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We extend the quantization à la Faddeev-Jackiw for non-autonomous singular systems. This leads to a generalization of the Schrödinger equation for those systems. The method is exemplified by the quantization of the damped harmonic oscillator and the relativistic particle in an external electromagnetic field.

The quantization of constrained systems is almost as old as the beginning of quantum mechanics. It was Dirac [START_REF] Dirac | Lectures on Quantum Mechanics[END_REF] who elaborated a Hamiltonian approach with a categorization of constraints and the introduction of the socalled Dirac brackets. Later, Faddeev and Jackiw [START_REF] Faddeev | Hamiltonian Reduction of Unconstraint and Constraint Systems[END_REF] suggested an alternative and generally simpler method based on a symplectic structure. Recently, we have proposed a third approach for classically soluble constrained systems where the brackets between the constants of integration are computed. This method does neither require Dirac formalism nor the symplectic method of Faddeev-Jackiw [START_REF] Belhadi | Quantization of soluble classical constrained systems[END_REF]. All three approaches were developed for autonomous constrained systems only. The quantization of non-autonomous singular systems has turned to be non trivial [START_REF] Mukunda | Time Dependent Constraints in Classical Dynamics[END_REF]. Gitman and Tyutin [START_REF] Gitman | Quantization Fields with Constraints[END_REF], via notably the introduction of a conjugate momentum of time, could extend Dirac approach and brackets for those systems. In the present work, our aim is to generalize the Faddeev-Jackiw symplectic approach to non-autonomous constrained systems. This leads to a generalization of the Schrödinger equation which encompasses non-autonomous singular systems. The quantization of a relativistic particle in an electromagnetic field is solved by this method, constituting an original derivation of the Dirac equation.

Consider a non autonomous Lagrangian one-form as in [START_REF] Faddeev | Hamiltonian Reduction of Unconstraint and Constraint Systems[END_REF] Ldt = a j (ξ, t)dξ j -H(ξ, t)dt,

where ξ j are the N -component phase-space coordinates with j = 1, ..., N , where a j and H are time-dependent. The Euler-Lagrange equations lead to

ξi = f -1 ij ∂H ∂ξ j + ∂a j ∂t (2) 
f ij = ∂a j ∂ξ i - ∂a i ∂ξ j (3) 
for an invertible antisymmetric matrix f ij . The dot denotes differentiation with respect to t. Eq. ( 2) can not be derived from Hamilton equations through brackets when ∂a j /∂t = 0 (see Eq. ( 17)). Canonical quantization seems compromised in this case. To solve this problem via the Faddeev-Jackiw approach we first introduce a time parameter τ such that time is promoted to a dynamically variable t = t(τ ) and ξ i = ξ i (τ ). This leads to a Lagrangian L τ , given by L τ dτ = Ldt, so that the action remains the same. L τ has a gauge invariance due to the arbitrariness of the parameter τ . We thus define a new Lagrangian Lτ = L τ + ω (t ′ -1) that implements the gauge constraint t ′ = 1 (prime denotes differentiation with respect to τ ) via ω(τ ) a Lagrange multiplier seen as a new variable. Dropping a total time derivative term, one ends up with the following Lagrangian one-form

Ldτ = a j (ξ, t)dξ j -H(ξ, t)dt -tdω -Hdτ, (4) 
where H(ξ, t, ω) = ω defines a new Hamiltonian. The Euler-Lagrange equations with L lead to Eq (2) and the equations ω ′ = 0 and t ′ = 1. Unlike the initial Lagrangian (1), L is autonomous with respect to τ and Eq. ( 4) is precisely of the form studied by Faddeev-Jackiw [2]

Ldτ = A i (ζ)dζ i -H(ζ)dτ, (5) 
with now ζ i the N +2-component phase space coordinates defined by ζ i = ξ i for i = 1...N ; ζ N +1 = t and ζ N +2 = ω. Here A i = a i for i = 1...N and

A N +1 = -H, A N +2 = -t.
Following [START_REF] Faddeev | Hamiltonian Reduction of Unconstraint and Constraint Systems[END_REF] we first consider the Euler-Lagrange equations

