquely determined by the metric structure, in

the nonrelativistic case however, the degeneracy of the metric prevents the gift of an

Augustinian structure to uniquely fix a compatible torsionfree Koszul connection.

As one will see later, this arbitrariness has a natural physical interpretation: the

Leibnizian structure merely encodes the properties of a nonrelativistic spacetime

which would be a mere container where particles can be placed and measured. In

Newtonian mechanics, their movement will be fixed by prescribed forces, a priori

independent of the Leibnizian structure (usually taken to be flat, i.e. the Aristotle

spacetime of Example 2.20). According to the equivalence principle, these dynamical

trajectories acquire the interpretation of spacetime geodesics. In other words, the

arbitrariness in the choice of the external forces prescribed on top of the Leibnizian

structure corresponds to the arbitrariness in the choice of a Galilean connection.
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This freedom is already manifest in the following two paradigmatic examples of

Galilean manifolds:

Example 3.3 (Galilei and Newton-Hooke spacetimes). The Aristotle spacetime

(Example 2.20) with absolute clock ψ = dt and rulers γ = δijdx
i ∨ dxj can be sup-

plemented with a flat connection Γλµν = 0 in order to yield the standard Galilei space-

time [26]. Alternatively, one can endow the Aristotle spacetime with the (equally

compatible) connection Γ whose only nonvanishing components are Γi00 = − k
τ2
xi.

This Galilean manifold is referred to as the Newton-Hooke spacetime (cf. [29] for

a nice introduction to its physical interpretation as a nonrelativistic cosmological

model). The constant k can take the values k = +1 (expanding spacetime), k = −1

(oscillating spacetime) or k = 0 (Galilei spacetime). The corresponding force field

is simply the one of a harmonic oscillator for k = ±1, i.e. a force linear in the

displacement (attractive for k = −1, repulsive for k = +1).

3.2 Torsionfree Galilean manifolds

We now characterise more precisely the space of torsionfree Koszul connections com-

patible with a given Augustinian structure by mimicking the discussion of Section

2.1.

Let S (M , ψ, γ) be an Augustinian structure. The space of torsionfree Galilean

connections compatible with S (M , ψ, γ) will be denoted D (M , ψ, γ). Recall that,

in the absence of metric structure, the space of torsionfree Koszul connections is

an affine space modelled on the vector space Γ (∨2T ∗M ⊗ TM ). Now, focusing on

Galilean connections, the compatibility conditions (3.16) reduce the vector space on

which D (M , ψ, γ) is modelled according to the following Proposition:

Proposition 3.4. The space D (M , ψ, γ) of torsionfree Galilean connections pos-

sesses the structure of an affine space modelled on the vector space

V (M , ψ, γ) ≡
{
S ∈ Γ

(
∨2T ∗M ⊗ TM

)
/ ψλS

λ
µν = 0 and S(λ

µν h
ρ)ν = 0

}
.

Note that V (M , ψ, γ) has dimension d(d+1)
2

, for M a (d+ 1)-dimensional spacetime.

This is in contradistinction with the relativistic case where the compatibility condi-

tion with a Lorentzian metric reduces the affine space of torsionfree connections to

a single point: the Levi-Civita connection.
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Lemma 3.5. The vector space V (M , ψ, γ) is canonically isomorphic to the space

Ω2 (M ) of 2-forms on M .

Again, the term “canonical” designates an object built only in terms of the metric

structure S (M , ψ, γ). Explicitly, the canonical isomorphism is given by

ϕ : V (M , ψ, γ)→ Ω2 (M ) : Sλµν 7→ Fµν = −2
N
γλ[µS

λ
ν]ρN

ρ (3.18)

with N ∈ FO (M , ψ) a field of observers and N
γ ∈ Γ (∨2 T ∗M ) its associated trans-

verse metric while its inverse takes the form

ϕ−1 : Ω2 (M )→ V (M , ψ, γ) : Fµν 7→ Sλµν = hλρψ(µFν)ρ.

It can be checked that the expression Fµν = −2
N
γλ[µS

λ
ν]ρN

ρ is independent of the

choice of field of observers N , whenever S ∈ V (M , ψ, γ), so that ϕ is indeed canoni-

cal. Proposition 3.4 together with Lemma 3.5 then ensures the following Proposition:

Proposition 3.6. The space D (M , ψ, γ) of torsionfree Galilean connections pos-

sesses the structure of an affine space modelled on the vector space Ω2 (M ) of 2-

forms.

Explicitly, given two torsionfree Galilean connections Γ′,Γ ∈ D (M , ψ, γ), there

exists a unique F ∈ Ω2 (M ) such that:

Γ′ = Γ + ϕ−1 (F ) or, equivalently, F = ϕ (Γ′ − Γ) .

Using the explicit form of ϕ, the 2-form F can be expressed in components as:

Fαβ = −2
N
γλ[α∇′β]N

λ + 2
N
γλ[α∇β]N

λ (3.19)

with N ∈ FO (M , ψ) a field of observers and N
γ ∈ Γ (∨2 T ∗M ) its associated trans-

verse metric. The previous expression suggests to introduce the map

N

Θ : D (M , ψ, γ)→ Ω2 (M ) : ∇ 7→
N

Fαβ = −2
N
γλ[α∇β]N

λ. (3.20)

We emphasise that
N

Θ is non-canonical, hence the superscript. Eq.(3.19) can then
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be rewritten as

N

Θ (Γ′)−
N

Θ (Γ) = ϕ (Γ′ − Γ) (3.21)

so that
N

Θ is an affine map modelled on the linear map ϕ. Following Proposition B.4,

the fact that
N

Θ is an affine map associated to the linear isomorphism ϕ ensures that
N

Θ endows D (M , ψ, γ) with a structure of vector space.

Before identifying the corresponding origin, let us provide a more geometric charac-

terisation of the 2-form
N

F appearing in eq.(3.20):

Definition 3.7 (Gravitational fieldstrength measured by a field of observers). Let

G (M , ψ, γ,∇) be a Galilean manifold and N ∈ FO (M , ψ) a field of observers. The

gravitational fieldstrength measured by the field of observers N with respect to ∇ is

defined as the 2-form
N

F ∈ Ω2 (M ) whose action reads

N

F (X, Y ) ≡ γ
(
∇XN,P

N (Y )
)
− γ

(
∇YN,P

N (X)
)

(3.22)

where X, Y ∈ Γ (TM ) are vector fields on M and PN : Γ (TM ) → Γ (Ker ψ)

designates the spacelike projector (cf. Definition 2.17).

Note that the definition of
N

F is consistent since ψ (N) = 1 and ∇ψ = 0 ensure that

∇XN ∈ Γ (Ker ψ), ∀X ∈ Γ (TM ). In components, eq.(3.22) reads [30]

N

Fαβ ≡ −2
N
γλ[α∇β]N

λ.

Expressing the 2-form
N

F on the Galilean basis {N, ei} (with {ψ, θi} the associated

dual basis) leads to the following decomposition:

N

F = 2
N

F (N, ei)ψ ∧ θi +
N

F (ei, ej) θ
i ∧ θj. (3.23)

The first term defines a spacelike vector field
N

G ∈ Γ (Ker ψ) as
N

G =
N

F (N, ei) e
i

(where ei ≡ ejδ
ij) called the gravitational force field measured by the field of ob-

servers N . The second term corresponds to the action of
N

F on spacelike vector fields

and will be referred to as the Coriolis 2-form
N
ω ∈ Γ (∧2 (Ker ψ)∗) measured by the

field of observers N . It is defined as
N
ω (V,W ) =

N

F (V,W ), with V,W ∈ Γ (Ker ψ).
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Using eq.(3.22), these two definitions can be recast in a more geometric way which

justifies further the terminology used:

Definition 3.8 (Gravitational force field and Coriolis 2-form [23]). Let G (M , ψ, γ,∇)

be a Galilean manifold and N ∈ FO (M , ψ) a field of observers. The gravitational

force field induced by ∇ on N is the spacelike vector field
N

G ∈ Γ (Ker ψ):

N

G ≡ ∇NN. (3.24)

The Coriolis 2-form induced by ∇ on N is the 2-form
N
ω ∈ Γ (∧2 (Ker ψ)∗), acting

on V,W ∈ Γ (Ker ψ) as18:

N
ω (V,W ) ≡ γ (∇VN,W )− γ (V,∇WN) . (3.25)

The compatibility condition of the Galilean connection ∇ with the absolute clock ψ

(cf. Definition 3.1) ensures that ψ (∇XN) = X [ψ (N)] = 0, for all X ∈ Γ (TM ).

This expression ensures ψ (∇NN) = 0, which in turn guarantees that
N

G is spacelike.

As one can see from eq.(3.24), the gravitational force field represents the obstruc-

tion of the field of observers N to be geodesic. In turn, for such a field of observers,

free falling objects (i.e. that follow geodesics) appear to experience a gravitational

force field. Similarly, the Coriolis 2-form is related to the “Coriolis force” associ-

ated to rotations of local observers with respect to each other. According to the

decomposition (3.23), the gravitational force field
N

G and the Coriolis 2-form
N
ω as-

sociated to the field of observers N encode all the information contained in the

2-form
N

F . Equivalently, this can be seen from the relations
N

F (N, V ) = γ(
N

G, V ) and
N

F (V,W ) =
N
ω (V,W ) for any spacelike vector fields V,W ∈ Γ (Ker ψ).

Armed with the previous definitions, we now can articulate the following important

Proposition:

Proposition 3.9 (Torsionfree special connection [6, 31]). Given a field of observers

N ∈ FO (M , ψ), there exists a unique torsionfree Galilean connection
N

Γ ∈ D (M , ψ, γ)

compatible with the Augustinian structure S (M , ψ, γ) such that the gravitational

fieldstrength measured by the field of observers N with respect to
N

Γ vanishes. We call
N

Γ the torsionfree special connection associated to N .
18Note that our normalisation for the Coriolis 2-form differs by a factor 1

2 from the one used in
[23].
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Torsionfree special connections19 play an important role in the condensed matter

applications of Newton-Cartan geometry (e.g. in [10, 15]). The space of torsionfree

special connections compatible with an Augustinian structure S (M , ψ, γ) will be

denoted D0 (M , ψ, γ). An explicit expression of
N

Γ in components is given by (cf.

[6, 31]):

N

Γλµν = Nλ∂(µψν) +
1

2
hλρ
(
∂µ

N
γρν + ∂ν

N
γρµ − ∂ρ

N
γµν

)
. (3.26)

In physical terms, a Galilean manifold endowed with such a torsionfree special con-

nection decribes a nonrelativistic spacetime where there exists a privileged field (pos-

sibly a class) of “inertial” observers, i.e. measuring no gravitational force field nor

Coriolis 2-form. The simplest example is the Galilei spacetime where N = ∂
∂t

+vi ∂
∂xi

with vi constant. In order to account for the general case, the field of forces experi-

enced by N must be separately specified.

Theorem 3.10 (cf. [5, 6]). Given a field of observers N , the space D (M , ψ, γ)

of torsionfree Galilean connections compatible with a given Augustinian structure

S (M , ψ, γ) possesses the structure of a vector space, the origin of which is the

torsionfree special connection
N

Γ, and D (M , ψ, γ) is then isomorphic to the vector

space Ω2 (M ) of 2-forms on M .

Once a field of observers N ∈ FO (M , ψ) has been picked, any torsionfree Galilean

connection Γ ∈ D (M , ψ, γ) can thus be represented as

Γλµν =
N

Γλµν + hλρψ(µ

N

F ν)ρ (3.27)

where
N

Γ ∈ D0 (M , ψ, γ) is the torsionfree special connection associated to N and
N

F ∈ Ω2 (M ) the 2-form defined as
N

F ≡ ϕ
(
Γ−

N

Γ
)
. The superscript acts here as a re-

minder of the fact that
N

F varies whenever one chooses a different field of observers to

pinpoint an origin to D (M , ψ, γ). In more physical terms, given a metric structure

on spacetime (seen as a “container”) and a field of observers N ∈ FO (M , ψ), the

arbitrariness of choice in the torsionfree compatible connection ∇ is encoded into the

“force fields” (which can be freely specified) measured by these observers. The ter-
19A Galilean manifold G (M , ψ, γ,∇) where ∇ is a torsionfree special connection was called a

Newton-Cartan-Milne structure in [28].
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minology “gravitational fieldstrength” (measured by a background field of observers

N) pursues the analogy between the geodesic equation vν∇νv
µ = 0 (for a field of

observers v) and the Lorentz force via its rewriting as vν
N

∇ν v
µ = 2hµρ

N

F ρνv
ν with

the help of (3.27). In the latter equation, the gravitational fieldstrength
N

F plays

the role of the Faraday tensor while
N

∇ stands for the torsionfree special connection

associated to the background field of observers N . Accordingly, the gravitational

force field
N

G is the analogue of the electric field, while the Coriolis 2-form
N
ω plays

the role of the (Hodge dual to the) magnetic field.

