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Abstract – We propose that wave propagation through a class of mechanical metamaterials opens unprecedented 
avenues in seismic wave protection based on spectral properties of auxetic-like metamaterials. The elastic parameters 
of these metamaterials like the bulk and shear moduli, the mass density, and even the Poisson ratio, can exhibit neg-
ative values in elastic stop bands. We show here that the propagation of seismic waves with frequencies ranging from 
1 Hz to 40 Hz can be influenced by a decameter scale version of auxetic-like metamaterials buried in the soil, with the 
combined effects of impedance mismatch, local resonances and Bragg stop bands. More precisely, we numerically 
examine and illustrate the markedly different behaviors between the propagation of seismic waves through a homo-
geneous isotropic elastic medium (concrete) and an auxetic-like metamaterial plate consisting of 43 cells 
(40 m · 40 m · 40 m), utilized here as a foundation of a building one would like to protect from seismic site effects. 
This novel class of seismic metamaterials opens band gaps at frequencies compatible with seismic waves when they 
are designed appropriately, what makes them interesting candidates for seismic isolation structures.
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1. Introduction

Auxetics, a term coined by Ken Evans, are composites that
become thicker perpendicular to the applied force when
stretched, what leads to negative Poisson ratios [1, 2]. Mechan-
ical metamaterials [3, 4] are periodic structures, counterpart of
electromagnetic metamaterials, consisting of materials with
high contrast in mechanical properties, which have been stud-
ied at small scales ranging from micrometers to centimeters.
Control of surface seismic waves has been experimentally
demonstrated in soils structured at the metric scale [5] that
can be viewed as analogs of phononic crystals with holes
[6]. In order to achieve control of seismic waves in the sub-
wavelength regime, it seems natural to look at large scale ana-
logs of mechanical [3, 4] and acoustic [7–16] metamaterials,
which are periodic structures that can manipulate acoustic
(e.g. pressure) and elastic (e.g. surface Lamb, Rayleigh, or bulk
coupled shear and pressure) waves. The Veselago-Pendry flat
lens via negative refraction is perhaps the most famous para-
digm of electromagnetic [17–19], acoustic [20] and platonic
[21] crystals. An interesting application that arises from the

periodic distribution of boreholes or inclusions embedded in
a soil is as aforementioned the seismic wave shielding for
Rayleigh wave frequencies within stop bands [5] (frequency
intervals where, under certain conditions, propagation of elas-
tic waves, or some of their polarizations, is forbidden), but also
the flat seismic lens [22] for Rayleigh waves. Interestingly, for-
est of trees can also serve as seismic metamaterials for
Rayleigh waves [23]. Such experiments on control of Rayleigh
waves can find some applications in protection of urban
infrastructures against earthquakes in soft sedimentary soils
[24, 25].

However, one would like to design seismic metamaterials
that have the ability to create band gaps not only for surface
Rayleigh waves [5, 22, 23] but also for all other elastic wave
polarizations: within certain frequency ranges known as com-
plete stop bands, an incoming mechanical wave would be com-
pletely reflected by the structure, whether the seismic wave
signal propagates near the air-soil interface (Rayleigh or Love
waves) or within the soil (coupled shear and pressure mechan-
ical waves). Notably, it is an interesting challenge to achieve
the base isolation of a structure by applying the concept of
metamaterials in civil engineering. In what follows, we would
like to demonstrate that base isolation with auxetic-like
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metamaterials could be an effective way to improve the seismic
response of a building due to an earthquake in contrast to tra-
ditional seismic design methods which aimed to increase the
strength of the structural parts of the building.