F ij ζ j′ = ∂ H ∂ζ i (6) 
with

F ij = ∂A j ∂ζ i - ∂A i ∂ζ j . (7) 
If the antisymmetric matrix F ij is regular then Eq. ( 6) becomes

ζ i′ = F -1 ij ∂ H ∂ζ j . ( 8 
)
Writing the Hamilton equations

ζ i′ = ζ i , H = ζ i , ζ j ∂ H ∂ζ j (9) 
the generalized brackets for non-autonomous systems are readily obtained as

ζ i , ζ j = F -1 ij i, j = 1...N + 2. ( 10 
)
Now from the matrix F -1 ij we obtain the following fundamental brackets

ξ i , ξ j = f -1 ij i, j = 1...N (11) 
ξ i , t = 0, (12) 
{t, ω} = 1, (13)

ξ i , ω = f -1 ij ∂a j ∂t + ∂H ∂ξ j . ( 14 
)
The brackets ξ i , ξ j = f -1 ij which are unchanged with respect to the autonomous case are sufficient to deduce all brackets of the theory. We see that ω plays the role of a conserved Hamiltonian for the time evolution of ξ i . Indeed, let us now use the fact that H(ξ, t, ω) = ω. Eq.( 9) then reduces to the "Hamilton" equations of motion

dζ i dτ = ζ i , ω i = 1...N + 2. ( 15 
)
For i = N + 2 and N + 1, Eq. ( 15) gives respectively dω/dτ = 0 so ω is a constant and dt/dτ = 1, so t(τ ) = τ without loss of generality. The dynamics of the phasespace coordinates ξ i (t) with respect to the physical time

t is therefore ξi = ξ i , ω = f -1 ij ∂H ∂ξ j + f -1 ij ∂a j ∂t , (16) 
for i = 1..N. These equations are the same as the Euler-Lagrange equations Eq. ( 2). Eq. ( 16) is the generalization of the Hamilton equation for a non-autonomous system. Indeed the equations of motion can not be obtained by usual Hamilton equations which would give instead

ξi = ξ i , H = f -1 ij ∂H ∂ξ j (17) 
correct for the case ∂a j /∂t = 0 only. The time derivative of any function O(ξ i , t) = ξj ∂O/∂ξ j + ∂O/∂t is also obtained as

Ȯ(ξ i , t) = {O, ω} . (18) 
This is a new general relation that embraces all systems, regular and autonomous as well. It does not contain the term ∂O/∂t. The Hamiltonian H is generally not conserved for a non-autonomous system contrary to ω and Ḣ = {H, ω} = -ξj ∂a j /∂t + ∂H/∂t (= -∂L/∂t).

Before considering the quantization, we note from Eq. ( 6) that the condition of regularity of the matrix F ij is actually reduced to the regularity of f ij . Now, for a singular matrix f ij we recall briefly the procedure which consists first in determining the zero-modes v (α) , which are solutions of v (α) i f ij = 0. Multiplying Eq. ( 16) by v (α) i we obtain the equation v (α) i (∂H/∂ξ i + ∂a i /∂t) = 0 where we used the equations ∂ H/∂ω = 1 and ∂ H/∂ξ i = ∂ H/∂t = 0. These relations between the variables ξ i and t constitute a set of constraints φ α (ξ, t) = 0 that must be conserved in time dφ α /dτ = 0. We therefore add to the Lagrangian L the term λ ′ α φ α to obtain the new autonomous Lagrangian L + λ ′ α φ α , and redo the Faddeev-Jackiw procedure considering λ α as new independent variables. Now, if the new matrix f ij is invertible, all brackets are accessible. If not we calculate the zero-modes that will give in principle new constraints that we should add to the Lagrangian and so on. At the end, either we obtain an invertible matrix and we can determine the brackets, or the matrix is always singular with no new constraints. In this case, our initial Lagrangian has gauge symmetry that should be fixed by using additional conditions to obtain a non singular matrix f ij .