In order to obtain a precise characterisation of the way the representation of Γ

gets modified under a change of field of observers, one needs first to understand how

torsionfree special connections are related one to another:

Lemma 3.11. Let N ′ and N ∈ FO (M , ψ) be two fields of observers related by a

Milne boost parameterised by the spacelike vector field V ∈ Γ (Ker ψ) (i.e. N ′ = N+

V ). The gravitational fieldstrength, measured by N , with respect to the torsionfree

special connection
N ′

Γ associated to N ′ is the exact 2-form
N,V

F ≡ −d
N,V

Φ, i.e. minus the

exterior derivative of the 1-form
N,V

Φ ∈ Ω1(M ) defined by:

Φ : FO (M , ψ)× Γ (Ker ψ)→ Ω1 (M )

(N, V ) 7→
N,V

Φ ≡ N
γ (V )− 1

2
γ (V, V )ψ. (3.28)

In components, the respective torsionfree special connections
N ′

Γ and
N

Γ ∈ D0 (M , ψ, γ)

are related via

N ′

Γλ
µν =

N

Γλµν + hλρψ(µ

N,V

F ν)ρ . (3.29)

In more abstract terms, the previous Lemma can be restated by saying that the

Milne group Γ (Ker ψ) acts transitively on the space D0 (M , ψ, γ) of torsionfree

special connections via the group action
N

Γ 7→
N

Γ +ϕ−1
(
−d

N,V

Φ
)
, with V ∈ Γ (Ker ψ).

Correspondingly, when one switches the choice of the origin of D (M , ψ, γ) from
N

Γ to
N ′

Γ , the representation of any torsionfree Galilean connection Γ ∈ D (M , ψ, γ)

becomes

Γλµν =
N

Γλµν + hλρψ(µ

N

F ν)ρ =
N ′

Γλ
µν + hλρψ(µ

N ′

F ν)ρ (3.30)
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where the 2-forms
N

F and
N ′

F in Ω2 (M ) are related according to

N ′

F =
N

F + d
N,V

Φ . (3.31)

Figure 5: Representation change under a Milne boost

Given a field of observers N , this last expression defines an action of the Milne

group Γ (Ker ψ) on the vector space of 2-forms. Since the Milne group acts on both

FO (M , ψ) and Ω2 (M ), one can define a group action of the Milne group on the

space FO (M , ψ)× Ω2 (M ) as(
N,

N

F

)
7→
(
N + V,

N

F + d
N,V

Φ

)
(3.32)

with N ∈ FO (M , ψ),
N

F ∈ Ω2 (M ), V ∈ Γ (Ker ψ) and the 1-form
N,V

Φ ∈ Ω1 (M ) is

defined in eq.(3.28).

Definition 3.12 (Gravitational fieldstrength). A Milne orbit in FO (M , ψ)×Ω2 (M )

is dubbed a gravitational fieldstrength. The space of gravitational fieldstrengths will

be denoted

F (M , ψ, γ) :=
FO (M , ψ)× Ω2 (M )

Γ (Ker ψ)
.
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We note that, since the Milne group Γ (Ker ψ) acts regularly on FO (M , ψ), for

each f ∈ F (M , ψ, γ) and given any N ∈ FO (M , ψ), there exists a unique element(
N,

N

F

)
in the orbit f , where

N

F ∈ Ω2 (M ) is the gravitational fieldstrength measured

by the given field of observers N . The corresponding gravitational fieldstrength is

the equivalence class [N,
N

F ].

Proposition 3.13. The space F (M , ψ, γ) of gravitational fieldstrengths is an affine

space modelled on V (M , ψ, γ).

Proof:

We define the following subtraction map:

F (M , ψ, γ)×F (M , ψ, γ) → V (M , ψ, γ) (3.33)([
N,

N

F 2

]
,
[
N,

N

F1

])
7→ ϕ−1

(
N

F 2 −
N

F 1

)
for a given N ∈ FO (M , ψ) .

This map is well defined since, choosing a different field of observersN ′ = N+V

with V ∈ Γ (Ker ψ), the difference
N

F 2 −
N

F 1 becomes
N ′

F 2 −
N ′

F 1 = (
N

F 2 + d
N,V

Φ)−

(
N

F 1+d
N,V

Φ) =
N

F 2−
N

F 1. Furthermore, the subtraction map defined above satisfies

Weyl’s axioms defining an affine space, so that F (M , ψ, γ) is indeed an affine

space modelled on V (M , ψ, γ).

Using this terminology, we can further characterise the affine space of torsionfree

Galilean connections as follows:

Proposition 3.14. The space of torsionfree Galilean connections compatible with

a given Augustinian structure possesses the structure of an affine space canonically

isomorphic to the affine space of gravitational fieldstrengths.

Proof:

Let us define the map:

Λ : D (M , ψ, γ) → F (M , ψ, γ) : Γ 7→
[
N,

N

Θ (Γ)
]
.

Using the subtraction map (3.33), we compute:

Λ (Γ′)− Λ (Γ) = ϕ−1

(
N

Θ (Γ′)−
N

Θ (Γ)

)
for some N ∈ FO (M , ψ)

= Γ′ − Γ
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where eq.(3.21) has been used. The map Λ is thus an affine isomorphism

modelled on the identity map in V (M , ψ, γ).

The former reasonings and the corresponding chain of isomorphisms of vector and

affine spaces will be repeated later on for the generalisation to the torsional case (and

also in similar constructions of our related work [32]). The logic of the argument is

very general and is summarised in Proposition B.4 of Appendix B.

Remarks (on Milne invariance and special connections):

Let us conclude the present Section with some retrospective remarks aiming to draw

comparison with the relativistic case. As noted before, the fact that
N

Θ is non-

canonical prevents to single out a unique origin which would be the analogue of the

Levi-Civita connection. Rather, the present construction introduces a subspace of

privileged origins D0(M , ψ, γ) on which the Milne group Γ (Ker ψ) has been shown

to act transitively in Lemma 3.11. We emphasise that the appearance of the Milne

group in this context is a mere consequence of our choice to restrict the origin to

belong to the space of torsionfree special connections. In fact, it is only the explicit

representation of a Galilean connection Γ in terms of a given special connection
N

Γ

which depends on the choice of N . More precisely, each of the two terms in the

decomposition (3.27) depends on N but their sum does not. Indeed, a Galilean

connection is independent from the choice of field of observers N associated with

the special connection
N

Γ used as origin in order to represent it. In this sense, any

Galilean connection is a Milne invariant object. This geometric perspective on the

Milne invariance of nonrelativistic connections might provide a helpful conceptual

tool to readdress the recent discussions on this issue.

One way to partially reduce the ambiguity in the definition of the torsionfree

Galilean connection is to impose supplementary conditions. The following condition

[6, 7] has been proved very useful:

Definition 3.15 (Duval-Künzle condition [6, 7]). Let G (M , ψ, γ,∇) be a Galilean

manifold and denote R the curvature of the Galilean connection ∇. The Duval-
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Künzle condition then reads:

α
(
R
(
X, h (β) ;Y

))
= β

(
R
(
Y, h (α) ;X

))
(3.34)

for all X, Y ∈ Γ (TM ) and α, β ∈ Ω1 (M ).

This condition on the curvature operator R is written more transparently in com-

ponents as:

R µ ν
α β = R ν µ

β α

with R µ ν
α β ≡ hνρR µ

αρβ. Appendix A is devoted to the study of the curvature

tensor for a Galilean manifold, we discuss in particular some useful identities as well

as classic constraints encountered in the literature, focusing on the torsionfree case.

3.3 Torsionfree Newtonian manifolds

We now turn our attention to the study of torsionfree Galilean manifolds satisfying

the Duval-Künzle condition (cf. Definition 3.15). Let S (M , ψ, γ) be an Augus-

tinian structure.

Definition 3.16 (Torsionfree Newtonian manifold [6, 7]). A torsionfree Newtonian

manifold N (M , ψ, γ,∇) is a torsionfree Galilean manifold whose Galilean connec-

tion satisfies the Duval-Künzle condition. The Koszul connection ∇ is then referred

to as a torsionfree Newtonian connection.

The space of torsionfree Newtonian connections will be denoted D̂ (M , ψ, γ). A

non-trivial result [6, 7] consists in the following fact: the map

K : D (M , ψ, γ)→ Γ (T ∗M ⊗ T ∗M ⊗ TM ⊗ TM ) : Γλµν 7→ R µ ν
α β −R

ν µ
β α

despite being non-linear, is an affine map, so that there exists a linear map

θ : V (M , ψ, γ)→ Γ (T ∗M ⊗ T ∗M ⊗ TM ⊗ TM )

such that

K (Γ′)−K (Γ) = θ (Γ′ − Γ) , for all Γ′,Γ ∈ D (M , ψ, γ) .
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Since θ is linear, its kernel, denoted V̂ (M , ψ, γ), is a vector subspace of V (M , ψ, γ).

Moreover, it can be shown [6, 7] that V̂ (M , ψ, γ) is isomorphic to the vector space

Ω2 (M ) ∩ Ker d of closed 2-forms on M . The explicit form of the isomorphism

ϕ̂ : V̂ (M , ψ, γ) → Ω2 (M ) ∩ Ker d is obtained by restriction of the isomorphism

ϕ : V (M , ψ, γ) → Ω2 (M ) (cf. eq.(3.18)). The following Theorem, summing up

the previous discussion, can be seen as a specialisation of Proposition 3.6:

Theorem 3.17 (cf. [6, 7]). The space D̂ (M , ψ, γ) of torsionfree Newtonian con-

nections possesses the structure of an affine space modelled on the vector space

Ω2 (M ) ∩Ker d of closed 2-forms on M .

Furthermore, torsionfree special connections are Newtonian:

Proposition 3.18 (cf. [6, 7]). The space D0 (M , ψ, γ) of torsionfree special connec-

tions is a subspace of the space of torsionfree Newtonian connections D̂ (M , ψ, γ).

A converse statement will be provided in Proposition 3.26. The previous Proposition

guarantees that the restriction
N

Θ̂ : D̂ (M , ψ, γ) → Ω2 (M ) ∩ Ker d of the isomor-

phism
N

Θ : D (M , ψ, γ) → Ω2 (M ) (cf. eq.(3.20)) is itself an isomorphism. In this

light, the Duval-Künzle condition can be reinterpreted as a geometric characterisa-

tion for the closedness of the gravitational fieldstrength
N

F measured by the field of

observers N . Torsionfree special connections can then be used in order to represent

any torsionfree Newtonian connections as:

Γλµν =
N

Γλµν + hλρψ(µ

N

F ν)ρ (3.35)

with Γ ∈ D̂ (M , ψ, γ) a Newtonian connection,
N

Γ ∈ D0 (M , ψ, γ) the torsionfree

special connection associated to the field of observers N and
N

F ∈ Ω2 (M )∩Ker d a

closed 2-form.

Applying Poincaré Lemma, one can locally write the closed gravitational field-

strength
N

F as an exact 2-form so that there exists a class of 1-forms
N

A ∈ Ω1 (M )

satisfying
N

F = d
N

A. Two equivalent 1-forms
N

A′ and
N

A differ by an exact differential:
N

A′ =
N

A + df , with f ∈ C∞ (M ). Acting on Ω1 (M ) with the action
N

A 7→
N

A + df

of the “Maxwell group” C∞ (M ) will be referred to as a Maxwell gauge transforma-

tion. Locally (i.e. on a simply connected neighborhood), the vector space of closed

2-forms is thus isomorphic to the vector space of Maxwell orbits. We will call a
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Maxwell orbit [A] a principal connection (cf. Section 3.5) and denote PC (M , ξ)

the space of principal connections on M .