The Poisson ratio m is a positive parameter for many com-
mon isotropic elastic natural materials, with values ranging
from 0 (e.g. cork) to 0.5 (e.g. rubber), which means that they
expand laterally upon pushing on them axially. Man-made aux-
etics were introduced when Roderik Lakes studied three-
dimensional foams with m < 0 [1] in the mid eighties. More
recently, there has been a keen interest in rationally designing
auxetic mechanical metamaterials, which can additionally be
intentionally anisotropic. However, auxetics need not be neces-
sarily engineered, e.g. living bone tissue is a natural anisotropic
auxetic material [2]. All fabricated rationally designed auxetic
metamaterials are based on a few basic motifs [3]. One of the
simplest motifs is the bow-tie element, which we shall consider
in our study. Upon pushing (resp. compressing) along the ver-
tical z direction, a usual (i.e. not auxetic) material contracts
(resp. expands) along the horizontal x and y directions. For a
negative m, a compression along the vertical axis z leads to a
contraction of the shown bow-tie motif in Figure 1 along the
horizontal x and y direction [4].

In Figure 1, the sign and magnitude of m can be controlled
via the angle a [4]. A zero Poisson ratio m is expected to occur
near a = p/2. The Poisson ratio effectively changes if the mod-
ulus of the strain is not small compared to unity, i.e., if one
leaves the linear mechanical regime and enters the nonlinear
regime, in which the change in the angle a is no longer
negligible [3]. This basic bow-tie motif can be assembled into
two-dimensional model systems and into three-dimensional
(anisotropic) mechanical metamaterials [4].

The angle a and hence the Poisson ratio m can be adjusted
in the fabrication process, as was demonstrated by the group of
Martin Wegener at Karlsruhe Institute for Technology [4].
The quoted Poisson ratios m measured by this group (more
precisely, the components mij of the Poisson matrix since the

composite medium has an anisotropic elastic response) can be
tailored to positive, near zero or even negative values. In the
present paper, we propose to use such auxetic-like composites
in order to design elastic stop band metamaterials for seismic
waves propagating in sedimentary soils at hertz frequencies [5].

2. Stop band properties of auxetic-like
metamaterials

We select concrete structures that should be fairly simple to
fabricate and with elastic and geometric parameters that permit
seismic waves molding. For the calculation of the band struc-
ture, the finite element method was used (Comsol Multiphys-
ics). In the computations of Figure 2, only one basic cell was
considered with quasi-periodic boundary conditions enforced
along each direction, in accordance with the Floquet-Bloch
theorem. One usually starts with a vanishing Bloch vector
k = (0, 0, 0), so that the resulting frequency spectrum consists
of a well-defined countable set of eigenfrequencies associated
with periodic eigenfields (stationary waves) sitting on local
extrema of the band structure (sometimes at band gap edges).
Changing the k vector value used in the quasi-periodic bound-
ary conditions, one finds the eigenfrequencies and associated
eigenfields that describe the overall band structure. In our cal-
culations, we considered the irreducible Brillouin zone CXMR,
where C = (0, 0, 0), X = (2p/a, 0, 0), M = (2p/a, 2p/a, 0) and
R = (2p/a, 2p/a, 2p/a), with a the array pitch. We realize that
one should in principle describe all points within the irreduc-
ible zone (which is the volume of a tetrahedron), but it is cus-
tomary to only look at its edges (invoking some symmetry
reasons) for the sake of saving computational time.

The dimensions used for the computations of band
structures associated with the bow-tie motifs shown in
Figures 2a–2d are cells 10 · 10 · 10 m3 (same length along
the x, y and z directions). Each cell is connected to its neigh-
boring cells within the lattice via 6 bars are 1 · 1 m2 in
cross-section. The cross-section of each bar constituting the
bow-tie element in the basic cell is also 1 · 1 m2.

The four cases studied in this work consist of bars made
from concrete and the only thing that changes between the
cases is the angle: a = 0�; a = 30�; a = 45�; a = 60�; Note that
we use the density q = 2.3 g/cm3, the longitudinal (compres-
sional) cl = 3.475 km/s and the transverse (shear)
cs = 2.022 km/s components of elastic wave velocity for con-
crete. This corresponds to a Young modulus E = 30 GPa and a
Poisson ratio m = 0.3. Assuming that the lattice constant
a = 10 m, frequencies are expected to be in the order of a
few Hertz.

The first structure that was numerically examined is for an
angle a = 0� and is shown in Figure 2a. In this case one can
observe on the dispersion diagram that there are no stop bands
in the frequency range 0–60 Hz. Stop bands actually occur at
frequencies less relevant for seismic wave protection, i.e.,
above 50 Hz [5].

