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and the initial condition is ψ(x, y, 0) = ψ 0 (x, y), (x, y) ∈ Ω .

(

The spatial derivatives in Equation ( 1) are discretized as we describe next. The fourth order discrete Laplacian ∆h ψ and biharmonic ∆ 2 h ψ operators introduced in [START_REF] Ben-Artzi | A High Order Compact Scheme for the Pure-Streamfunction Formulation of the Navier-Stokes Equations[END_REF] are perturbations of the second order operators ∆ h ψ = (δ 2

x + δ 2 y )ψ and ∆ 2 h ψ = (δ 4

x + δ 4 y + 2δ 2 x δ 2 y )ψ. They are designed as follows.

∆h ψ i, j = 2∆ h ψ i, j -(δ x (ψ x ) i, j + δ y (ψ y ) i, j ) = (∆ ψ) i, j + O(h 4 ).

Here, ψ x , ψ y are the fourth-order Hermitian approximations to ∂ x ψ, ∂ y ψ described as

     σ x ψ x = 1 6 (ψ x ) i-1, j + 2 3 (ψ x ) i, j + 1 6 (ψ x ) i+1, j = δ x ψ i, j , 1 ≤ i, j ≤ N -1 σ y ψ y = 1 6 (ψ y ) i, j-1 + 2 3 (ψ y ) i, j + 1 6
(ψ y ) i, j+1 = δ y ψ i, j , 1 ≤ i, j ≤ N -1.

(5) We use the standard central difference operators δ x , δ y , δ 2

x , δ 2 y . The fourth-order approximation to the biharmonic operator ∆ 2 ψ is

∆ 2 h ψ = δ 4 x ψ + δ 4 y ψ + 2δ 2 x δ 2 y ψ - h 2 6 (δ 4 x δ 2 y ψ + δ 4 y δ 2 x ψ) = ∆ 2 ψ + O(h 4 ), (6) 
where δ 4

x and δ 4 y are the compact approximations of ∂ 4

x and ∂ 4 y , respectively.

δ 4 x ψ i, j = 12 h 2 (δ x ψ x ) i, j -δ 2 x ψ i, j , δ 4 x ψ = ∂ 4 x ψ - 1 720 h 4 ∂ 8 x ψ + O(h 6 ), (7) 
δ 4 y ψ i, j = 12 h 2 (δ y ψ y ) i, j -δ 2 y ψ i, j , δ 4 y ψ = ∂ 4 y ψ - 1 720 h 4 ∂ 8 y ψ + O(h 6 ). ( 8 
)
The convective term in [START_REF] Ben-Artzi | Planar Navier-Stokes equations, vorticity approach[END_REF] is

C(ψ) = -∂ y ψ∆ (∂ x ψ) + ∂ x ψ∆ (∂ y ψ).
Its fourth-order approximation needs special care. The mixed derivative ∂ x ∂ 2 y ψ may be approximated to fourth-order accuracy by ψyyx using a suitable combination of lower order approximations.

ψyyx = δ 2 y ψ x + δ x δ 2 y ψ -δ x δ y ψ y = ∂ x ∂ 2 y ψ + O(h 4 ). (9) 
For the pure third order derivative ∂ 3 x ψ we note that if ψ is smooth then

ψ xxx = 3 2h 2 10δ x ψ -h 2 δ 2 x ∂ x ψ -10∂ x ψ i, j + O(h 4 ). (10) 
One needs to approximate ∂ x ψ to sixth-order accuracy in order to obtain from (10) a fourth-order approximation for ∂ 3 x ψ . Denoting this approximation by ψx , we invoke the Pade formulation [START_REF] Carpenter | The stability of numerical boundary treatments for compact high-order schemes finite difference schemes[END_REF], having the following form.

1 3 ( ψx ) i+1, j + ( ψx ) i, j + 1 3 ( ψx ) i-1, j = 14 9 ψ i+1, j -ψ i-1, j 2h + 1 9 ψ i+2, j -ψ i-2, j 4h . (11) 
At near-boundary points we apply a special treatment as in [START_REF] Carpenter | The stability of numerical boundary treatments for compact high-order schemes finite difference schemes[END_REF]. Carrying out the same procedure for ∂ y ψ, which yields the approximate value ψy , and combining with all other mixed derivatives, a fourth order approximation of the convective term is

Ch (ψ) = -ψ y ∆ h ψx + 5 2 6 δ x ψ -ψx h 2 -δ 2 x ψx + δ x δ 2 y ψ -δ x δ y ψy (12) + ψ x ∆ h ψy + 5 2 6 δ y ψ -ψy h 2 -δ 2 y ψy + δ y δ 2 x ψ -δ y δ x ψx = C(ψ) + O(h 4 ).
Our implicit-explicit time-stepping scheme is of the Crank-Nicholson type as follows.