Now, we let [
N

A] ∈ PC (M , ξ) be a principal connection on M such that
N

F = d
N

A for

any representative
N

A ∈ [
N

A]. We now investigate how [
N

A] transforms under a change of

origin. Explicitly, when the origin is switched from the torsionfree special connection

associated with the field of observers N to the one associated with N ′ = N + V ,

the principal connection [
N

A] gets mapped to [
N

A] 7→ [
N

A+
N,V

Φ], as follows directly from

the transformation of
N

F
(
cf. eq.(3.31)

)
with

N,V

Φ the 1-form defined in eq.(3.28). The

previous relation thus defines an action of the Milne group Γ (Ker ψ) on the space

FO (M , ψ)× PC (M , ξ) as(
N, [

N

A]

)
7→

(
N + V, [

N

A+
N,V

Φ]

)
.

Similarly to the Galilean case, one is led to define an additional structure supple-

menting the Augustinian one in order to solve the equivalence problem for Newtonian

manifolds. We define the Newtonian analogue of a gravitational fieldstrength as:

Definition 3.19 (Gravitational potential). Let L (M , ψ, γ) be a Leibnizian struc-

ture. An orbit of the Milne group Γ (Ker ψ) in FO (M , ψ)× PC (M , ξ) is called a

gravitational potential.

In other words, a gravitational potential is an equivalence class where two couples(
N ′,

N ′

A
)
and

(
N,

N

A
)
are said to be equivalent if there exists a spacelike vector field

V ∈ Γ (Ker ψ) and a function f ∈ C∞ (M ) such thatN
′ = N + V

N ′

A =
N

A+
N,V

Φ + df.
(3.36)

In a representative
(
N,

N

A
)
, the second entry

N

A is called a gravitational gauge 1-form

for the field of observers N .

The space P (M , ψ, γ) :=
(
FO (M , ψ) × PC (M , ξ)

)
/Γ (Ker ψ) of gravitational

potentials possesses a structure of affine space modelled on the space PC (M , ξ)
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with subtraction map:

P (M , ψ, γ)×P (M , ψ, γ) → PC (M , ξ)([
N, [A]

]
,
[
N, [Ã]

])
7→

[
Ã− A

]
.

The next Proposition provides a local refinement of Proposition 3.17:

Proposition 3.20. Locally (i.e. on a simply connected neighborhood), the space of

torsionfree Newtonian connections compatible with a given Augustinian structure is

an affine space canonically isomorphic to the affine space of gravitational potentials.

3.4 Variational approach

The present section revisits the equivalence problem for Newtonian manifolds (i.e.

the search for extensions of a given Augustinian structure determining uniquely

a Newtonian connection) by displaying an alternative formulation [9], based on

Coriolis-free fields of observers (cf. Definition 3.8). We start by stating the fol-

lowing Proposition:

Proposition 3.21. Let N (M , ψ, γ,∇) be a Newtonian manifold associated to the

gravitational potential
[
N, [

N

A]
]
. The field of observers Z ∈ FO (M , ψ) is Coriolis-

free if and only if

Z = N − h
(
N

A

)
+ h (df) (3.37)

for a function f ∈ C∞ (M ) and a couple
(
N,

N

A
)
in the equivalence class.

The proof of Proposition 3.21 can be found in Appendix C.

In the following, we let N (M , ψ, γ,∇) be a Newtonian manifold associated to the

gravitational potential
[
N, [

N

A]
]
. The quantity Z = N−h

(N
A
)
with N ∈ FO (M , ψ)

and
N

A an arbitrary representative of [
N

A] is invariant under a Milne boost (this fact

is shown in the proof of Proposition 3.21), so that the 1-form
N

A can be thought of as

a compensator field, used in order to construct Milne-invariant objects (cf. Table

2 below). Moreover, Proposition 3.21 ensures that any Newtonian manifold admits

Coriolis-free fields of observers and even provides an explicit way to construct them:
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namely, one can go from any field of observers N ∈ FO (M , ψ) to a Coriolis-free field

of observers Z via a Milne boost parameterised by the 1-form χ = −
N

A. Under such a

Milne boost, the gravitational gauge 1-form
N

A for N gets mapped to a gravitational

gauge 1-form
Z

A ≡ 1
2
φψ which is along the absolute clock and where the explicit

form of the function φ ∈ C∞ (M ) is given in:

Definition 3.22 (Gravitational gauge scalar). Consider a gravitational gauge 1-

form
N

A for the field of observers N . The function

φ ≡ 2
N

A (N)− h
(N
A,

N

A
)

(3.38)

is called the gravitational gauge scalar corresponding to
N

A.

This denomination is justified by the form taken by the gravitational force field
Z

G ≡ ∇ZZ = −1
2
h (dφ). As one can see, the gravitational force field measured by

a Coriolis-free field of observers derives from a potential (up to a factor, the scalar

potential φ). It can be checked that the gravitational gauge scalar φ is also a Milne-

invariant object. However, it is not gauge invariant, a point which will be adressed

in details after the following example.

Example 3.23 (Galilei and Newton-Hooke spacetimes). The Augustinian structure

of these spacetimes is composed of the absolute clock ψ = dt and rulers γ = δij dx
i∨

dxj. The Galilei and Newton-Hooke spacetimes (Example 3.3) are also endowed

with a Newtonian connection, the only nonvanishing components of which are Γi00 =

− k
τ2
xi with k = 0 for the Galilei spacetime. The field of observers Z = ∂

∂t
is

Coriolis-free and measures the gravitational force field
Z

G = − k
τ2
x which derives

from the gravitational gauge scalar φ = k
τ2
xix

i. The gravitational gauge 1-form

for the Coriolis-free field of observers Z is thus
Z

A = k
2τ2

xix
i dt . Notice that the

collection of all Coriolis-free field of observers are obtained from Z by shifting its

spatial part by an irrotational relative velocity field, i.e. a gradient vi = ∂if .

We argued previously that the couple
(
Z, 1

2
φψ
)
constituted a distinguished repre-

sentative of the gravitational potential
[
N, [

N

A]
]
characterising the Newtonian mani-

fold N . Conversely, the whole equivalence class
[
N, [

N

A]
]
can be reconstructed from
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one of its representatives using relations (3.36). Therefore, one can characterise a

Newtonian manifold N by an Augustinian structure S (M , ψ, γ) together with a

couple (Z, φ).

In order to make a converse statement, one needs first to acknowledge the fact that

a given Newtonian manifold does not define a unique Coriolis-free field of observers

but rather a class thereof. Indeed, two Coriolis-free fields of observers Z and Z ′ ∈
FO (M , ψ) have been seen to be related by a Maxwell transformation Z ′ = Z −
h (df) with gauge function f ∈ C∞ (M ) (cf. Proposition 3.21). This is a direct

consequence of the previously mentioned fact that to a given field of observers N

corresponds a principal connection, i.e. a class of 1-forms [
N

A] ∈ PC (M , ξ) differing

by
N ′

A =
N

A+df , for some function f on M . Consequently, the respective gravitational

gauge scalars φ and φ′ ∈ C∞ (M ) can be checked to be related according to φ′ =

φ+2 df (Z)−h (df, df). The previous transformation laws induce the following action

of the Maxwell group C∞ (M ) on FO (M , ψ)× C∞ (M ):

(Z, φ) 7→ (Z − h (df) , φ+ 2 df (Z)− h (df, df)) .

The previous action allows to reinterpret gravitational potentials as:

Definition 3.24 (Gravitational potential). Let L (M , ψ, γ) be a Leibnizian struc-

ture. A gravitational potential is a Maxwell orbit in FO (M , ψ)× C∞ (M ).

We sum up the whole discussion in the following Proposition:

Proposition 3.25 (cf. [9]). Let S (M , ψ, γ) be an Augustinian structure. The

affine space of Newtonian manifolds N (M , ψ, γ,∇) is canonically isomorphic to

the affine space
(
FO (M , ψ)×C∞ (M )

)
/C∞ (M ) of gravitational potentials [Z, φ].

Having introduced the variables Z and φ, we are now in a position to articulate a

converse statement to Proposition 3.18:

Proposition 3.26. Locally, any torsionfree Newtonian connection is a torsionfree

special connection. More precisely, in a neighborhood there always exists a represen-

tative of the gravitational potential such that φ′ = 0 for the corresponding Coriolis-

free field of observers Z ′.

The fact that the class of Newtonian and special connections are essentially one

and the same in the torsionfree case seems to be known since [5] but it is rarely
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emphasised (or even stated at all) in the literature and some confusion surrounds this

point. For this reason, we provide a new independent proof (see also the textbook

[33] for a distinct proof and statement) of this result by showing the statement from

the second sentence of Proposition 3.26.

Proof:

The proof of the proposition amounts to show that for any given pair (Z, φ)

one can always find a smooth function f which is solution of

φ+ 2 df (Z)− h (df, df) = 0 (3.39)

on a neighborhood. One considers a coordinate system xµ = (t, xi) such that

ψ = dt. Without loss of generality, the Coriolis-free field of observers takes the

form Z = ∂
∂t

+ vi ∂
∂xi

. In these coordinates, the left-hand-side of (3.39) is an

affine function of the absolute time derivative ∂f
∂t
. More explicitly, the partial

differential equation (3.39) can be written in the normal form:

∂f
∂t

= F
(
t, xi, ∂f

∂xj

)
, (3.40)

where F
(
t, xi, ∂f

∂xj

)
≡ 1

2
hij(t, x) ∂f

∂xi
∂f
∂xj
− vi(t, x) ∂f

∂xi
− 1

2
φ(t, x)

is obviously an analytic function (it is a polynomial of degree 2) in the deriva-

tives ∂f
∂xj

. For technical reasons, we will assume that the functions hij(t, x),

vk(t, x) and φ(t, x) are analytic in some neighborhood, so that F
(
t, xi, ∂f

∂xj

)
is analytic in all its arguments. Then, according to the existence theorem of

Cauchy-Kowalewsky (see e.g. [34]), there exists a unique solution of (3.40) in

some sufficiently small neighborhood for each Cauchy data f(t0, x
i) = g(xi)

with g analytic.

Another interesting feature of the present formulation is embodied by the following

Proposition. We first define the notion of a Lagrangian metric:

Definition 3.27 (Lagrangian metric). Let L (M , ψ, γ) be a Leibnizian structure.

A covariant metric g ∈ Γ (∨2 T ∗M ) on M satisfying the condition g (X, Y ) =

γ (X, Y ), for any X, Y ∈ Γ (Ker ψ) will be called a Lagrangian metric. The space of

Lagrangian metrics will be denoted L (M , ψ, γ).
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Proposition 3.28. Let L (M , ψ, γ) be a Leibnizian structure. The space L (M , ψ, γ)

of Lagrangian metrics possesses the structure of an affine space modelled on Ω1 (M ).

Proof:

We start by showing that L (M , ψ, γ) is an affine space modelled on the vector

space

V (M , ψ, γ) ≡
{
g̃ ∈ Γ

(
∨2T ∗M

)
/g̃ (V,W ) = 0 for all V,W ∈ Γ (Ker ψ)

}
by displaying the following subtraction map

L (M , ψ, γ)× L (M , ψ, γ) → V (M , ψ, γ)

(g, g′) 7→ g′ − g

which can be shown to satisfy Weyl’s axioms. We now conclude the proof by

constructing the canonical isomorphism:

ϕ : V (M , ψ, γ) → Ω1 (M )

g̃ 7→ α ≡ g̃ (N)− 1

2
g̃ (N,N)ψ with N ∈ FO (M , ψ)

together with its inverse

ϕ−1 : Ω1 (M ) → V (M , ψ, γ)

α 7→ g̃ ≡ 2ψ ∨ α.

