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Efficient Implementation of High Order
Reconstruction in Finite Volume Methods

Florian Haider1, Jean-Pierre Croisille2, and Bernard Courbet1

1 Introduction

The finite volume Muscl method to solve hyperbolic conservation laws was
introduced by B. Van Leer in [6, 7] thirty years ago. The main idea is to
increase the accuracy of the first order finite volume scheme by a piecewise
linear reconstruction that is used to evaluate upwinded fluxes at the cell
interfaces.

Practical applications for convection dominated flows in complex geome-
tries have motivated many extensions of the Muscl approach to unstructured
grids. A typical example is the flow solver Cedre developed by Onera. It
uses a cell centered finite volume scheme with piecewise linear reconstruction
on general polyhedral grids to solve the compressible Navier Stokes equations.
A large choice of physical models is available in Cedre: turbulence (RANS,
LES), combustion, diphasic flow, radiation etc.

Our experience has shown that second order accuracy becomes insufficient
for LES and to capture contact discontinuities. The easiest way to increase
the spatial accuracy is to replace the linear interpolation by quadratic or
cubic ones. Indeed, the Muscl scheme with quadratic reconstruction ( 3rd

order) was already discussed by B. Van Leer [6]. The quadratic approach
was extended to unstructured grids [1, 2]. The need for large (non compact)
stencils seems to have limited the use of cubic reconstructions (4th order),
although some practical applications exist [5].

For reasons of performance, the computation of a polynomial reconstruc-
tion on a grid cell must be local, i.e. make use of data in neighboring cells
only. Ideally, the approximation algorithm should only retrieve data from ad-
jacent cells. On the other hand, high order approximation requires a sufficient
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number of data samples, which means that data from cells further away in
the grid must be accessed.

This paper shows how to compute a high order approximant in a given
cell using only data from adjacent cells at a time, eliminating the need to
handle directly large reconstruction stencils. No additional degrees of freedom
are added: the independent variables are the cell averages of the conserved
quantity. The resulting high order finite volume method is well suited for
modern parallel and vector (array) computers. This aspect is of primary
importance for large scale industrial software.

2 Semi-discrete High Order Finite Volume Scheme

• Geometric notation: an unstructured grid is a triangulation of a domain
Ω ⊂ Rd consisting of N general polyhedra. The cell with number α is
denoted Tα, with barycenter xα and d-volume |Tα|. The face Aαβ , with
barycenter xαβ , has a normal vector aαβ oriented from cell Tα to Tβ

and of length ‖aαβ‖ equal to the surface |Aαβ |. The oriented normal unit
vector of the face Aαβ is ναβ . Furthermore, define hαβ = xβ − xα. Note
that the faces Aαβ need not be flat, see [4]. One associates with two cells
Tα and Tβ the symmetric tensors

z
(k)
αβ ,

1
|Tβ |

∫
Tβ

(x− xα)k
dx =

1
|Tβ |

∫
Tβ

(x− xα)⊗ · · · ⊗ (x− xα)
m factors

dx

(1)
The kth moment of cell Tα is then defined as x

(k)
α , z

(k)
αα. Note that

x
(1)
α = 0. For a locally integrable function u, define its average over cell Tα

as uα.
• Semi-discrete Muscl scheme: consider a hyperbolic conservation law with

flux f and write its balance equation over a grid cell Tα

duα (t)
dt

= − 1
|Tα|

∑
β

∫
Aαβ

ναβ · f (u (x, t)) dσ . (2)

The semi-discrete Muscl discretization of such a conservation law gives
the finite volume scheme

duα (t)
dt

= − 1
|Tα|

∑
β

∫
Aαβ

f̃αβ

(
wα [u (t)] (x) , wβ [u (t)] (x)

)
dσ . (3)

In (3), f̃αβ : R × R → R is a numerical flux that is consistent with f :
f̃αβ (u, u) = ναβ · f (u). The functions wα and wβ are reconstructed from
the cell averages u (t) = (u1 (t) , . . . , uN (t)). The dependence of wα on the



Efficient Implementation of High Order Reconstruction 3

cell averages is denoted by square brackets wα [u (t)] and the dependence
on x by wα [u (t)] (x).