Quantization. We first remark that from Eqs. ( 16) and ( 17) ω can be decomposed as ω = ε + H with the brackets

ξ i , H = f -1 ij ∂H ∂ξ j and ξ i , ε = f -1 ij ∂a j ∂t . (19) 
Eqs. ( 12) and (13) show that {t, ε} = 1 so ε is a variable conjugate to time. It was introduced in [START_REF] Gitman | Quantization Fields with Constraints[END_REF] for singular systems and in [START_REF] Edelen | Constructions of Autonomous Canonical Systems when the Hamiltonian depends explicitly on time[END_REF] for regular ones. Although it is not suitable to talk about momentum conjugate in the Faddeev-Jackiw approach it is nevertheless interesting to see that ε is actually equal to the conjugate momentum of time defined as p t (t) = (∂ Lτ /∂t ′ ) τ =t . Thus ω = p t + H(p, q, t) can be interpreted as an extended Hamiltonian in an extended phase space [START_REF] Rovelli | Quantum Gravity[END_REF].

For the quantization in the Schrödinger picture we define the operators ζi associated to their classical counterparts. Any operator Ô associated to a classical function O(ζ) is defined by the rule Ô = O( ζ) and commutators are defined as [, ] = i {, } ζ= ζ (we disregard problems with operator ordering). Therefore from Eq. [START_REF] Gavrilov | Quantization of sys-tems with time-dependent constraints. Example of a relativistic particle in a plane wave[END_REF] we have

ζi , ζj = i ζ i , ζ j ζ= ζ = i F -1 ij ( ζ), (20) 
thus in general for singular systems operators do not satisfy the canonical commutation relations. An operator Ȯ associated to Ȯ(ξ, t) will be given by the quantum version of Eq. ( 18)

Ȯ = 1 i [ Ô, ω] = {O, ω} ζ= ζ , (21) 
where ω = ε + Ĥ. As [ t, ε] = i , we define naturally t = t and thus ε = -iℏd/dt is the time translation operator [START_REF]Rigorously ε = -i d/dt + σ with[END_REF]. Therefore d Ô/dt = 1 i [ Ô, ε] and Ȯ can also be written

Ȯ = 1 i [ Ô, Ĥ] + d Ô dt , (22) 
which is different from the usual expression Ȯ =

1 i [ Ô, Ĥ] + ∂ Ô/∂t.
The reason is that ξi is explictly time dependent and its evolution is given by

d dt ξi = ξ i , ε ξ= ξ = f -1 ij ∂a j ∂t ξ= ξ . (23) 
The solution of this differential equation gives us ξi (t) with ξi (0) = ξi s the usual time independant Schrödinger operator satisfying [ ξi s , ξj s ] = i f -1 ij ( ξs ) (note that this quantization at t = 0 could be preformed at any arbitrary time [START_REF] Gitman | Quantization Fields with Constraints[END_REF]). The operator ξi associated to ξi is therefore

ξi = ξ i , H + ε ξ= ξ = f -1 ij ∂H ∂ξ j + f -1 ij ∂a j ∂t ξ= ξ . ( 24 
)
Introducing a quantum state |ψ(t) we see that

ψ| Ȯ |ψ = d dt ψ| Ô |ψ only if |ψ(t) satisfies the equa- tion ω |ψ(t) = 0 (25) 
with ω = -i d/dt + Ĥ. Eq. ( 25) is a generalization of the Schrödinger equation and is the quantum evolution for all quantum systems including singular nonautonomous ones. The decomposition ω = -i d/dt + H is not always valid, as for instance, for a relativistic Lagrangian H = 0 (see later on), but in general we can write ω = -i d/dt + Ĥeff (t). As a first check, consider the regular Lagrangian L = m 2 ṙ2 -U (r, t) that we write Ldτ = pdr-Hdt-tdω -ωdτ with H = p 2 /2m+ U (r, t). From Eq. ( 10) we get the canonical relations [x i , pj ] = i δ ij , and the commutators [r, ω] = i p/m = i ṙ and [p,ω] = -i ∇ Û = i ṗ. These commutators are satisfied for ω = -i d/dt + Ĥ as expected.