We now introduce the map

N

Θ : L (M , ψ, γ) → Ω1 (M )

g 7→ g (N)− 1

2
g (N,N)ψ

which can be checked to be an affine map modelled on ϕ i.e.
N

Θ (g′) −
N

Θ (g) =

ϕ (g′ − g) for all g′, g ∈ L (M , ψ, γ). According to Proposition B.4, for all N ∈

FO (M , ψ), the map
N

Θ endows the space of Lagrangian metrics L (M , ψ, γ) with
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a structure of vector space with origin Ker
N

Θ which can be shown to be spanned

by the transverse metric N
γ ∈ L (M , ψ, γ) associated to N . The map

N

Θ is then an

isomorphism of vector spaces. Furthemore, for a given N , one can represent any

element g ∈ L (M , ψ, γ) as g =
N
γ +ϕ

(N
A
)

=
N
γ + 2ψ∨

N

A, with
N

A ≡
N

Θ (g) ∈ Ω1 (M ).

Under a Milne boost N 7→ N + V , the form
N

A varies according to
N

A 7→
N

A+
N,V

Φ . We

sum up the discussion in the following Proposition:

Proposition 3.29. Let S (M , ψ, γ) be an Augustinian structure. The affine spaces

of

1. Milne orbits
[
N,

N

A
]
, with N ∈ FO (M , ψ) and

N

A ∈ Ω1 (M )

2. couples (Z, φ) with Z ∈ FO (M , ψ) and φ ∈ C∞ (M )

3. Lagrangian metrics g ∈ Γ (∨2 T ∗M )

are canonically isomorphic, i.e.

FO (M , ψ)× Ω1 (M )

Γ (Ker ψ)
∼= FO (M , ψ)× C∞ (M ) ∼= L (M , ψ, γ) .

Proposition B.4 ensures the isomorphism between 1 and 3. The somewhat lengthy

proof of the isomorphism between 2 and 3 is relegated to Appendix C. It rests on

the fact that the only Lagrangian metric g ∈ L (M , ψ, γ) satisfying

g (Z) = φψ

reads as g ≡ Z
γ + φψ ∨ ψ, with Z

γ the metric transverse to Z.

The characterisation of Newtonian manifolds using Coriolis-free fields of observers

thus allows to define a covariant metric g. Although we are in a nonrelativistic

context, the latter metric can be nondegenerate (when the gravitational gauge scalar

φ is nowhere vanishing). Under a Maxwell-gauge transformation Z 7→ Z − h (df),

the metric g transforms as

g 7→ g′ = g + 2ψ ∨ df (3.41)

thus defining a Maxwell-group action on L (M , ψ, γ).
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Definition 3.30 (Lagrangian structure). Let L (M , ψ, γ) be a Leibnizian struc-

ture. A triplet L (M , ψ, [g]) where [g] is a Maxwell-orbit in the space L (M , ψ, γ)

of Lagrangian metrics compatible with L (M , ψ, γ) is called a Lagrangian struc-

ture. A quadruplet L (M , ψ, [g] ,∇) where ∇ is a Galilean connection compatible

with L (M , ψ, γ) will be called a Lagrangian manifold20.

Now, one can combine Propositions 3.25 and 3.29 in order to show:

Proposition 3.31 (cf. [9]). Let S (M , ψ, γ) be an Augustinian structure. There is

a canonical isomorphism between the affine spaces of Newtonian manifolds N (M , ψ, γ,∇)

and Lagrangian structures L (M , ψ, [g]).

The following table sums up the Milne-invariant objects introduced in this Section

along with their Maxwell-gauge transformation law:

Type Name Definition
Maxwell-gauge

transformation law

Z ∈ FO (M , ψ)
Coriolis-free field of

observers
Z ≡ N − h

(
N

A

)
Z 7→ Z − h (df)

φ ∈ C∞ (M )
Gravitational gauge

scalar
φ ≡ 2

N

A (N)−h
(
N

A,
N

A

)
φ 7→ φ+2 df (Z)−h (df, df)

g ∈ Γ (∨2 T ∗M ) Lagrangian metric g ≡ N
γ + 2ψ ∨

N

A g 7→ g + 2ψ ∨ df

Table 2: Milne-invariant objects

The use of the “Lagrangian” denomination is justified by the fact that a Lagrangian

metric g defines a Lagrangian as L ≡ 1
2
g (X,X) with X ∈ FO (M , ψ) the tangent

vector field associated to an (arbitrary) observer x : I ⊆ R → M : τ 7→ x (τ). In

components, the Lagrangian then reads

L =
1

2
gµν

dxµ

dτ

dxν

dτ
. (3.42)

20Our acception of the term Lagrangian manifolds should not be mistaken with the denomination
Lagrangian submanifolds in symplectic geometry.
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In order to find the associated equations of motion, it must be kept in mind that

the variation of the Lagrangian (3.42) is not performed over the whole space of

tangent vectors but is constrained to the space of tangent vectors parameterised by

the proper time τ , i.e. to the space of observers (cf. Proposition 2.16). In the

generic case, the constraint ψµ dx
µ

dτ
= 1 is linear in the velocities and, in general,

non-holonomic (since it is of the form f (xi, ẋi, t) = 0). However, in the Augustinian

case, the absolute clock is closed (ψ = dt) so that the constraint can be integrated

to give a holonomic constraint (i.e. of the form f (xi, t) = 0) which can be resolved

by adopting the absolute time t as parameter:

L =
1

2
gµν

dxµ

dt

dxν

dt
. (3.43)

In an adapted coordinate system (t, xi), the Lagrangian reads L = 1
2
γijẋ

iẋj+Aiẋ
i−U

where we used the relation g ≡ N
γ + 2ψ ∨

N

A with N ≡ ∂
∂t
,
N

A ≡ −Udt + Aidx
i and

γij the components of the collection of absolute rulers γ. The Lagrangian (3.43) is

therefore formally identical to the one describing the motion of a charged particle

minimally coupled to an electromagnetic field through the vector potential Ai and

the scalar potential U and moving on a Riemannian manifold with metric γij.

Example 3.32. In the particular case of the Aristotle spacetime (ψ = dt and γ =

δij dx
i ∨ dxj) endowed with a Coriolis-free field of observers Z = ∂

∂t
, the Lagrangian

takes the standard form L = 1
2

(dx
i

dt
dxi
dt

+ φ) since the gravitational gauge 1-form

reads
Z

A = 1
2
φ dt for this field of observers. Notice that the usual potential would be

U = −1
2
φ.

For a generic Augustinian structure, the Euler-Lagrange equations of motion derived

from L take the form [9]:

gαβ
d2xβ

dt2
+

1

2
[∂µgνα + ∂νgµα − ∂αgµν ]

dxµ

dt

dxν

dt
= 0.

Contracting with hλα and using the relation gαβhλα = δλβ−Zλψβ (as can be deduced

from the expression of the Lagrangian metric g) leads to:

d2xλ

dt2
− Zλψν

d2xν

dt2
+

1

2
hλα [∂µgνα + ∂νgµα − ∂αgµν ]

dxµ

dt

dxν

dt
= 0. (3.44)
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Now, differentiating the constraint ψµ dx
µ

dτ
= 1, one obtains the relation

ψν
d2xν

dt2
= −∂(αψβ)

dxα

dt

dxβ

dt

which can be substituted in eq.(3.44) to give

d2xλ

dt2
+ Γλµν

dxµ

dt

dxν

dt
= 0

where the components Γλµν read

Γλµν = Zλ∂(µψν) +
1

2
hλρ [∂µgρν + ∂νgρµ − ∂ρgµν ] . (3.45)

Using Table 2, one can check that the expression (3.45) is identical to the one

of eq.(3.27) (with
N

F = d
N

A), so that the Lagrangian L describes a free particle in

geodesic motion with respect to a Newtonian connection, hence providing a concrete

implementation of Proposition 3.31. Note that, although being manifestly Milne-

invariant, the Lagrangian L is not invariant under a Maxwell-gauge transformation

of g as gµν 7→ gµν + 2ψ(µ ∂ν)f but transforms by adjonction of a total derivative

L 7→ L + df
dt

which only contributes to the boundary term, so that the equations

of motion (and thus the expression of Γλµν) are Maxwell-gauge invariant. Finally,

notice that, when the gravitational potential vanishes (according to Proposition 3.26,

this can always be achieved via a Maxwell-gauge transformation), then eq.(3.45)

identifies with the expression of the torsionfree special connection associated to Z(
cf. eq.(3.26)

)
since g =

Z
γ whenever φ = 0.

3.5 Towards the ambient formalism

Before adressing the issue of torsional Galilean connections, we conclude the present

Section by a heuristic discussion regarding the natural emergence of the ambient

formalism through the study of Newtonian manifolds, thus paving the way to the

more systematic discussion to appear in [32].

Let21 ¯N
(
M̄ , ψ̄, γ̄, ∇̄

)
be a Newtonian manifold where M̄ is (d + 1)-dimensional.

Pick a field of observers N̄ ∈ FO
(
M̄ , ψ̄

)
. The characterisation of a Newtonian

21In the present section, we anticipate on the notation to be used in [32] where nonrelativistic
objects will be topped with a bar.
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manifold ¯N has been seen to require the introduction of a set of 1-forms
N̄

A ∈ Ω1
(
M̄
)

with Maxwell-like transformation law
N̄

A 7→
N̄

A + df , where f ∈ C∞
(
M̄
)
. To the

bundle-minded physicist, this transformation law suggests to reinterpret the 1-forms
N̄

A as gauge connections for a principal (R,+)-bundle of projection π : M → M̄ ,

where M is a (d+2)-dimensional manifold. Recall that, if
N

A ∈ Ω1 (M ) is an (R,+)-

principal connection on M , choosing a section σ : Ū → M (where Ū ⊂ M̄ is an

open subset of M̄ ) allows to define a gauge connection
N̄

A ∈ Ω1
(
Ū
)
as

N̄

A ≡ σ∗
N

A.

Reciprocally, a collection
{

Ūα,
N̄

Aα

}
(where the Ūα form an open cover of M̄ and

the set of
N̄

Aα differ by Maxwell-like transformation laws) defines a unique principal

connection
N

A.

The principal (R,+)-bundle involves a supplementary “internal” direction, the ver-

tical fiber foliation, which is a congruence of integral curves (called rays) for the

unique fundamental vector field of the principal bundle M , denoted ξ ∈ Γ (TM )

and designated as the wave vector field. Since ξ is the fundamental vector field, it

satisfies
N

A (ξ) = 1 (since 1 is the generator of the Abelian Lie algebra R).

Usually (e.g. in Yang-Mills theories), the fiber of an Ehresmann bundle is inter-

preted as an auxiliary geometric object allowing to define an internal symmetry.

The key to the ambient approach consists in reinterpreting this additional direction

as a new spacetime dimension.

Now, we investigate how structures on M̄ can be lifted up to M . First, the absolute

clock ψ̄ ∈ Ω1
(
M̄
)
defines a unique closed 1-form ψ ∈ Ω1 (M ) as ψ ≡ π∗ψ̄, called

wave covector field. It can be checked that, since π∗ξ = 0, one has ψ (ξ) = 0, so that

ξ ∈ Γ (Ker ψ). The field of observers N̄ ∈ FO
(
M̄ , ψ̄

)
can be lifted up to M by

defining N ∈ FO (M , ψ) as the horizontal lift of N̄ with respect to
N

A (i.e. π∗N = N̄

and
N

A (N) = 0) while an ambient covariant metric Nγ ∈ Γ (∨2 T ∗M ) can be defined as

the generalised pullback of the transverse metric N̄γ ∈ Γ
(
∨2 T ∗M̄

)
. It can be checked

that Rad N
γ ∼= Span {ξ,N}. The kernel of ψ defines an involutive distribution (ψ

being closed) whose integral submanifolds are called wavefront worldvolumes. Each

wavefront worldvolume can thus be envisaged as the union of an absolute space

with the corresponding fibers. A wavefront wordlvolume i : M̃ ↪−→M is therefore

endowed with a contravariant metric γ̃ ∈ Γ
(
∨2 T ∗M̃

)
defined as the generalised
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pullback γ̃ ≡ i∗
N
γ . Contrarily to its nonrelativistic counterpart, the metric γ̃ is

degenerate since γ̃ (ξ) = 0 (in the language of [14], the triplet
(
M̃ , ξ, γ̃

)
is thus a

Carroll metric structure).