• Accuracy : the piecewise reconstruction operates on each cell so that only
the cell averages in a certain neighborhood – the reconstruction stencil –
of cell Tα determine the approximant wα. Assume that the reconstruction
satisfies for all smooth functions u and uniformly in x ∈ Tα for all cells Tα∣∣∣wα [u (t)] (x)− u (x, t)

∣∣∣ ≤ O
(
hk+1

)
. (4)

Then it is easily verified that (3) is kth order accurate if f is Lipschitz
continuous.

• Conservation: the reconstruction is required to be conservative, i.e. the
mean value of the function wα [u (t)] over the cell Tα must always be uα (t).

3 High Order Polynomial Reconstruction

This section gives a short overview of k-exact reconstruction along the line
of [1]. The goal is to reconstruct the wα used in (3) in such a way that they
satisfy (4). The focus is on the spatial approximation, therefore the time
dependency is dropped to simplify the notation.

Let Pk

(
Rd

)
be the space of polynomials of degree k in Rd. In each cell Tα,

the reconstruction process is represented by linear operator

Rα : RN → Pk

(
Rd

)
; u 7−→ wα [u] . (5)

Define a neighborhood of cell Tα as a set of cells Wα ⊂ {1 . . . , N} such that
α ∈ Wα and associate with Wα a local cell average operator

Pk;Wα : Pk

(
Rd

)
→ RN (6)

given by (Pk;W (p))β = pβ if β ∈ Wα and (Pk;W (p))β = 0 if β /∈ Wα.
A reconstruction operator Rα : RN → Pk

(
Rd

)
is called k-exact if it is a

left inverse of (6)
RαPk;Wα = IdPk(Rd) . (7)

It can be shown that, under certain conditions, (7) provides an approximation
error (4) that is O

(
hk+1

)
[3].

Note the space of symmetric tensors of rank m in Rd as Sm
(
Rd

)
and

define for a, b ∈ Sm
(
Rd

)
and c ∈ Rd
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a • b ,
d∑

i1=1

· · ·
d∑

im=1

ai1···imbi1···im (8)

(a · c)j1···jm−1
,

d∑
jm=1

aj1···jm−1jmcjm . (9)

Call a function u k-exact on Wα if the restriction of u to the cells in Wα is
a polynomial of degree k and view the mth derivative of u as an element of
Sm

(
Rd

)
.

A k-exact mth derivative on the neighborhood Wα at cell Tα is defined to
be a linear map w

(m|k)
α : RN −→ Sm

(
Rd

)
such that for all polynomials p of

degree k

w(m|k)
α [Pk;Wα

(p)] = D(m)p
∣∣∣
xα

. (10)

Since a polynomial is determined by its cell average and its mth derivatives
at a point xα, a k-exact reconstruction operator is equivalent to a set of k-
exact mth derivatives w

(m|k)
α for 1 ≤ m ≤ k. The linearity implies that (10)

can be written as
w(m|k)

α [u] =
∑

β∈Wα

w
(m|k)
αβ uβ (11)

In (11), the symmetric tensors w
(m|k)
αβ , called the reconstruction coefficients

of w
(m|k)
α , depend only on the local cell geometry. A complete set of w

(m|k)
αβ

can be computed by applying (10) to a basis of the space Pk

(
Rd

)
and solving

the resulting linear system in the least squares sense. The drawback of this
method is that its implementation on a computer requires the computation
of (11) over large stencils Wα.

With the k-exact mth derivatives (10), the general form of the recon-
structed polynomial at cell Tα is

w [u] (x) = uα +
k∑

m=1

1
m!

w(m|k)
α [u] •

[
(x− xα)m − x(m)

α

]
(12)

where (x− xα)m is defined as in (1) and x
(m)
α , z

(m)
αα .

When a k-exact mth derivative (11) is applied to a polynomial p of degree
(k + 1), the reconstruction error can be expressed as

w(m|k)
α [p]− D(m)p

∣∣∣
xα

=
1

(k + 1)!