( ∆h ψ i, j ) n+1/2 -( ∆h ψ i, j ) n ∆t/2 = -Ch ψ (n) + ν 2 [ ∆ 2 h ψ n+1/2 i, j + ∆ 2 h ψ n i, j ] (13) 
( ∆h ψ i, j ) n+1 -( ∆h ψ i, j ) n ∆t = -Ch ψ (n+1/2) + ν 2 [ ∆ 2 h ψ n+1 i, j + ∆ 2 h ψ n i, j ]. (14) 
Due to stability reasons we have chosen an Explicit-Implicit time stepping scheme. It is possible however to use an explicit time-stepping scheme if one can afford a small time step in order to advance the solution in time. The set of linear equations is solved via a FFT solver using the Sherman-Morrison formula (see [START_REF] Ben-Artzi | A fast direct solver for the biharmonic problem in a rectangular grid[END_REF]). This solver is of O(N 2 logN) operations, where N is the number of grid points in each spatial direction. For the application of the pure streamfunction formulation on an irregular domain see [START_REF] Ben-Artzi | A compact difference scheme for the biharmonic equation in planar irregular domains[END_REF].

The pure streamfunction formulation in three dimensions

Let Ω be a bounded domain in R 3 . The three-dimensional Navier-Stokes equations in vorticity-velocity formulation is

ω t + ∇ × (ω × u) -ν∆ ω = ∇ × f, in Ω ω = ∇ × u, ∇ • u = 0, in Ω u = 0 on ∂ Ω ω(x, 0) = ω 0 (x) := ∇ × u 0 , in Ω . ( 15 
)
where ω = ∇ × u and the no-slip boundary condition has been imposed. The pure streamfunction formulation for this system is obtained by introducing a streamfunction ψ(x,t

) ∈ R 3 , such that u = -∇ × ψ. ( 16 
)
This is always possible since ∇ • u = 0. Thus,

ω = ∇ × u = ∆ ψ -∇(∇ • ψ). ( 17 
)
Imposing a gauge condition

∇ • ψ = 0, ( 18 
) yields ω = ∆ ψ. ( 19 
)
The system (15) can now be rewritten as

∂ ∆ ψ ∂t -∇ × (∆ ψ × (∇ × ψ)) = ν∆ 2 ψ + ∇ × f, in Ω . ( 20 
)
The boundary conditions u = 0 translates to ∇ × ψ = 0 on ∂ Ω . We require that

n × ψ = 0, n × (∇ × ψ) = 0, on ∂ Ω . ( 21 
)
The condition n × ψ = 0 means that ψ is parallel to n, hence the normal component of the velocity vector is zero on the boundary. Adding the condition n × (∇ × ψ) = 0 ensures that the full velocity vector vanishes on the boundary. The requirements in (21) are equivalent to four scalar conditions, namely the vanishing of the two tangential components of ψ and ∇ × ψ.

Turning now to the gauge condition ∇ • ψ = 0, we add the condition

∂ (ψ • n) ∂ n = 0, on ∂ Ω . (22) 
Together with the vanishing of the tangential components of ψ, it implies that

∇ • ψ = 0 on ∂ Ω .
Equations ( 21)-( 22) consist of five scalar conditions for ψ on the boundary. We can still add one more scalar boundary condition, as the equations for the 3-component streamfunction ψ contain the fourth order biharmonic operator. The sixth scalar boundary condition that we choose to add is

∆ (∇ • ψ) = 0, on ∂ Ω . ( 23 
)
We thus obtain

∇ • ψ = 0, ∆ (∇ • ψ) = 0, on ∂ Ω . ( 24 
)
We assume that the initial value ψ(x, 0) satisfies (∇ • ψ)(x, 0) = 0. Taking the divergence of (20) we obtain an evolution equation for ∇

• ψ. ∂ ∆ (∇ • ψ) ∂t = ν∆ 2 (∇ • ψ), in Ω . (25) 
Equations ( 24)-(25) together with the assumption that ∇ • ψ = 0 initially ensure that ∇ • ψ = 0 for all t > 0. See also [START_REF] Ben-Artzi | Planar Navier-Stokes equations, vorticity approach[END_REF], [START_REF] Ruas | Uncouples finite element solutions of biharmonic problems for vector potentials[END_REF] and [START_REF] Rubel | Biharmonic vector stream function formulation and multigrid solutions for a three-dimensional driven-cavity Stokes flow[END_REF]. Finally, we have the following three-dimensional pure streamfunction formulation