According to Proposition 3.31, a Newtonian manifold defines a class of Lagrangian

metrics [ḡ] where each metric ḡ ∈ Γ
(
∨2 T ∗M̄

)
is given by ḡ ≡ N̄

γ + 2 ψ̄ ∨
N̄

A and

transforms under a gauge transformation as ḡ 7→ ḡ′ = ḡ+ 2 ψ̄ ∨ df . Similarly to the

definition of a principal connection on M , it can be shown that the set [ḡ] defines a

unique covariant metric g ∈ Γ (∨2 T ∗M ) satisfying ḡ = σ∗g. Explicitly, the metric

g can be expressed as g ≡ N
γ + 2ψ ∨

N

A. Furthermore, the metric g can be shown to

be nondegenerate. The expression for g can be used in order to compute g (ξ, ξ) = 0

and g (N,N) = 0 (so that ξ and N are null vector fields). Furthermore, g (ξ) = ψ

and g (N) =
N

A. This implies g(ξ,N) = 1 so that ξ and N form a lightcone basis (cf.

[24] and Figure 6) and M is thus a Lorentzian manifold. Since g is nondegenerate,

it defines a notion of parallelism on M in the guise of the Levi-Civita connection

∇ and it will be shown in [32] (following [35]) how the Levi-Civita connection ∇
projects down to the Newtonian connection ∇̄ on M̄ . The wavevector field can

then be shown to be parallel with respect to ∇, so that M can be characterised as

a Bargmann-Eisenhart wave (cf. the terminology used in [24]).

Figure 6: Relativistic light-cone basis

The conclusion emerging from the line of reasoning sketched here is that the usual

hierarchy between Bargmann-Eisenhart waves and Newtonian manifolds (where the

latter are obtained from the former) can in fact be reversed given that a geometri-
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cal understanding of nonrelativistic spacetimes (Newtonian manifolds) leads natu-

rally to the reconstruction of an ambient relativistic spacetime (Bargmann-Eisenhart

waves). As always in the process of dimensional reduction, a spacetime symmetry

of the ambient manifold is interpreted as an internal symmetry on the reduced man-

ifold. A Maxwell gauge symmetry is always found in the reduced theory along

one-dimensional orbits independently of the type of curves, whether spacelike (in

the usual case à la Kaluza-Klein) or lightlike (here).
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4 Torsional Galilean connections

So far, we chose to restrict the scope of our analysis to nonrelativistic structures

endowed with torsionfree connections. Such a restriction is quite natural when one

is dealing with nonrelativistic metric structures whose absolute clock is closed (Au-

gustinian structures) since, in this case, there exist torsionfree connections which

are furthermore compatible with the metric structure (cf. Theorem 3.10), similarly

to the relativistic case. Nonetheless, the introduction of torsional connections ac-

quires increased relevance when considering nonrelativistic metric structures with

non-closed absolute clock, since then the torsionfree condition and metric compat-

ibility become mutually exclusive (cf. Proposition 3.2). In [21], when considering

parallelism for Aristotelian structures, we will be brought to favour the torsionfree

condition at the expense of the metric compatibility by considering connections pro-

jectively equivalent to Galilean/Newtonian ones. However, the alternative route is

equally worth of exploration, as proven by the recent surge of interest in gener-

alisations of Newton-Cartan geometry characterised by torsional connections (e.g.

[16, 17, 18, 19, 20]). Such approaches focus on a Leibnizian structure endowed with

a Koszul connection whose torsion is tuned in order to ensure compatibility with the

absolute clock and rulers. In particular, the works [18, 20] exhibit a special class of

torsional connections compatible with the metric structure and remaining invariant

under Milne boosts. As emphasised in Section 3.2, the latter property is automatic

when the connection is understood as a geometrical object. Nevertheless, manifest

Milne-invariance of its components may for instance be achieved by making use of

the manifestly Milne-invariant “Lagrangian” variables (i.e. Z, φ, g in Section 3.4).

4.1 Torsional Galilean manifolds

We start this study of nonrelativistic torsional manifolds by investigating the struc-

ture of the space of torsional Galilean connections, thus providing an analysis similar

to the ones conducted in Sections 2.1 and 3. We then propose a generalisation of

the notion of Newtonian connection to the torsional case, allowing the use of the

“Lagrangian” variables. The present discussion is intended as prolegomena in order

to pave the way to the description of the embedding of torsional Galilean manifolds

inside relativistic spacetimes in [32].
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Let L (M , ψ, γ) be a Leibnizian structure. The space of Galilean connections com-

patible with L (M , ψ, γ) will be denoted D (M , ψ, γ).22

Proposition 4.1. The space D (M , ψ, γ) possesses the structure of an affine space

modelled on the vector space V (M , ψ, γ) defined as23:

V (M , ψ, γ) ≡
{
S ∈ Γ (T ∗M ⊗ T ∗M ⊗ TM ) / ψλS

λ
µν = 0 and S(λ

µν h
ρ)ν = 0

}
.

The compatibility conditions (3.16) then reduce the vector space on which the affine

space of torsional connections is modelled from Γ (T ∗M ⊗ T ∗M ⊗ TM ) to the sub-

space V (M , ψ, γ).

Lemma 4.2. The vector space V (M , ψ, γ) is isomorphic to the vector space

Ω2 (M )⊕ Γ (∧2T ∗M ⊗Ker ψ).

A first discrepancy with the torsionfree case is that the linear isomorphism is not

canonical in the presence of torsion but rather depends on the gift of a field of

observers. Explicitly, for a given N ∈ FO (M , ψ) the isomorphism is given by

N
ϕ : V (M , ψ, γ)→ Ω2 (M )⊕ Γ

(
∧2T ∗M ⊗Ker ψ

)
Sλµν 7→

(
Fµν = −2

N
γλ[µS

λ
ν]ρN

ρ, Uλ
µν = Sλ[µν]

)
with N

γ ∈ Γ (∨2 T ∗M ) the transverse metric associated to N while its inverse takes

the form

N
ϕ−1 : Ω2 (M )⊕ Γ

(
∧2T ∗M ⊗Ker ψ

)
→ V (M , ψ, γ)(

Fµν , U
λ
µν

)
7→ hλρψ(µFν)ρ + Uλ

µν + 2hλσ Uρ
σ(µ

N
γν)ρ.

Note that the expression Fµν = −2
N
γλ[µS

λ
ν]ρN

ρ is independent of the choice of field

of observers N only in the absence of torsion. Explicitly, under a Milne boost
22Notice that we will make use of the same symbols to denote the various spaces and maps as

in Section 3 in order to make more transparent the similitude between the arguments.
23Note that the vector space V (M , ψ, γ) differs from its torsionfree counterpart (cf. Proposition

3.4) in that its elements do not satisfy any symmetry conditions on their lower indices.
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N 7→ N ′ = N + V , with V ∈ Γ (Ker ψ), the isomorphism N
ϕ transforms as:

N ′

ϕ
(
Sλµν
)

=
N
ϕ
(
Sλµν + hσλ

N
γαρV

α(ψµS
ρ
[νσ] + ψνS

ρ
[µσ])

)
(4.46)

N ′

ϕ−1
(
Fµν , U

λ
µν

)
=

N
ϕ−1

(
Fµν + Uρ

µν

N
γραV

α , Uλ
µν

)
. (4.47)

Proposition 4.1 together with Lemma 4.2 then ensure the following Proposition:

Proposition 4.3. The space D (M , ψ, γ) possesses the structure of an affine space

modelled on Ω2 (M )⊕ Γ (∧2T ∗M ⊗Ker ψ).

Similarly to the Lorentzian and torsionfree Galilean cases, we wish to define an

affine map
N

Θ : D (M , ψ, γ) → Ω2 (M ) ⊕ Γ (∧2T ∗M ⊗Ker ψ) modelled on the

linear map N
ϕ. As for the map D (M , ψ, γ)→Ω2 (M ), we rely on the torsion-

free prescription and map Galilean connections to the gravitational fieldstrength

measured by the field of observers N (cf. Definition 3.7). Regarding the map

D (M , ψ, γ)→Γ (∧2T ∗M ⊗Ker ψ), a natural prescription consists in associating

each Galilean connection with the spacelike projection transverse to N of its torsion

tensor field PN
(

Γλ[µν]

)
≡ Γλ[µν] − NλψαΓα[µν]. Using eq.(3.17), the last expression

becomes PN
(

Γλ[µν]

)
= Γλ[µν] −Nλ∂[µψν]. The map

N

Θ thus takes the explicit form:

N

Θ : D (M , ψ, γ)→ Ω2 (M )⊕ Γ
(
∧2T ∗M ⊗Ker ψ

)
∇ 7→

(
N

Fαβ = −2
N
γλ[α∇β]N

λ,
N

Uλ
µν = Γλ[µν] −Nλ∂[µψν]

)

It can be checked that
N

Θ is an affine map associated to the isomorphism N
ϕ, i.e. we

have

N

Θ (Γ′)−
N

Θ (Γ) =
N
ϕ (Γ′ − Γ) (4.48)

for all Γ′,Γ ∈ D (M , ψ, γ).

For a given Galilean manifold G (M , ψ, γ,∇) and field of observers N ∈ FO (M , ψ),

we designate the couple
(N
F ,

N

U
)
≡

N

Θ (∇) as the torsional gravitational fieldstrength

measured by the field of observers N with respect to ∇. This piece of terminology

allows to formulate the following Proposition:
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Proposition 4.4 (Torsional special connection [23]). Given a field of observers

N ∈ FO (M , ψ), there is a unique Galilean connection
N

Γ ∈ D (M , ψ, γ) compatible

with the Leibnizian structure L (M , ψ, γ) such that the torsional gravitational field-

strength measured by the field of observers N with respect to
N

Γ vanishes. We call
N

Γ

the torsional special connection associated to N .

The space of torsional special connections compatible with L (M , ψ, γ) will be

denoted D0 (M , ψ, γ). An explicit component expression of
N

Γ is given by (cf. e.g.

[16, 17, 19]):

N

Γλµν = Nλ∂µψν +
1

2
hλρ
(
∂µ

N
γρν + ∂ν

N
γρµ − ∂ρ

N
γµν

)
. (4.49)

Note that
N

Γ is non-symmetric whenever the absolute clock ψ is not closed, since
N

Γλ[µν] = Nλ∂[µψν]. Whenever ψ is closed, the metric structure is Augustinian and
N

Γ

reduces to the torsionfree special connection
(
cf. eq.(3.26)

)
.

The following Theorem (generalising Theorem 3.10) can be seen as a nonrelativistic

avatar of Theorem 2.4:

Theorem 4.5 (cf. [23]). Given a field of observers N ∈ FO (M , ψ), the space

of Koszul connections compatible with a given Leibnizian structure L (M , ψ, γ)

possesses the structure of a vector space isomorphic to the vector space Ω2 (M ) ⊕
Γ (∧2 T ∗M ⊗Ker ψ).

The gift of a field of observers N then singles out a privileged Galilean connec-

tion (i.e. the associated torsional special connection
N

Γ) allowing to represent any

Galilean connection Γ ∈ D (M , ψ, γ) as

Γλµν =
N

Γλµν + hλρψ(µ

N

F ν)ρ +
N

Uλ
µν + 2hλσ

N

Uρ
σ(µ

N
γν)ρ (4.50)

where the 2-form
N

F ∈ Ω2 (M ) and the spacelike vector field-valued 2-form
N

U ∈
Γ (∧2T ∗M ⊗Ker ψ) are characteristic of Γ, given N , and are explicitly defined as(N
F ,

N

U
)
≡ N
ϕ
(

Γ −
N

Γ
)
. A nonrelativistic equivalent of the Koszul formula (2.3) can
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be articulated by reformulating the component expression (4.50) as24

2
N
γ (∇XY, V ) = X

[
N
γ (Y, V )

]
+ Y

[
N
γ (X, V )

]
− V

[
N
γ (X, Y )

]
+
N
γ ([X, Y ] , V )− N

γ ([Y, V ] , X)− N
γ ([X, V ] , Y ) (4.51)

+
N
γ

(
N

U (X, Y ) , V

)
− N
γ

(
N

U (Y, V ) , X

)
− N
γ

(
N

U (X, V ) , Y

)
+ψ (X)

N

F (Y, V ) + ψ (Y )
N

F (X, V )

with X, Y ∈ Γ (TM ) and V ∈ Γ (Ker ψ).