The second structure (for a = 30�, see Figure 2b), which is
in fact the first bow-tie auxetic cell, gives rise to a tiny total
band gap in a frequency range of interest for seismic wave
protection, around 40 Hz. A second, larger, stop band lies

Figure 1. Illustration of the basic bow-tie element (known to lead
to negative to Poisson’s ratios in the static limit [4]), which is
designed here to achieve tunable elastic stop bands for seismic
waves (the periodic cell is 10 m wide).



above the frequency range of interest. This design could be
used as an alternative to models of seismic protection proposed
in references [27, 28].

The third structure (for a = 45�, see Figure 2c), displays a
wide total stop band that opens up around 40 Hz, from 33 Hz
to 47 Hz (14 Hz of bandwidth, so with a relative bandwidth of
35%).

By comparison, the fourth structure (for a = 60�, see
Figure 2d) displays wide complete in-plane stop bands, which
shrink along the MR and RC: This is easily understood by the
fact that the vertical bars now meet at the center of the cell,
making homogeneous vertical bars along which waves can tra-
vel at any frequency.

It then transpires from panels (a)–(d) that the auxetic-like
structure with an angle of a = 45� has the most promising band
structure. Also worth noticing is the markedly different anisot-
ropy of auxetic-like metamaterials in panels (a)–(d), wherein
the second (resp. third) acoustic band displays decreasing (resp.
increasing) group velocity with increasing angle a. This might
find some applications in seismic wave control such as cloaking.

3. Interpretation of stop bands with quasi-static
and dynamic effective properties

There are interesting connections between models of
metamaterials using low-frequency high-contrast and high-
frequency low-contrast homogenization theories (see for
instance Chapter 1 in Ref. [29] where simple scalar wave equa-
tions are studied), in that the two routes lead to frequency
dependent material parameters. Low-frequency high-contrast
homogenization of the Navier equation is known to lead to a

frequency dependent rank-2 tensor of effective density [30],
but in what follows we would like to give some elements of
proof for similar effective behavior of Young’s modulus and
Poisson’s ratio in the high-frequency regime. Let us start with
some well-known facts of homogenization theory in the
low-frequency low-contrast case. According to Christensen
and Lo [31], and Nemat-Nasser and Willis [32] the effective
density hqi and Poisson’s ratio squared hm2i can be approxi-
mated as follows in the case of a cubic array of ellipsoidal
inclusions

m2
� �

¼ x2a2 qh i
C1111h i ; qh i ¼ q 1ð Þf1 þ q 2ð Þf2; ð1Þ

C1111h i ¼ �Cð1Þ1111f1 þ �Cð2Þ1111f2;

f1 ¼ 1� f2; f2 ¼
pb1b2b3

6a3
;

ð2Þ

where q(1) and q(2) are the densities of media 1 (bulk med-
ium) and 2 (ellipsoidal inclusion), �Cð1Þ1111 and �Cð2Þ1111 are the first
component of the elasticity tensor of media 1 and 2, respec-
tively. Moreover, f1, f2 denotes the volume fraction of media
1 and 2, a is the side length of the periodic cell, and b1, b2, b3

are the semi-axes of the ellipsoidal inclusion. If we use these
formulas to get a first estimate of the effective property of the
structured medium of Figure 1 in the quasi-static regime
(leading order approximation), assuming that medium 1 is
the volume occupied by the bars and medium 2 is the outer
(air) medium, we cannot find any unusual behavior, as testi-
fied by the lowest branches in the dispersion diagrams in
Figures 2a–2d. The fact that the pressure (third lowest) band
on one hand and the shear (first and second lowest) bands on

Figure 2. Band diagrams of auxetic-like metamaterials generated with elementary cells (10 m · 10 m · 10 m) with bars (concrete) making
an angle (a) a = 0�; (b) a = 30�; (c) a = 45�; (d) a = 60� where the horizontal axis is the normalized k wavevector describing the edges of the
irreducible Brillouin zone CXMR and the vertical axis is the frequency (Hz). Green curves correspond to shear and pressure waves
propagating in homogeneous isotropic bulk (concrete). Shaded regions mark the location of complete (dark gray) and partial (light gray) stop
bands.



the other hand get increasingly different wavespeeds is due to
the fact that in the quasi-static limit the auxetic-type metama-
terial behaves effectively like a fluid.