Note that here the time operator does commute with the Hamiltonian [ t, Ĥ] = 0 but instead [ t, ε] = i . This is physically correct as in quantum physics the energy can be measured with arbitrary precision at any time. The common idea that a time operator has to satisfy [ t, Ĥ] = i , comes from the usually assumed relation

d t/dτ = 1 i [ t, Ĥ] = 1 which is wrong (even for regular systems), instead d t/dτ = 1 i [ t, ω] = 1.
Therefore the problem of unboundedness of the energy spectrum [START_REF] Pauli | Über quantenmechanische Zeitoperatoren[END_REF] does not exist here.

In the Heisenberg picture ξi H = U -1 ξi U with U (t) the time evolution operator |ψ(t) = U |ψ H . Using Eqs. ( 23) and (25) we find

d ξi H dt = 1 i ξi H , ωH = ξ i , ω ξ= ξH ,ω=ωH (26) 
which is exactly given by Eq. ( 16) with ξ i replaced by ξi H .

We will now apply the Faddeev-Jackiw quantization approach to two examples of non-autonomous systems.

Damped harmonic oscillator. Consider the following singular non autonomous Lagrangian introduced by [9]

L = 1 2 e 2αt y ẋ -x ẏ -y 2 -2αxy -Ω 2 x 2 . ( 27 
)
In Dirac formulation this Lagrangian describes a singular system with time-dependent second-class constraints. The Euler-Lagrange equation corresponds to the damped harmonic oscillator whose quantization has been treated in [START_REF] Baldiotti | Quantization of the Damped Harmonic Oscillator Revisited[END_REF] via the extended Dirac formalism for singular non autonomous system. With the Faddeev-Jackiw approach we start from the transformed Lagrangian one form

Ldτ = 1 2 e 2αt (ydx -xdy) -Hdt -tdω -ωdτ, (28) 
where H = 1 2 e 2αt (y 2 + 2αxy + Ω 2 x 2 ). The element of the 2 × 2 antisymmetric matrix f -1

x,y is easily computed and leads to

[x, ŷ] = i e -2α t. (29) 
From Eq. ( 14) as usual [ t, ω] = i and

[x, ω] = i ŷ (30) [ŷ, ω] = -i Ω 2 x + 2αŷ . (31) 
Note that the whole set of brackets could be obtained at once by computing the full 4 × 4 matrix F -1 ij directly. The commutator Eq. ( 29) is the same as in [START_REF] Baldiotti | Quantization of the Damped Harmonic Oscillator Revisited[END_REF]. In the Schrödinger picture t = t, ε = -i d/dt and from Eq. (23) we deduce x(t) = x(0)e -αt and ŷ(t) = ŷ(0)e -αt . From Eq. (29) we see that x(0) and ŷ(0) are conjugate to each other. Therefore, if we consider for instance the position representation we have x(t) = xe -αt and ŷ(t) = -iℏe -αt ∂ x acting on the wave function ψ(x, t). The commutators involving ω leads to the natural choice

ω = -iℏ∂ t - 1 2 ℏ 2 ∂ 2 x -iαℏx∂ x - iαℏ 2 + Ω 2 2 x 2 (32) 
and the Schrödinger equation of the damped harmonic oscillator is ωψ(x, t) = 0 which is the same equation than in [START_REF] Baldiotti | Quantization of the Damped Harmonic Oscillator Revisited[END_REF]. This shows the equivalence of the two methods for the quantum damped harmonic oscillator.

Relativistic Lagrangian. We consider now the quantization of a relativistic point like particle in an external electromagnetic field. This system meets specific difficulties such as a null Hamiltonian and the presence of a gauge symmetry due to the arbitrary choice of the time parametrization [START_REF] Gitman | Quantization Fields with Constraints[END_REF][START_REF] Gavrilov | Quantization of sys-tems with time-dependent constraints. Example of a relativistic particle in a plane wave[END_REF][START_REF] Gavrilov | Quantization of Point-Like Particles and Consistent Relativistic Quantum Mechanics[END_REF] We will see that the Faddeev-Jackiw approach for non-autonomous systems can be straightforwardly applied and will lead to the Dirac equation. Consider a relativistic particle interacting with an electromagnetic potential A µ = (φ, A) whose quadri-position x µ = x µ (τ ) with µ = 0..3 depends on a parameter τ . The metric is η µν = diag(1, -1, -1, -1). The reparametrization invariant action is S = L τ dτ with a Lagrangian one-form