Similarly to the torsionfree case, a natural question that arises consists in determin-

ing the transformation relations of
(
N

F ,
N

U

)
under a change of field of observers. The

following Lemma generalises Lemma 3.11:

Lemma 4.6. Let N ′ and N ∈ FO (M , ψ) be two fields of observers related by a

Milne boost parameterised by the spacelike vector field V ∈ Γ (Ker ψ) (i.e. N ′ = N+

V ) and denote
N ′

Γ and
N

Γ ∈ D0 (M , ψ, γ) their respective torsional special connections.

These are related via

N ′

Γλ
µν =

N

Γλµν +
N
ϕ−1

(
−d

N,V

Φ +
1

2

N
γ (V, V ) dψ ,

1

2
V ⊗ dψ

)
(4.52)

where Φ : FO (M , ψ)× Γ (Ker ψ)→ Ω1 (M ) is defined in eq.(3.28).

The following Proposition follows straightforwardly from the transformation rela-

tions (4.47) and (4.52):

Proposition 4.7. Under a change of field of observers N 7→ N ′ = N + V , the map
N

Θ gets modified as:

N ′

Θ (∇) =
N

Θ (∇) +

(
2∇[µ

N,V

Φν] , −V λ∂[µψν]

)
(4.53)

for all ∇ ∈ D (M , ψ, γ).

Accordingly, in the representation (4.50) of any Γ ∈ D (M , ψ, γ) the torsional grav-

itational fieldstrengths measured by the fields of observers N or N ′ are related by a
24A Koszul formula for Galilean connections was first obtained in [23]. Our expression (4.51)

presents the advantage of being closer to its relativistic avatar (2.3).
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Milne boost reading for the 2-forms
N ′

F ,
N

F ∈ Ω2 (M ) as

N ′

F µν =
N

F µν + 2∇[µ

N,V

Φν] (4.54)

and for the spacelike vector field-valued 2-forms
N

U
′

,
N

U ∈ Γ (∧2T ∗M ⊗Ker ψ) as

N ′

U λ
µν =

N

Uλ
µν − V λ∂[µψν]. (4.55)

Given a field of observers N ∈ FO (M , ψ), one can then define a group action of

the Milne group on the space FO (M , ψ)×
(
Ω2 (M )⊕ Γ (∧2T ∗M ⊗Ker ψ)

)
as

(
Nλ ,

N

F µν ,
N

Uλ
µν

)
7→(

Nλ + V λ ,
N

F µν + 2 ∂[µ

N,V

Φν] + γ (V, V ) ∂[µψν] −
N

Uλ
µν

N
γλαV

α ,
N

Uλ
µν − V λ∂[µψν]

)

with N ∈ FO (M , ψ),
N

F ∈ Ω2 (M ),
N

U ∈ Γ (∧2T ∗M ⊗Ker ψ), V ∈ Γ (Ker ψ) and

the 1-form
N,V

Φ ∈ Ω1 (M ) is defined in eq.(3.28).

Definition 4.8 (Torsional gravitational fieldstrength). A Milne orbit [N,
N

F ,
N

U ] in

FO (M , ψ) ×
(
Ω2 (M ) ⊕ Γ (∧2T ∗M ⊗Ker ψ)

)
is dubbed a torsional gravitational

fieldstrength. The space of torsional gravitational fieldstrengths will be denoted

F (M , ψ, γ) :=
FO (M , ψ)×

(
Ω2 (M )⊕ Γ (∧2T ∗M ⊗Ker ψ)

)
Γ (Ker ψ)

.

Proposition 4.9. The space F (M , ψ, γ) of torsional gravitational fieldstrengths is

an affine space modelled on V (M , ψ, γ).

This is a particular case of the third fact in Proposition B.4. Using this terminology,

we can further characterise the affine space of Galilean connections as follows:

Proposition 4.10. The space of torsional Galilean connections compatible with a

given Leibnizian structure possesses the structure of an affine space canonically iso-

morphic to the affine space of torsional gravitational fieldstrengths.

As noted in [23], the fibers of the vector bundles ∧2 T ∗M ⊗ TM and (∧2 T ∗M ) ⊕
(∧2 T ∗M ⊗Ker ψ) both have dimension d(d+1)2

2
for a (d+ 1)-dimensional space-

time M , so that the amount of freedom in the choice of a (potentially torsional)
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compatible Koszul connection is the same in the relativistic and nonrelativistic

cases. In a sense, the constraint on the timelike component of the torsion (which

is fixed for a Galilean connection contrarily to the relativistic case) is traded for

the freedom in the choice of gravitational fieldstrength. This statement can be

made more precise by displaying the following (non-canonical) isomorphism between

Ω2 (M ) ⊕ Γ (∧2T ∗M ⊗Ker ψ) and the vector space of vector field-valued 2-forms

Γ (∧2T ∗M ⊗ TM ) as:

N

ζ : Ω2 (M )⊕ Γ
(
∧2T ∗M ⊗Ker ψ

)
→ Γ

(
∧2T ∗M ⊗ TM

)
(
Fµν , U

λ
µν

)
7→ T λµν = Uλ

µν +NλFµν

together with its inverse

N

ζ
−1

: Γ
(
∧2T ∗M ⊗ TM

)
→ Ω2 (M )⊕ Γ

(
∧2T ∗M ⊗Ker ψ

)
T λµν 7→

(
Fµν = ψλT λµν , Uλ

µν = T λµν −NλψαT αµν
)
.

This observation softens the sharp distinction between relativistic and nonrelativistic

cases that hold in the torsionfree case. An ambient perspective of this fact will be

provided in [32].

4.2 Torsional Newtonian connections

Having reviewed the characterisation of torsional Galilean manifolds, we are now in a

position to look for a torsional generalisation of the notion of Newtonian connection.

Recall that in the torsionfree case, the Duval-Künzle condition could be interpreted

as imposing that the torsionfree gravitational fieldstrength measured by any field

of observers is a closed 2-form, i.e.
N

F ∈ Ω2 (M ) ∩ Ker d. The consistency of this

condition was insured by the fact that two torsionfree special connections differ by

an exact 2-form, cf. Lemma 3.11. However, in view of expression (4.54), one deduces

that, in contradistinction to the torsionfree case, a Milne boost does not preserve the

condition that the 2-form
N

F is closed (d
N

F = 0), since ∇[α

N,V

Φβ] is not generically exact.

Consequently, we are led to discard the condition d
N

F = 0 as a potential candidate

aiming at generalising the notion of Newtonian connection since it is inconsistent

whenever torsion is involved. However, relying on the form of eq.(4.54), a natural
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condition consists in imposing that
N

F is covariantly exact, in the following sense:

Definition 4.11 (Covariantly exact differential form). A differential p-form α ∈
Ωp (M ) is said to be covariantly exact for the Koszul connection ∇ if there exists a

(p− 1)-form β ∈ Ωp−1 (M ) such that αµ1...µp = ∇[µ1 βµ2...µp].

For the case when ∇ is torsionfree, the notion of a covariantly exact form identifies

with the one of an exact form. Based on this notion, one can now articulate a

generalised definition of Newtonian connection as:

Definition 4.12 (Torsional Newtonian connection). Let G (M , ψ, γ,∇) be a

Galilean manifold whose Koszul connection ∇ is characterised by the torsional grav-

itational fieldstrength
[
N,

N

F ,
N

U
]
. The Koszul connection ∇ is said to be a torsional

Newtonian connection if the 2-form
N

F ∈ Ω2 (M ) associated to any N ∈ FO (M , ψ)

is covariantly exact.

The transformation law given by eq.(4.54) ensures the consistency of the previous

definition, since the covariant exactness of a 2-form
N

F is preserved by the action

of the Milne group (4.54). From the action of the Milne group on FO (M , ψ) ×(
Ω2 (M ) ⊕ Γ (∧2T ∗M ⊗Ker ψ)

)
(cf. eqs.(4.54) and (4.55) ), one can define the

following action on FO (M , ψ)×
(
Ω1 (M )⊕ Γ (∧2T ∗M ⊗Ker ψ)

)
:

(
N,

N

A,
N

U

)
7→
(
N + V,

N

A+
N,V

Φ ,
N

U − 1

2
V ⊗ dψ

)
(4.56)

where V ∈ Γ (Ker ψ).

Definition 4.13 (Torsional gravitational potential). A Milne orbit
[
N,

N

A,
N

U
]
in

FO (M , ψ) ×
(
Ω2 (M ) ⊕ Γ (∧2T ∗M ⊗Ker ψ)

)
is dubbed a torsional gravitational

potential.

Proposition 4.14. Torsional Newtonian connections compatible with a given Leib-

nizian structure are in bijective correspondence with torsional gravitational poten-

tials.

It is worth stressing that, contrarily to the case of a torsionfree Newtonian con-

nection, there is no additional Maxwell gauge symmetry at hand. In the case of

vanishing torsion, the origin of the supplementary gauge invariance can be traced
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back to the closed condition d
N

F = 0 which allows to locally write the 2-form
N

F

as the gravitational fieldstrength for the gravitational potential
N

A ∈ Ω1 (M ) mea-

sured by N i.e.
N

F = d
N

A, so that
N

F is invariant under a gauge transformation of

the form
N

A 7→
N

A + df , with f ∈ C∞ (M ). However, when
N

F is covariantly ex-

act, i.e.
N

Fαβ = ∇[α

N

Aβ], the torsion term if non-vanishing breaks the invariance.

This important distinction motivates the following terminology: a torsionful New-

tonian connection is a torsional Newtonian connection with non-vanishing torsion.

Similarly to the torsionfree case, an alternative description of torsional Newtonian

connections can be given by making use of the “Lagrangian” variables Z, φ and g (cf.

Table 2). Starting from the component expression (4.50) with
N

F [αβ] = ∇[α

N

Aβ], this

is achieved by performing a Milne boost parameterised by the 1-form χ ≡ −
N

A, un-

der which the torsional Newtonian connection takes the manifestly Milne-invariant

form:

Γλµν = Zλ∂(µψν) +
1

2
hλρ [∂µgρν + ∂νgρµ − ∂ρgµν ]

+Γλ[µν] + Γρ[σµ]h
σλgρν + Γρ[σν]h

σλgρµ. (4.57)

By construction, the field of observers Z is the unique vector field which is Coriolis-

free with respect to ∇ (as follows by repeating the steps in the proof of Proposition

3.21, cf. Appendix A). This reformulation, along with Proposition 3.29, allows

to articulate two additional characterisations of torsionful Newtonian manifolds, as

formulated in the following Proposition:

Proposition 4.15. Let L (M , ψ, γ) be a Leibnizian structure. There is a bijective

correspondence between torsionful Newtonian manifolds and

1. triplets
(
Z, φ,

Z

U

)
, where Z ∈ FO (M , ψ), φ ∈ C∞ (M ) and

Z

U ∈

Γ (∧2 T ∗M ⊗Ker ψ).

2. couples (g, T ) where g ∈ Γ (∨2 T ∗M ) is a Lagrangian metric and T ∈
Γ (∧2 T ∗M ⊗ TM ) is a non-vanishing torsion tensor whose timelike part is

constrained to satisfy ψ
(
T (X, Y )

)
= dψ (X, Y ) for all X, Y ∈ Γ (TM ).

The two items in the previous Proposition complement the content of Propositions

3.25 and 3.31, respectively, to account for the torsionful case. As commented earlier,
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the torsionfree case is special in that it involves an additional gauge invariance.

In the torsionful case where no such symmetry is present25, torsionful Newtonian

connections are characterised by individual objects rather than classes thereof. This

justifies the formal separation between the torsionfree and torsionful cases in two

sets of Propositions.

According to the first item of Proposition 4.15 if one is given a Leibnizian structure

and a field of observers Z, the space of torsional Newtonian connections is in bijective

correspondence with C∞ (M )×Γ (∧2 T ∗M ⊗Ker ψ). Putting φ = 0 and
Z

U = 0 (so

that g =
Z
γ and T = Z⊗ dψ) allows to recover the expression of the torsional special

connection associated to Z
(
cf. (4.49)

)
:

Z

Γλµν = Zλ∂µψν +
1

2
hλρ
[
∂µ

Z
γρν + ∂ν

Z
γρµ − ∂ρ

Z
γµν

]
. (4.58)

Let
[
N,

N

A
]
be the Milne orbit containing (Z, 0) (i.e.