However, the long wavelength limit breaks down at higher
frequencies (or when the contrast gets bigger), where one
needs to invoke dynamic effective properties that take into
account the fine structure (here, bow-tie geometry) of the struc-
tured media, as described in references [32–36]. Notably, in
references [35, 36] it is clearly established that both the effec-
tive elasticity tensor Ceff and the effective density qeff are fre-
quency dependent, and [36] exhibits simultaneously negative
values of entries of Ceff and qeff in stop bands. This suggests
negative effective Poisson’s ratios might occur in many
periodic structures in the stop bands, not necessarily with aux-
etic-type media such as first introduced by Lakes [1], but also
in many phononic crystals and mechanical metamaterials.

Indeed, if we assume that we are near resonances, then
homogenization requires dynamic effective parameters that
were first identified by Auriault in 1983 in the context of dif-
fusion processes in high-contrast periodic media [37] using
multiple scale expansion techniques, with subsequent exten-
sion to elastodynamics [30, 38]. At the turn of the millennium,
the mathematician Zikhov proposed a rigorous mathematical
framework using two-scale convergence techniques in weak
forms of scalar partial differential equations with fast oscillat-
ing parameters [39], that can be extended to elastodynamic
equations [40]. Similar models of acoustic metamaterials exist
using asymptotic analysis of Bessel functions [8], multi-struc-
tures [9], periodic unfolding techniques [10]. The link between
the Poisson ratio and the appearance of stop bands in auxetic
metamaterials, was pointed out in reference [41].

In our case, we consider a one-phase medium with stress-
free boundary conditions like in reference [41] but we carry
out a more in-depth analysis by noticing that near resonances,
modes get localized inside the bars of the structured medium in
a way similar to what they would within a two-phase high-

contrast medium (�C 2ð Þ
1111=�C 1ð Þ

1111 ¼ Oðg2ÞÞ, where the stiff phase
�C 1ð Þ

1111 occupies the volume of the bars and the soft phase
�C 2ð Þ

1111is the vacuum between the bars. This configuration of a
composite with connected high-rigidity solid and soft
inclusions has been studied by Auriault and Boutin [30],
using the usual ansatz in the displacement field u = u0(x, y) +
gu1(x, y) + g2u2(x, y) + � � � where ui(x, y) = ui(x1, x2, x3, y1,

y2, y3) are periodic fields in the microscopic variable y. They
found that the effective medium is described by the following
homogenized Navier equation:

divx rx
eff ueffð Þ

� �
þ x2qx

eff xð Þueff ¼ 0; ð3Þ
where ueff xð Þ ¼

R
u0ðx; yÞdy :¼

RRR
u0

1; u
0
2; u

0
3

� �
ðx1; x2; x3; y1; y2;

y3Þdy1dy2dy3 is the homogenized displacement field, rx
eff

and qx
eff are the rank-2 effective stress and density tensors,

respectively (both of which only depend upon the macro-
scopic variable x).

The effective (anisotropic) density is given by the follow-
ing Drude-like expression:

qeff xð Þ ¼ qh iI þ q
X1

i¼1

/i� �
� /i� �

R
/i/idy

� �
1

x2
i =x2 � 1

; ð4Þ

with /i yð Þ ¼ /i
1;/

i
2;/

i
3

� �
ðy1; y2; y3Þ a vector valued

eigenfunction of the eigenvalue problem

divy Cy : ey /i� �� �
¼ �ki/

i in the soft phase and /i

¼ 0 on its boundary; ð5Þ
which is set on the microscopic periodic cell, which from
renormalization is the unit cube [0, 1]3. It is well known that
for this spectral problem there is a countable set of eigen-
values 0 � k1 � k2 � k3 � . . . < +1 with associated
eigenfunctions /i, i = 1, 2, 3,. . . generating an orthogonal
basis in the space of finite energy functions. When the fre-
quency squared x2 gets close to x2

i ¼ ki=q (4) takes negative
values, what can be used as an interpretation of stop bands as
seen in Figures 2b–2d. A negative effective mass density
could be notably invoked in stop bands of [42–45], but this
would come short to a complete explanation of band
structures.