     ∂ ∆ ψ ∂t -∇ × (∆ ψ × (∇ × ψ)) = ν∆ 2 ψ + ∇ × f, in Ω n × ψ = 0, ∂ (ψ•n) ∂ n = 0, on ∂ Ω n × (∇ × ψ) = 0, ∆ (∇ • ψ) = 0, on ∂ Ω . (26)

The Numerical Scheme

Our numerical scheme is based on the approximation of the following equation

∂ ∆ ψ ∂t -((∇ × ψ) • ∇)∆ ψ + (∆ ψ • ∇)(∇ × ψ) -ν∆ 2 ψ = ∇ × f, in Ω , ( 27 
)
assuming that ψ ∈ H 2 0 (Ω ). For the vector function ψ we construct a fourth-order approximation to the the biharmonic operator as follows. The pure fourth-order derivatives are approximated by δ 4

x , δ 4 y , δ 4 z as in ( 7)-( 8). The mixed terms ψ xxyy , ψ yyzz and ψ zzxx are approximated by

   δ 2 xy ψ i, j,k = 3δ 2 x δ 2 y ψ i, j,k -δ 2 x δ y ψ y,i, j,k -δ 2 y δ x ψ x,i, j,k = ∂ 2 x ∂ 2 y ψ i, j,k + O(h 4 ) δ 2 yz ψ i, j,k = 3δ 2 y δ 2 z ψ i, j,k -δ 2 y δ z ψ z,i, j,k -δ 2 z δ y ψ y,i, j,k = ∂ 2 y ∂ 2 z ψ i, j,k + O(h 4 ) δ 2 zx ψ i, j,k = 3δ 2 z δ 2 x ψ i, j,k -δ 2 z δ x ψ z,i, j,k -δ 2 x δ z ψ x,i, j,k = ∂ 2 z ∂ 2 x ψ i, j,k + O(h 4 ). (28) 
A fourth order approximation of the biharmonic operator is then obtained as

∆ 2 h ψ = δ 4 x ψ + δ 4 y ψ + δ 4 z ψ + 2 δ 2 xy ψ + 2 δ 2 yz ψ + 2 δ 2 zx ψ. (29) 
The approximate derivatives ψ x , ψ y and ψ z are related to ψ via the Hermitian derivatives as in [START_REF] Ben-Artzi | A compact difference scheme for the biharmonic equation in planar irregular domains[END_REF]. Equation (29) provides a fourth order compact operator for ∆ 2 ψ, which involves values of ψ, ψ x , ψ y and ψ z at (i, j, k) and at its twenty six nearest neighbors. The Laplacian operator is approximated by a fourth order operator via ∆h ψ = 2∆ h ψ -(δ x ψ x + δ y ψ y + δ z ψ z ).

(30)

The nonlinear part in (27) consists of two terms, the convective term and the stretching term. We design a fourth-order scheme which approximates the convective term. The convective term in the three-dimensional case is

C(ψ) = -((∇ × ψ) • ∇)∆ ψ = u∆ ∂ x ψ + v∆ ∂ z ψ + w∆ ∂ z ψ. ( 31 
)
Here (u, v, w) = u = -∇ × ψ is the velocity vector, whose components contain first order derivatives of the streamfunction, and thus may be approximated to fourthorder accuracy. The terms ∆ ∂ x ψ, ∆ ∂ z ψ, ∆ ∂ z ψ may be approximated as in the twodimensional case. The term ∆ ∂ x ψ, for example, may be written as

∆ ∂ x ψ = ∂ 3 x ψ + ∂ x ∂ 2 y ψ + ∂ x ∂ 2 z ψ. ( 32 
)
Here, the pure and mixed type derivatives may be approximated as in the twodimensional Navier-Stokes equations (see (10), ( 9)). We denote the approximation to the convective term by Ch (ψ). Now, we construct a fourth-order approximation to the stretching term S = (ω • ∇)u = -(∆ ψ • ∇)(∇ × ψ). Note that the stretching term contains ∆ ψ and mixed second order derivatives of the streamfunction. The Laplacian of ψ may be approximated to fourth-order accuracy, as in (30). The second order mixed terms, such as ∂ x ∂ y ψ, may be approximated using a Hermitian approximation of the type

(σ x σ y )(ψ xy ) i, j,k = δ x δ y ψ i, j,k . (33) 
Hence,

(I + h 2 6 δ 2 x )(I + h 2 6 δ 2 y )(ψ xy ) i, j,k = δ x δ y ψ i, j,k , 1 ≤ i, j, k ≤ N -1 (34) 
is an implicit equation for ψ xy . We denote the approximation of the stretching term by Sh (ψ). For the approximation in time, we apply a Crank-Nicholson scheme (see the comment after (13)-( 14)). We obtain the following scheme