[
N,

N

A
]
≡
[
Z, 0

]
). The last

expression can be written in a manifestly invariant way (i.e. independently of the

choice of representative in
[
N,

N

A
]
) by substituting the expressions of Table 2 as:

Z

Γλµν =
(
Nλ − hλρ

N

Aρ
)
∂µψν +

1

2
hλρ
[
∂µ
(N
γρν +

N

Aνψρ +
N

Aρψν
)

+∂ν
(N
γρµ +

N

Aµψρ +
N

Aρψµ
)
− ∂ρ

(N
γµν +

N

Aνψµ +
N

Aµψν
)]

thus allowing to recover the components of the torsional connection introduced in

the works [18, 20].

The different structures necessary to uniquely determine a given manifold are sum-

marised in the following table, both in the relativistic and nonrelativistic cases:
25In other words, the coefficients (4.57) are not invariant under the transformations recorded in

Table 2.
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Metric structure Supplementary structure Manifold

Lorentzian × Lorentzian

Augustinian
Gravitational fieldstrength

[
N,

N

F
]

Galilean

Gravitational potential
[
N, [

N

A]
]
,
[
Z, φ

]
,
[
g
]

Newtonian

Leibnizian

Torsional gravitational fieldstrength

[
N,

N

F ,
N

U
] Torsional Galilean

Torsional gravitational potential

[
N,

N

A,
N

U
]
,
(
Z, φ,

Z

U

)
, (g, T )

Torsional Newtonian

Table 3: Solutions to the equivalence problem
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5 Conclusion

In this series of papers, we adress two novel generalisations of Newtonian connections

for metric structures with non-closed absolute clock by going down the two follow-

ing crossing roads: in the present paper we reviewed the class of torsional Galilean

connections by emphasising its affine space structure. We also isolated a subclass

(dubbed torsional Newtonian connections) characterised by a covariantly exact 2-

form. Similarly to their torsionfree counterparts, torsional Newtonian connections

can be expressed in terms of Lagrangian variables which we used in order to make

contact with the recently introduced torsional Newton-Cartan geometry [18, 20]. We

further discussed the geometric origin behind the lack of Maxwell gauge-invariance

of the latter. In a forthcoming paper [21], we will present a connection living on

the most general nonrelativistic metric structure allowing a notion of absolute time

(Aristotelian structure). This torsionfree connection has the nice feature of being

Maxwell gauge-invariant and such that its geodesic equation follows from a vari-

ational principle, similarly to its Newtonian counterpart to which it can be said

projectively related, since they define the same unparameterised geodesics.

The present analysis restricted to an intrinsic point of view on nonrelativistic connec-

tions, with particular emphasis placed on the equivalence problem. In a forthcoming

companion paper [32], we will discuss an ambient approach to these classes of con-

nections by generalising the Bargmann framework of Duval et al. (cf. [35, 36])

where nonrelativistic Newtonian manifolds were obtained as null dimensional reduc-

tion of a specific class of relativistic ones. As hinted in Section 3.5, this approach is

indeed quite natural for Newtonian manifolds but can be extended to embed more

general nonrelativistic structures. In [32] an ambient account of (torsional) Galilean

connections will be provided by considering a class of relativistic spacetimes en-

dowed with a (possibly torsional) connection parallelising a null Killing vector field.

In particular, this setup will allow us to embed torsionfree Galilean manifolds into

torsional relativistic spacetimes, thus shedding new light on the torsional origin of

the gravitational fieldstrength. Finally, in [21] the projectively Newtonian connec-

tion will be shown to arise as a projection of the Levi-Civita connection for a class

of relativistic spacetimes admitting a null and hypersurface-orthogonal Killing vec-

tor field. These spacetimes were studied in [37] and dubbed Platonic waves in [24]

59



where they were shown to be conformally related to the class of [35, 36]. This am-

bient construction will notably allow us to formulate at the level of connections the

Eisenhart-Lichnerowicz lift [38] of dynamical trajectories to relativistic geodesics.
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A Curvature of a torsionfree Galilean manifold

Let us recall the definition of the curvature of a Koszul connection for the vector

bundle E on M :

R (X, Y ; f) = ∇X∇Y f −∇Y∇Xf −∇[X,Y ]f

with X, Y ∈ Γ (TM ) and f ∈ Γ (E). The components of the Koszul curvature for

the tangent bundle E = TM read: dxλ [R (∂µ, ∂ν ; ∂ρ)] ≡ Rλ
ρµν .

Compatibility conditions (3.16) for the Galilei connection ∇ impose the following

constraints on the Koszul curvature:
∇µψν = 0⇒ ψλR

λ
ρµν = 0

∇µh
αβ = 0⇒ hρβRα

ρµν + hαρRβ
ρµν = 0

Notation A.1. In the following we will use a Galilean basis B ≡ {N, ei} together
with its dual B∗ ≡ {ψ, θi}. Now, let T µν be the holonomic components of a tensor

T ∈ Γ (TM × T ∗M ). The following notation will prove to be handy:


T 0
ν ≡ ψµT

µ
ν T iν ≡ θiµT

µ
ν

T µ0 ≡ NνT µν T µi ≡ eνi T
µ
ν .

The previously stated constraints on the Koszul curvature can thus be reexpressed

as:

R0
ρµν = 0 = R(ij)

µν . (A.59)

Taking these constraints into account, the components of the curvature 2-form Rλ
ρ ∈

Ω2 (M ) can be expanded as:

Rλ
ρ = R i

jθ
j
ρe
λ
i +R i

0ψρe
λ
i . (A.60)

Proposition A.2 (Symmetries of the Galilean curvature). The curvature tensor of
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a torsionfree Galilean connection satisfies the following identities:

R i
ρ(µν) = 0

R i
[ρµν] = 0

R i j
k l = Rj i

l k.

(A.61)

Proof:

These equalities follow respectively from the well-known identities

R (X, Y ;Z,W ) = −R (Y,X;Z,W ) ,

R (X, Y ;Z) +R (Y, Z;X) +R (Z,X;Y ) = 0 ,

R (X, Y ;Z,W ) = R (Z,W ;X, Y ) ,

where R (X, Y ;Z,W ) ≡ γ
(
R (X, Y ;Z) ,W

)
.

The second identity of the previous Proposition, known as the first Bianchi identity,

can be decomposed further:

Proposition A.3. The first Bianchi identity for the Galilei curvature leads to the

following set of equations:


R l

[ij]0 + 1
2
R l

0ij = 0

R l
[ijk] = 0.

(A.62)

Corollary A.4 (cf. [37]). The curvature tensor of a torsionfree Galilean manifold

satisfies the relation:

R
(i j)

[µ ν] = 0

Proof:
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The relation is equivalent to the set:


R

(i j)
[k l] = 0

R
(i j)

[0 k] = 0.

The first relation follows straightforwardly from the all-spacelike first Bianchi

identity and compatibility relations (A.59). The second identity is obtained

by taking the symmetric part in (k ↔ i) of the temporal/spacelike Bianchi

identity:

R(ki)j0 −R(k|j |i)0 +R(k|0|i)j = 0. (A.63)

The first term vanishes, leaving R(k i)
[0 j] = 0.

We now focus on the Duval-Künzle condition (cf. Definition 3.15) which, in com-

ponents reads:

R µ ν
α β = R ν µ

β α.

Decomposing on a Galilean basis leads to the set of equations:

R i j
k l = Rj i

l k

R
[i j]

0 0 = 0

Rj i
0 k = R i j

k 0

(A.64)

The first equation is already implied by the first Bianchi identity. However the

two remaining are non-trivial constraints that reduce the number of independent

components from 1
12
d2 (d+ 1) (d+ 5) to 1

12
(d+ 1)2 [(d+ 1)2 − 1

]
, i.e. to the same

number as in a (d+ 1)-dimensional (pseudo)-Riemannian manifold (cf. e.g. [6]).

Proposition A.5. The Duval-Künzle condition can be alternatively written as

R i
0 ∧ θi = 0. (A.65)
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Proof:

The alternative formulation R i
0 ∧ θi = 0 of the Duval-Künzle condition im-

poses the following constraints on the components of R i
0 = R i j

0 0 θj ∧ ψ +

1
2
R i j k

0 θj ∧ θk:


R

[i j]
0 0 = 0

R
[i k l]

0 = 0.

The first equality matches the second one from (A.64) so what remains to be

proved is the following equivalence:

Rj i
0 k = R i j

k 0 ⇔ R
[i j k]

0 = 0. (A.66)

We start by totally antisymmetrising the first of the identities of the Bianchi

set (A.62):

R
[i j k]

0 +
1

2
R

[i j k]
0 = 0. (A.67)

Expanding the first term leads to:

1

3

(
2R

j [k i]
0 −R

i k j
0

)
+

1

2
R

[i j k]
0 = 0. (A.68)

Using again the first Bianchi identity allows to transform the first term on the

left-hand side:

1

3

(
Rj i k

0 −R i k j
0

)
+

1

2
R

[i j k]
0 = 0. (A.69)

so that Rj i
0 k = R i j

k 0 ⇔ R
[i j k]

0 = 0.

Along the Duval-Künzle condition, another constraint on the curvature, dubbed the

Trautman condition26 is frequently encountered in the literature:
26Although the denominations Duval-Künzle and Trautman conditions seem customary in the

literature, it is amusing to note that in the respective works commonly cited when these conditions
are discussed, Trautman wrote what is usually referred to as the Duval-Künzle condition (cf.
eq.(IV) of [3]) while Künzle wrote the Trautman condition (cf. eq.(4.14) of [6]).
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Definition A.6 (Trautman condition, cf. e.g. [39]). Let J be the Jacobi curvature

operator defined as

J (X, Y ;Z) ≡ 1

2
(R (Z,X;Y ) +R (Z, Y ;X)) (A.70)

where X, Y and Z are three vector fields. The Trautman condition states that the

Jacobi operator must be self-adjoint when acting on spacelike vectors, i.e.

γ (J (X, Y ;V ) ,W ) = γ (J (X, Y ;W ) , V ) (A.71)

for all X, Y ∈ Γ (TM ) and for all V,W ∈ Γ (Ker ψ).

In components, the Jacobi operator reads J λρµν = Rλ
(µ|ρ|ν) = −Rλ

(µν)ρ while the

Trautman condition imposes:

R
[i j]

(µ ν) = 0. (A.72)

Proposition A.7 (cf. [37]). The Duval-Künzle and Trautman conditions are equiv-

alent for a torsionfree Galilean manifold.

Proof:

Decomposing the Duval-Künzle operator as:

R i j
µ ν −Rj i

ν µ
(K)

=
1

2

(
R(i j)

µ ν +R [i j]
µ ν −R(j i)

ν µ −R [j i]
ν µ

)
=

1

2

(
R(i j)

µ ν +R [i j]
µ ν −R(i j)

ν µ +R [i j]
ν µ

)
= R

(i j)
[µ ν]

(C)

+R
[i j]

(µ ν)
(T)

(A.73)

one recognises the operator (C) obtained in Corollary A.4 as well as the Traut-

man operator (T). Provided Corollary A.4, the Duval-Künzle and Trautman

conditions are therefore equivalent.
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B Affine, vector & principal homogeneous spaces

We will briefly review the definition of affine spaces and related concepts. The

relation between affine and vector spaces is much more clear when the former are

seen as principal homogeneous spaces for the latter.

Definition B.1 (Principal homogeneous space). When the action of a Lie group G

on a manifold P is regular (i.e. free and transitive), one says that P is a principal

homogeneous space for the group G.

Definition B.2 (Affine space). An affine space A modelled on a vector space V is

a principal homogeneous space A for V (seen as an Abelian group). More explicitly,

the regular action of V on A is a map

t : V ×A → A : (v, a) 7→ tva

where the bijections tv : A → A : a 7→ a+ v are called translations of A by v.