Besides from the frequency dependent effective density in
equation (3), the effective stress tensor is related to an effective
elasticity tensor through reff ¼ Ceff : ex where the tensor of

deformation has the form ex
ij ¼ 1

E rij 1þ mð Þ � mdij
P3

k¼1
rkk

� �

with dij the Kronecker symbol, E the Young modulus and m
the Poisson ratio. The effective elasticity tensor is computed
from an annex problem of elasto-static type set on the unit
cell excluding the soft phase by noticing that the stiff phase
moves like a rigid body (translation) at the leading order of
elastic field displacement. The effective elasticity tensor
essentially contains the anisotropic features of the stiff phase,
and it does not seem to have much to do with appearance of
stop bands i.e. it is not frequency dependent. However, as
recognized in reference [36], there is no uniqueness in the
description of the homogenized medium at high frequencies,
and alternative effective parameters can be achieved by
assuming other types of limits in phase contrasts when one
leaves the quasi-static regime. This is exactly what has been
found by Craster and coauthors in 2010 [33] when they intro-
duced the concept of high-frequency homogenization (HFH).
In their seminal paper, these authors take the usual ansatz for
the displacement field, but instead of considering a high con-
trast, they rescale the frequency and they are led to frequency
dependent effective parameters for both stress and density
tensors in the homogenized Navier equations [35]. Regarding
HFH of thin plates, Antonakakis and Craster find frequency
dependent effective rigidity and density in the Kirchoff-Love
equations [34], which is consistent with the work of Torrent
et al. that demonstrates negative effective Young modulus,
density and Poisson ratio using scattering matrix asymptotics
in thin periodic plates with soft inclusions [46]. We thus
claim that stop bands in Figures 2b–2d can be interpreted
in terms of negative effective density, Young’s modulus and
Poisson ratio, depending upon the homogenization approach
used. Classical work on auxetic materials [47–52] and
mechanical metamaterials [53] as well as on homogenization
[54–57] do not seem to have looked into the dynamic effec-
tive properties of auxetic-type materials, so we hope our sec-
tion will foster theoretical and experimental studies in this
direction.



4. Quantification of energy loss through
auxetic-like metamaterials

As we discussed in the previous section, there are further
dynamic effects induced by the effective elasticity tensor Ceff

that lead to other negative effective parameters, including the
bulk modulus and Poisson ratio, as shown by Torrent et al.
in the context of a thin plate theory [46] that seems particularly
well suited to the configuration of an auxetic-like metamaterial
plate shown in Figure 3. The detailed asymptotic analysis
required for the identification of the frequency dependent
effective elasticity tensor goes beyond the scope of the present
paper but, one can clearly see the dramatic changes in the
higher part of the dispersion diagrams in Figures 2a–2d when
the angle between bars changes, which is caused by a dynamic
effective tensor changing radically of nature. Besides from
that, there are marked local resonances in Figure 3a that can
be interpreted with a negative effective Poisson ratio according
to the reference [46]. One should note in passing that the fact
that there is a dynamic negative effective density does not nec-
essarily mean that there is a negative effective Poisson ratio in
3D periodic structures, but we find that for plates the dynamic
effective density, rigidity and Poisson ratio have the form of
equation (4), which is consistent with [46], provided that the
wave wavelength is much larger than the plate thickness. Fur-
thermore, one should note that auxetic-like metamaterials exhi-
bit slow modes in Figure 2 (dispersion of pressure and shear
waves propagating in the homogeneous concrete bulk are
marked by green lines), and this can be interpreted in terms
of vanishing effective density, Young’s modulus and Poisson’s
ratio in light of HFH.