( ∆h ψ i, j,k ) n+1/2 -( ∆h ψ i, j,k ) n ∆t/2 = -Ch ψ (n) i, j,k + Sh ψ (n) i, j,k + ν 2 [ ∆ 2 h ψ n+1/2 i, j,k + ∆ 2 h ψ n i, j,k ] (35) 
( ∆h ψ i, j,k ) n+1 -( ∆h ψ i, j,k ) n ∆t = -Ch ψ (n+1/2) i, j,k + Sh ψ (n+1/2) i, j,k + ν 2 [ ∆ 2 h ψ n+1 i, j + ∆ 2 h ψ n i, j,k ]. (36) 
At present, a direct solver is invoked to solve the linear set of equations ( 35)-(36).

Some preliminary MATLAB computations with coarse grids confirm the fourth order accuracy of the scheme. We first show numerical results for the time-dependent Stokes equations

∂ ∆ ψ ∂t = ν∆ 2 ψ + f, in Ω . ( 37 
)
We have picked the exact solution ψ ψ T (x,t) = - 1 4 e -t z 4 , x 4 , y 4 (38) in the cube Ω = (0, 1) 3 . Here, f is chosen such that ψ in (38) satisfied (37) exactly.

In the numerical results shown here we have chosen the time step ∆t of order h 2 in order to retain the overall fourth-order accuracy of the scheme. In practice, if we are interested mainly in the steady state solution, a larger time step, which is independent of h, may be used. In Table 1 we show results for the Stokes problem with ∆t = 0.1h 2 and t = 0.00625. Here e is the error in the l 2 h norm, i.e. 

e 2 = ∑ i ∑ j ∑ k (ψ 3 (x i , y j , z k ) -ψ3 (x i , y j , z k ))
∂ ∆ ψ ∂t -((∇ × ψ) • ∇)∆ ψ + (∆ ψ • ∇)(∇ × ψ) -ν∆ 2 ψ = ∇ × f, in Ω (39)
in the cube Ω = (0, 1) 3 . Here, the source term g = ∇ × f is chosen such that ψ T (x,t) = -1 4 e -t z 4 , x 4 , y 4 is an exact solution of (39). In Table 3 we present results for t = 0.00625 using ∆t = 0.1h 3 Navier-Stokes equations for t = 0.00625 using ∆t = 0.1h 2 .

In Table 4 we show results for the Navier-Stokes Equations with ∆t = h 2 for t = 0.0625. In Figures 1(a) and 1(b) we display the errors for Navier-Stokes equations in ψ 3 and (ψ 3 ) y at t = 0.0625 with dt = h 2 and a 17 3 grid. 
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 21 Fig. 1 Navier-Stokes : Errors in (a) ψ 3 and (b) (ψ 3 ) y for N = 17, t = 0.0625, dt = h 2 .

Table 1

 1 2 h 3 , Stokes equations for t = 0.00625 using ∆t = 0.1h 2 .where ψ 3 is the z component of the exact solution and ψ3 is the z component of the approximate solution. e y is the l 2 h in the y derivative of ψ 3 . In Table2we display the results for t = 0.0625 using ∆t = h 2 .

		grid	rate	grid	rate	grid
		5 × 5 × 5		9 × 9 × 9		17 × 17 × 17
	e	2.5460(-9)	3.82	1.8017(-10)	3.98	1.1443(-11)
	e y	7.7417(-9)	3.73	5.8037(-10)	3.96	3.7391(-11)
	div (ψ)	1.3409(-8)	3.74	1.0052(-9)	3.96	6.4621(-11)
		grid	rate	grid	rate	grid
		5 × 5 × 5		9 × 9 × 9		17 × 17 × 17
	e	9.6461(-7)	4.41	4.5309(-8)	4.00	2.8291(-9)
	e y	3.0293(-6)	4.33	1.5049(-7)	3.99	9.4269(-9)
	div (ψ)	5.2470(-6)	4.33	2.6066(-7)	4.00	1.6328(-8)

Table 2

 2 Stokes equations with ∆t = h 2 for t = 0.0625.

Next we show results for the Navier-Stokes Equations

  2 .

		grid	rate	grid	rate	grid
		5 × 5 × 5		9 × 9 × 9		17 × 17 × 17
	e	2.4497(-9)	3.86	1.6924(-10)	4.01	1.0473(-11)
	e y	7.6486(-9)	3.75	5.6845(-10)	3.98	3.5917(-11)
	div (ψ)	1.2294(-8)	3.71	9.3619(-10)	3.92	6.1700(-11)

Table

  

Table 4

 4 Navier-Stokes equations for t = 0.0625 using ∆t = h 2 .