∑
β∈Wα

w
(m|k)
αβ

(
z

(k+1)
αβ • D(k+1)p

∣∣∣
xα

)
.

(13)
The interest of (13) is that a (k + 1)-exact (k + 1)th derivative can be used to
compute the right hand side of (13) and to subtract it from w

(m|k)
α , making

w
(m|k)
α (k + 1)-exact.
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Finally, we introduce the following smoothing technique: let Vα be the set
of direct neighbors of cell Tα, including Tα itself. Let ξα > 0 be such that∑

β∈Vα
ξα = 1. If a set of k-exact kth derivatives w

(k|k)
β is known, one can

define a new k-exact kth derivative w̃(k|k)
α as a convex combination

w̃(k|k)
α [u] =

∑
β∈Vα

ξβw
(k|k)
β [u] . (14)

The stencil of (14) is larger which increases stability and robustness, see [4, 3].

4 Efficient Algorithms for High Order Reconstruction

The computation of (11) involves large (non compact) stencils. To avoid this
undesirable feature, we try to compute a (k + 1)-exact (k + 1)th derivative
not directly from the cell averages, but from a family of k-exact kth derivatives
w

(k|k)
β at cells Tβ for β in a small neighborhood Wα of cell Tα. This can be

done as follows:
Let Wα be a neighborhood of cell Tα and w

(k|k)
β be a family of k-exact kth

derivatives at cells Tβ for β ∈ Wα. Assume that
⋃

β∈Wα
Tβ is path connected

where the paths are piecewise C1. Let mα , |Wα| − 1 and define the linear
operator

J
(k+1)
Wα

: S(k+1)
(
Rd

)
−→

(
S(k)

(
Rd

))mα

. (15)

The ith component of (15) is defined using (1), (8) and (9) as(
J

(k+1)
Wα

(b)
)

i
, b · hαβi

+
1

(k + 1)!

∑
γ

w
(k|k)
βiγ

(
z

(k+1)
βγ • b

)
−

− 1
(k + 1)!

∑
γ

w(k|k)
αγ

(
z(k+1)

αγ • b
)

. (16)

The operator J
(k+1)
Wα

depends on the w
(k|k)
β and satisfies

Proposition 1 ( Functional Identity for Reconstruction ). Let u be
a function that is (k + 1)-exact on

⋃
β∈Wα

W(k)
β . Then the following identity

holds

J
(k+1)
Wα

(
D(k+1)u

∣∣∣
xα

)
=

=
(
w

(k|k)
β1

[u]−w(k|k)
α [u] , . . . ,w(k|k)

βmα
[u]−w(k|k)

α [u]
)

. (17)

The main result of this section is
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Proposition 2 ( (k + 1)-exact (k + 1)th derivative ). Assume that the
operator J

(k+1)
Wα

defined in (16) has a left inverse D
(k+1)
Wα

. Then the following
expression defines a (k + 1)-exact (k + 1)th derivative on the neighborhood⋃

β∈Wα
W(k)

β :

w̃(k+1|k+1)
α [u] ,

, D
(k+1)
Wα

(
w

(k|k)
β1

[u]−w(k|k)
α [u] , . . . ,w(k|k)

βm
[u]−w(k|k)

α [u]
)

(18)

Prop. 2 gives the following algorithm.

Definition 1 ( k-exact Coupled Least Squares Algorithm (CLS) ).

1. Compute a 1-exact 1st derivative directly from the cell averages on a small
stencil.

2. Iterate the following step from m = 1 to m = k − 1 at each cell:

a. Compute a (m + 1)-exact (m + 1)th derivative from a m-exact mth

derivative, using the Moore Penrose pseudo inverse of (15).
b. On tetrahedral grids, apply (14) to the (m + 1)-exact (m + 1)th deriva-

tive.

3. Use (13) to obtain k-exact mth derivatives for 1 ≤ m ≤ k − 1.

Remark 1. The smoothing step 2b is important on tetrahedral meshes due to
stability considerations, see [4].