Let us now focus our attention on slow (localized) modes
responsible for devastating buildings’ resonances. In order to

carry out their band structure analysis, we consider a model
for a doubly periodic array of bars 80m high, with a square
cross-section of 20 m · 20 m (that stand for buildings) lying
atop a homogeneous concrete plate (40 m · 40 m · 40 m).
We enforce Floquet-Bloch conditions on the vertical sides of
the plate, with stress-free conditions elsewhere. The elastic
band structure is shown in Figure 3a. Note that the periodicity
of the cell is irrelevant in the frequency range of interest since
the band folding occurs far above 60 Hz (about 200 Hz for
compressional waves). Eigenfrequencies of the buildings
appear as flat bands on the dispersion diagram. One can also
see that the first band on Figure 3a has a quadratic behavior
around the C point, unlike in Figure 2, which is due to the fact
that the buildings lye atop a 40 m deep concrete plate, so the
corresponding elastic wave is a Lamb (flexural type) surface
wave.

We display in Figure 3b a representative eigenmode at
17 Hz of a building which corresponds to the fifth flat band
in Figure 3a. This vibration is completely suppressed when
the plate is structured with an auxetic-like metamaterial in
Figure 3c. The structured plate consists of a supercell made
of 43 elementary cells with bars making an angle a = 45� like
in Figure 2c with Floquet-Bloch conditions on vertical sides
and stress-free conditions elsewhere. Upon inspection of the
band structure corresponding to the configuration in Figure 3c
– which is not shown as it has a large number of bands – we
notice a stop band that opens around 17 Hz: this tiny stop band
that is marked by two closely located local extrema in the
transmission (black) curve near 20 Hz in Figure 4a, can be
interpreted in terms of a negative effective density, rigidity
and Poisson’s ratio: indeed, the building’s vibration creates a
monopolar resonance (a defect mode) within the auxetic super-
cell array, so that the Drude-like effective formula (4) applies

Figure 3. (a) Band diagram for a concrete building (20 m · 20 m · 80 m) atop a concrete homogeneous plate (40 m · 40 m · 40 m);
Floquet-Bloch conditions are set on vertical sides of the plate and stress-free conditions hold elsewhere; Flat bands correspond to eigenmodes
of the building around 1 Hz, 9 Hz, 17 Hz, etc. that couple to the flexural band (lowest band at C). (b) Representative eigenmode of (a) at
17 Hz. (c) Eigenmode with suppressed building’s vibration around 17 Hz when the plate is structured with auxetic metamaterial (43

elementary cells with bars making an angle as in Figure 2c).



to all of these parameters, see reference [46] for similar effec-
tive properties of a periodic plate.

We observe in Figure 4, some low transmission from 0 to
15 Hz, which can be attributed to the liquid-like effective prop-
erties of the plate in the quasi-static limit (see Sect. 3). Indeed,
Figure 2c displays anisotropic bands with small velocities com-
pared to a homogeneous isotropic plate, and the same holds
true from the band structure associated with the supercell con-
sisting of 43 cells like in Figure 2c. Physically speaking, by
using auxetic-like elements we soften the medium underneath
the building, which leads to a strong impedance mismatch
between the auxetic-like building’s foundation and the homo-
geneous plate medium. This results in a total reflection over
a broad range of frequencies, according to the transmission loss
of Figure 4, that completely suppress the vibrations of the
building at 1 Hz and 9 Hz (marked by the first two local res-
onances in Figure 3a). The suppression of the building’s reso-
nance at 37 Hz is more conventional, since this falls within a
Bragg stop band according to Figure 2c.