L τ dτ = -mds -eA µ dx µ ( 33 
)
in unit c = 1, with ds = dx µ dx µ . The quadri-momenta p µ = -mx ′ µ /s ′ -eA µ lead to a null Hamiltonian H τ = p µ x ′µ -L = 0 as L is homogeneous of degree one in the velocities. Still we have the constraint

(p 0 + eφ) 2 -(p-eA) 2 = m 2 . ( 34 
)
By analogy to the historical calculus of Dirac, it can be linearized by introducing the usual Clifford algebra to get the equivalent constraint

Λ = p 0 + eφ + α • (p-eA) + βm = 0, ( 35 
)
where the Clifford generators α i (i = 1, 2, 3) and β satisfy the relations α i α j + α j α i = 2δ ij , β 2 = 1 and α i β + βα i = 0. Dirac matrices are a four-dimensional representation of this Clifford Algebra. The constraint Eq. ( 35) is implemented by a Lagrange multiplier term λ ′ Λ added to L τ . The gauge invariance due to the arbitrary choice of τ of Eq. ( 33) is again fixed by adding ω (t ′ -1) dτ to L τ (a condition equivalent to t = τ ) and we get the one-form Lagrangian Ldτ = pdx+p 0 dt + Λdλ -tdω -ωdτ.

It has the same form as Eq. ( 4) if we introduce the 10-component phase-space coordinates ζ i = (x, t, p, p 0 , λ, ω). The matrix F -1 ij can be easily computed and written formally as

F -1 ij =         0 0 1 -α 0 α 0 0 0 0 0 1 -1 0 0 D 0 -D α 0 -D 0 -1 -D 0 0 0 0 1 0 -1 -α -1 D D 0 1 0         , where D = e∇(φ -α • A) and D 0 = e∂ t (φ -α • A) .
From F -1 ij we read off the non-vanishing brackets:

{x, p} = 1, {t, ω} = 1 (37) {x,ω} = α, {x,p 0 } = -α (38) {p, ω} = -D, {p, p 0 } = D (39) {λ,ω} = -1, {λ, p 0 } = 1 (40) {p 0 ,ω} = -D 0 . (41) 
The bracket {x, p} = 1 justifies Dirac's choice of the usual commutation relations after the linearization of the Hamiltonian. Looking at the Hamilton equations dζ i /dτ = ζ i , ω we first see that λ ′ = -t ′ = 1. Thus the variable λ is redundant and can be dismissed for the quantization. The brackets involving p 0 show that despite H = 0, it is -p 0 that plays the role of an effective Hamiltonian of the initial system. For the quantum version an obvious choice which satisfies all the commutators is clearly

ω = -i d dt -p0 . (42) 
Therefore the time evolution of the quantum state given by ω |ψ(t) = 0 leads to which is nothing else but the Dirac equation of a relativistic quantum particle in an electromagnetic field. This achieves our goal of deriving the relativistic Schrödinger equation, i.e., the Dirac equation from the canonical quantization of the classical relativistic Lagrangian. This quantization method could be generalized to a particle moving in a curved space and more generally to the case of time invariant reparametrization systems.

Conclusion. An extension of the Faddeev-Jackiw method in order to solve the problem of time dependent constraints has been considered. For that purpose a time parameter is introduced to treat the time as a dynamically variable, which is accompanied by the emergence of gauge symmetry. This one is fixed with the help of a supplementary variable that plays the role of a conserved Hamiltonian. After obtaining the correct brackets, we were able to give the most general form of the quantum (Schrödinger) equation, valid also for singular non-autonomous systems. The method can be naturally applied to the case of a relativistic particle in an external electromagnetic field. The theory developed in this paper should be useful for the quantization of physical constrained systems in the presence of time-dependent external fields.

  ) = α • (p-e Â) + βm + e φ |ψ(t) , (43)