Equivalently, an affine space A modelled on a vector space V can be defined as a

set A together with a subtraction map

− : A ×A → V : (a, b) 7→ b− a ≡
−→
ab

with the following properties

1. ∀a ∈ A , ∀v ∈ V , ∃! b ∈ A such that b− a = v

2. ∀a, b, c ∈ A : (c− b) + (b− a) = c− a (⇔
−→
ab +

−→
bc = −→ac)

called Weyl’s axioms. The relation between the regular action and the subtraction

map is: tb−aa = b (∀a, b ∈ A ).

Definition B.3 (Affine map). Let A ′ and A be two affine spaces modelled on the

vector spaces V ′ and V , respectively. Let ϕ : V ′ → V be a linear map. The

map Θ : A ′ → A will be said to be an affine map modelled on ϕ if it satisfies

Θ (a′)−Θ (a) = ϕ (a′ − a) for all a′.

By choosing a specific element O ∈ A , called origin, the space A is endowed with

a structure of vector space, denoted AO, isomorphic to V . The addition map on A
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takes the form

+ : A ×A → A : (a′, a) 7→ t(a′−O)+(a−O) O

while the multiplication by a scalar reads:

R×D → D : (λ, a) 7→ tλ(a−O)O.

The bijection V → A : v 7→ tvO or its inverse A → V : a 7→ a−O ≡
−→
Oa provides

the isomorphism AO
∼= V .

Proposition B.4. Let:

• D be an affine space modelled on the vector space V isomorphic to W .

• F be a principal homogeneous space modelled on the Lie group G and denote

G× F → F : (g, f) 7→ g · f the group action of G on F .

• ϕ : F ×V → W be a collection of isomorphisms between V and W indexed by

elements of F , i.e. the map ϕf ≡ ϕ (f, ·) : V → W is an isomorphism for all

f ∈ F .

• Θ : F × D → W be a map such that for all f ∈ F , the map Θf ≡ Θ (f, ·) :

D → W is an affine map modelled on ϕf , i.e. Θf (d′) − Θf (d) = ϕf (d′ − d)

for all d, d′ ∈ D .

Then:

1. For all f ∈ F , the map Θf : D → W endows D with a structure of vector

space, the origin of which is the unique element of Ker Θf , so that it becomes

an isomorphism of vector spaces.

2. There is a canonical group action of the group G on the space F ×W defined

as

ρ : G× (F ×W ) → (F ×W )(
g, (f, w)

)
7→

(
g · f,Θg·f

(
Θ−1
f (w)

))
.
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3. The affine space D is canonically isomorphic to the space P := (F ×W ) /G

of orbits of G acting on (F ×W ) via the group action ρ.

Proof

1. We start by showing that, for all f ∈ F , there exists a unique element df ∈ D

such that Θf (df ) = 0.

• Existence:

Let d ∈ D and define df ∈ D as d− df = ϕ−1
f (Θf (d)). Using that Θf is

an affine map, we write

Θf (d)−Θf (df ) = ϕf (d− df ) = Θf (d)

so that Θf (df ) = 0.

• Uniqueness:

Let d′f and df be two elements of Ker Θf . Then Θf

(
d′f
)
− Θf (df ) =

ϕf
(
d′f − df

)
= 0 so that, using that ϕf is an isomorphism, d′f = df .

Given f ∈ F , the affine space D thus acquires the structure of a vector space

Ddf with origin df . Since the map Θf can be written as Θf (d) = ϕf (d− df ),
the fact that ϕf is a linear isomorphism ensures that Θf is too.

2. We first check the Identity condition, and then the Compatibility:

• Identity: ρ
(
e, (f, w)

)
=
(
f,Θf

(
Θ−1
f (w)

) )
= (f, w).

• Compatibility:

ρ
(
g′, ρ

(
g, (f, w)

))
= ρ

(
g′,
(
g · f, Θg·f

(
Θ−1
f (w)

)))

=

(
g′ · (g · f), Θg′·(g·f)

(
Θ−1
g·f
(
Θg·f

(
Θ−1
f (w)

) )))
=

(
(g′g) · f, Θ(g′g)·f

(
Θ−1
f (w)

) )
= ρ

(
g′g, (f, w)

)
.
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3. We start by showing that the space P of G-orbits is an affine space modelled

on V by displaying the following subtraction map:

P ×P → V : (p′, p) 7→ ϕ−1
f

(
f
w − f

w′
)

(B.74)

where f is an arbitrary element of F and
f
w ∈ W denotes the unique element

of W such that
(
f,

f
w
)

belongs to the G-orbit p ∈ P. The existence and

uniqueness of
f
w ∈ W are guaranteed by the fact that G acts regularly on

F . The map (B.74) is independent of the choice of f since, picking a different

representative f ′ ∈ F defined as f ′ ≡ g ·f , with g ∈ G, the term ϕ−1
f ′

(
f ′

w − f ′

w′
)

reads

ϕ−1
g·f

(
g·f
w − g·f

w ′
)

= ϕ−1
g·f

(
Θg·f

(
Θ−1
f

(
f
w
))
−Θg·f

(
Θ−1
f

(
f
w′
)))

= ϕ−1
g·f

(
ϕg·f

(
Θ−1
f

(
f
w
)
−Θ−1

f

(
f
w′
)))

= Θ−1
f

(
f
w
)
−Θ−1

f

(
f
w′
)

= ϕ−1
f

(
f
w − f

w′
)
.

Furthermore, the subtraction map (B.74) can be checked to satisfy Weyl’s

axioms, so that P is an affine space modelled on V .

We now introduce the map

Ξ : D →P : d 7→ [f,Θf (d)]

where f ∈ F and [f,Θf (d)] ∈ P is the unique G-orbit of F ×W containing

the element (f,Θf (d)). The map Ξ can be shown to satisfy:

Ξ (d′)− Ξ (d) = [f,Θf (d′)]− [f,Θf (d)]

= ϕ−1
f (Θf (d′)−Θf (d))

= d′ − d

so that Ξ : D →P is an affine isomorphism modelled on the identity map in
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V . The inverse map is given by

Ξ−1 : P → D : p 7→ Θ−1
f

(
f
w
)

where f is an arbitrary element of F and
f
w ∈ W the unique element of W

such that
(
f,

f
w
)
∈ p.
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C Technical proofs

Proof of Proposition 3.21

Let us first check that the previous definition for Z is well-defined under a change

of representative (cf. eq.(3.36)). This is easily seen as:

Z ′ = N ′ − h
(
N

A
′)

+ h (df ′)

= N + h (χ)− h
(
N

A+
N,V

Φ + df

)
+ h (df ′)

= N − h
(
N

A

)
+ h

(
d (f ′ − f)

)

since
N,V

Φ is given by (3.28).

Now, let us compute the Coriolis 2-form of a field of observers Z = N + h (χ), with

χ ∈ Ω1 (M ):

Z
ω (V,W ) = γ (∇VZ,W )− γ (V,∇WZ)

=
N
ω (V,W ) + γ (∇V h (χ) ,W )− γ (∇Wh (χ) , V )

with V,W ∈ Γ (Ker ψ). Note that the second and third terms make sense, since

ψ
(
∇V h (χ)

)
= V

[
ψ
(
h (χ)

)]
= 0. Using ∇γ = 0 allows to reformulate the first term

in brackets as γ (∇V h (χ) ,W ) = V [γ (h (χ) ,W )] − γ (h (χ) ,∇VW ). Proceeding

similarly with the second term in brackets leads to:

Z
ω (V,W ) =

N
ω (V,W ) +

(
V [γ (h (χ) ,W )]− γ (h (χ) ,∇VW )− (V ↔ W )

)
=

N
ω (V,W ) + V [χ (W )]−W [χ (V )]− χ (∇VW −∇WV )

=
N
ω (V,W ) + V [χ (W )]−W [χ (V )]− χ ([V,W ])

=
N
ω (V,W ) + dχ (V,W )

where one used respectively: in the first step, the equality γ (h (α) , X) = α (X), with

α ∈ Ω1 (M ) and X ∈ Γ (Ker ψ); in the second step, the fact that the Newtonian

connection is torsionfree; in the third step, the definition of the exterior derivative

of a 1-form.

Imposing that
Z
ω vanishes and using the local expression of

N
ω as

N
ω (V,W ) =
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d
N

A (V,W ) leads to the condition:

d

(
N

A+ χ

)
(V,W ) = 0 , ∀V,W ∈ Γ (Ker ψ) . (C.75)

Using the involutivity of the distribution induced by Ker ψ, one can show that the

condition (C.75) implies, locally, that

∃f ∈ C∞ (M ) / χ (V ) = −
N

A (V ) + df (V ) , ∀V ∈ Γ (Ker ψ) .

Therefore, there exists a function f on M such that Z = N − h
(
N

A

)
+ h (df).

Proof of Proposition 3.29

As noted earlier, the isomorphism between items 1 and 3 is ensured by Proposition

B.4. We now prove the isomorphism between items 2 and 3, starting with the

implication (Z, φ)⇒ g:

Lemma C.1. Let S (M , ψ, γ) be an Augustinian structure, Z ∈ FO (M , ψ) a field

of observers and φ ∈ C∞ (M ) a function on M . The metric g ∈ Γ (∨2 T ∗M ) defined

as:

g ≡ Z
γ + φψ ∨ ψ

with
Z
γ the metric transverse to Z, is the only Lagrangian metric satisfying

g (Z) = φψ . (C.76)

Proof:

Let g ∈ Γ (∨2 T ∗M ) be an arbitrary covariant metric on M . The decomposi-

tion of g on the Galilean basis {Z, ei} (with dual basis {ψ, θi}) reads:

g = g (Z,Z)ψ ∨ ψ + 2g (Z, ei)ψ ∨ θi + g (ei, ej) θ
i ∨ θj.

Requiring that the Lagrangian metric g satisfies the condition C.76 reduces its
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expression to:

g = φψ ∨ ψ + γ (ei, ej) θ
i ∨ θj

where the second term is nothing but Z
γ.

A statement converse to Lemma C.1, i.e. the implication g ⇒ (Z, φ), can be

formulated as follows:

Lemma C.2. Let S (M , ψ, γ) be an Augustinian structure and g ∈ Γ (∨2 T ∗M ) be

a Lagrangian metric on M . There is a unique couple (Z, φ), with Z ∈ FO (M , ψ)

a field of observers and φ ∈ C∞ (M ) a function such that:

g (Z) = φψ. (C.77)

Proof:

We start by proving that the condition g (X, Y ) = γ (X, Y ), ∀X, Y ∈
Γ (Ker ψ) implies that Rad g ∩ Ker ψ = {0}. Suppose there exists a vec-

tor field v ∈ Γ (TM ) such that g (v) = ψ (v) = 0. Since ψ (v) = 0,

g (v, w) = γ (v, w) = 0, ∀w ∈ Γ (Ker ψ), which leads to a contradiction since

γ is positive definite. In conclusion, such a vector field v does not exist and

Rad g ∩Ker ψ = {0}.
The positive definiteness of γ implies also that the dimension of Rad g is either

0 or 1, so that we will distinguish these two cases:

Dim (Rad g) = 1

Let v ∈ Γ (TM ) such that Rad g = Span v. The defining relation for Z and

φ then implies g (Z, v) = φψ (v) = 0, which in turn ensures φ = 0, since

ψ (v) 6= 0 in virtue of the precedent discussion. Then, one obtains g (Z) = 0

so that Z ∈ Rad g, i.e. Z ∼ v. The normalization condition ψ (Z) = 1 fixes

Z uniquely.

Dim (Rad g) = 0

Since the metric g is now assumed to be nondegenerate, one can introduce its

inverse g−1 ∈ Γ (∨2 TM ). Acting on each side of the defining equation for Z
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and φ with g−1, one gets Z = φ g−1 (ψ). Acting now with ψ on each side leads

to φ g−1 (ψ, ψ) = 1, so that φ =
1

g−1(ψ,ψ)
. Plugging back into the expression

for Z leads to Z =
g−1(ψ)
g−1(ψ,ψ)

. We summarise our results in the following table:

Dim (Rad g) Definition of φ Definition of Z

1 0 {Z ∈ Rad g, ψ (Z) = 1}

0 φ =
1

g−1(ψ,ψ)
Z =

g−1(ψ)
g−1(ψ,ψ)

Table 4: Lagrangian variables

Note that φ = 0 if and only if Dim (Rad g) = 1.
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