5 Numerical Results

The test case is the linear advection equation with constant velocity c =(
1
10 , 1

5 , 1
)

on the unit cube with periodic boundaries. The algorithm of Def.
1 has been tested for quadratic (k = 2, CLS DEG2) and cubic (k = 3, CLS
DEG3) reconstruction with the cell centered finite volume scheme (3). The
numerical flux is the classical upwinded flux

f̃αβ (uα, uβ) , (c · ναβ)+ uα + (c · ναβ)− uβ .

A reconstruction approach using the direct least squares reconstruction men-
tioned in Sect. 3 serves as comparison, called DLS DEG1, DLS DEG2 and
DLS DEG3 for linear, quadratic and cubic reconstruction.

Tables 1, 2 and 3 display the convergence rate for the `2 error at t = 10 as a
function of the average cell diameter havg on three different shapes of grids for
the initial condition u0 (x, y, z) = sin (2πx) sin (2πy) sin (2πz). The column N
displays the number of cells. The number (n) in parentheses indicates that the
effective size of the stencil is the nth neighborhood: The first neighborhood
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consists of the cell and its adjacent neighbors, the second neighborhood is
the union of the first neighbors of the first neighbors, etc.

Table 1 Grid convergence : series of tetrahedral grids (CLS with smoothing)

havg N CLS DEG2(4) CLS DEG3(6) DLS DEG1(2) DLS DEG2(3) DLS DEG3(4)

0.042316 5928
0.037870 8406 2.2661 4.4984 1.9190 1.5232 4.8690
0.032909 12817 2.3654 4.4386 1.9881 1.8080 4.8354
0.027354 22493 2.7521 4.5814 2.2780 2.3162 5.0287
0.022707 39518 2.7832 4.3773 2.3307 2.5409 4.8292
0.018133 77770 2.8736 4.2354 2.3583 2.7250 4.7772
0.013422 192972 2.9989 4.3158 2.3962 2.9245 4.8433

Table 2 Grid convergence : series of cartesian grids (CLS with smoothing)

havg N CLS DEG2(4) CLS DEG3(6) DLS DEG1(2) DLS DEG2(3) DLS DEG3(4)

0.045455 10648
0.035714 21952 2.4243 4.4868 1.9355 1.9313 4.4325
0.029412 39304 2.6872 4.5062 2.1330 2.3892 4.4078
0.025000 64000 2.8119 4.4633 2.1923 2.6240 4.3497
0.021739 97336 2.8791 4.4349 2.2001 2.7541 4.3267
0.019231 140608 2.9175 4.3359 2.1894 2.8310 4.2191
0.017241 195112 2.9406 4.3225 2.1720 2.8779 4.2215

Table 3 Grid convergence : series of polyhedral grids (CLS without smoothing)

havg N CLS DEG2(2) CLS DEG3(3) DLS DEG1(2) DLS DEG2(3) DLS DEG3(4)

0.044784 13819
0.041544 17933 3.1771 5.4782 1.3943 1.0037 4.9159
0.038507 22983 2.9794 4.9878 1.4959 1.2227 4.5057
0.033027 35595 2.4432 3.3753 1.4035 1.3847 3.9068
0.029400 52487 3.3681 4.8044 2.1503 2.2422 5.1493
0.025212 80995 2.5399 2.3076 1.6894 1.9848 4.0666
0.021547 135609 3.5112 5.4666 2.4056 2.8601 5.3057

Observe that the reconstruction algorithm CLS of Def. 1 gives the desired
convergence rates for quadratic (3rd order) and cubic reconstruction (4th

order). The rates are comparable to those for the direct method DLS.
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6 Conclusion

The algorithm of Def. 1 avoids large reconstruction stencils in implementing
high order finite volume schemes (3). It achieves this goal without introduc-
ing additional degrees of freedom. The integration of the CLS algorithm in
the Cedre software is an ongoing work. This requires appropriate limiting
techniques in order to deal with monotonicity.
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the present work.
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