Let us now quantify the amount of elastic energy stored
within the building and the transmission loss through this
building, with and without the auxetic-like metamaterial. To
do so, we apply periodic boundary conditions on the transverse
sides of an elongated homogeneous concrete plate comprising
a building (see Figures 4b1–4d2) so as to prevent appearance
of transverse beam modes. A line source is applied at the left
edge of the plate in order to simulate an incoming earthquake.
The red (resp. black) curve in Figure 4a shows the transmission
through the plate with a building on its own (resp. with the
auxetic-like metamaterial). One can see that regardless of
the frequency of the incoming wave, transmission through
the building lying atop the auxetic-like metamaterial founda-
tion is at least 10 dB lower than without the metamaterial.
One should note that any building located behind the auxet-
ic-like metamaterial would be protected. In order to quantify
the level of protection of the building lying atop the auxetic-
like metamaterial, we compute (magenta curve) the ratio of
the norm of the total displacement field stored inside the

building above the plate by the norm of the total displacement
field stored inside the building above the plate structured with
auxetic-like metamaterial. The building’s protection which is
mainly achieved via wave velocity impedance mismatch is
clearly demonstrated throughout the frequency range
0–100 Hz, with a slightly more pronounced protection in the
range of stop band frequencies from 33–47 Hz.

Some typical examples of out-of-plane (vertical) displace-
ment field are shown at 1 Hz with b1 (resp. without b2) aux-
etic-like metamaterial, at 9 Hz with c1 (resp. without c2)
auxetic-like metamaterial and at 37 Hz with d1 (resp. without
d2) auxetic-like metamaterial. The periodic foundation is
clearly different from the traditional base isolation in which
it causes a fundamental frequency shift in the structure, thus
reducing its response and generating a frequency gap. Imple-
menting auxetic-like cells in the foundations of sensitive build-
ings would significantly affect their static and dynamic
responses during earthquakes.

5. Concluding remarks and perspectives
on seismic metamaterials

The main conclusion of our study is that auxetic-like mate-
rials who have been widely studied for their special properties
linked to a negative Poisson ratio m, also have interesting stop
band properties that can be used in the context of seismic wave
protection. The stop bands can be associated with frequency
dependent mass density q, but also bulk modulus [12, 58],
shear modulus, in a way similar to what was unveiled in acous-
tic metamaterials. Nonetheless, it is also possible to achieve
frequency dependent Poisson’s ratios in stop bands of certain
mechanical metamaterials [36, 46], what is less well known.
Theories of low-frequency high-contrast homogenization
[37–40] and high-frequency homogenization [33–35] exist that
allow to investigate such dynamic effective properties of aux-
etic metamaterials. Using arrays of auxetic cells for seismic
structural protection is a new way to perform elastic band gaps

Figure 4. Quantification of energy loss (a) with red (resp. black) curves representing transmission through a building atop a concrete plate
(resp. a concrete plate structured with an auxetic metamaterial); Magenta curve gives the total displacement field stored inside the building
above an auxetic-like metamaterial normalized with respect to the same total displacement field above the homogeneous plate.
Representative out-of-plane displacement without (b1), (c1) and (d1) and with (b2), (c2) and (d2) auxetic-like metamaterial illustrate how
seismic protection works at 1 Hz (b1), (b2) with the impedance mismatch between the homogeneous plate and the auxetic-like metamaterial;
at 9 Hz (c1), (c2) with a local resonance; at 37 Hz (d1), (d2) with the Bragg band gap.



in order to prevent seismic wave propagation over specific fre-
quency ranges, but we also discovered that the very strong 
impedance mismatch between elastic wave velocity within 
the homogeneous bulk of concrete and that within the auxetic 
metamaterial enables suppression of wave transmission over a 
very large frequency range (0–100 Hz), which opens interest-
ing avenues in earthquake protection. We stress that we have 
performed our study in elastic conditions, but we are well 
aware that soils display visco-elastic properties causing fre-
quency dependent damping effects in soft sediments [59].

One could also envisage to combine auxetic-like seismic 
metamaterials within the soil with other types of protections 
such as forests of trees [23] to further widen the range of stop 
band frequencies for Rayleigh waves. It might be interesting to 
also investigate thick pillars above the soil, since previous 
numerical and experimental studies on small scale photonic 
crystals composed of nickel pillars grown on a lithium niobate 
substrate [14, 15] have shown complete stop bands at low fre-
quencies which are also robust versus disorder. Such seismic 
metamaterials would offer alternative ways to protect build-
ings, which necessitate specific modal analysis [24, 59] by civil  
engineers in order to avoid disastrous seismic site effects.
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