
HAL Id: hal-01283639
https://hal.science/hal-01283639

Submitted on 5 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Fourth Order Hermitian Box-Scheme with Fast Solver
for the Poisson Problem in a Square

Ali Abbas, Jean-Pierre Croisille

To cite this version:
Ali Abbas, Jean-Pierre Croisille. A Fourth Order Hermitian Box-Scheme with Fast Solver for the
Poisson Problem in a Square. Journal of Scientific Computing, 2011, 49, pp.239–267. �10.1007/s10915-
010-9458-y�. �hal-01283639�

https://hal.science/hal-01283639
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Fourth Order Hermitian Box-Scheme with Fast

Solver for the Poisson Problem in a Square

Ali Abbas

Department of Mathematics, LMAM, UMR 7122

University Paul Verlaine-Metz

57012 Metz, France

email: ali.abbas@umail.univ-metz.fr

Jean-Pierre Croisille

Department of Mathematics, LMAM, UMR 7122

University Paul Verlaine-Metz

57012 Metz, France

email: croisil@poncelet.univ-metz.fr

December 12, 2010

1

Abstract

A new fourth order box-scheme for the Poisson problem in a square
with Dirichlet boundary conditions is introduced, extending the approach
in [17]. The design is based on a “hermitian box” approach, combining the
approximation of the gradient by the fourth order hermitian derivative,
with a conservative discrete formulation on boxes of length 2h. The goal
is twofold: first to show that fourth order accuracy is obtained both for
the unknown and its gradient; second, to describe a fast direct algorithm,
based on the Sherman-Morrison formula and the Fast Sine Transform.
Several numerical results in a square are given, indicating an asymptotic
O(N2 log

2
(N)) computing complexity.

MSC Subject Classification: 35J25 - 65M15 - 65N30 - 76M12 - 76M20
Key words: Hermitian Scheme - Box-scheme - Finite Volume Method - High
Order Compact Scheme - Fast Solver - FFT - Mehrstellenverfahren - Poisson
Problem - Sherman-Morrison formula

1 Introduction

The design of high order compact finite-difference schemes for the Laplace equa-
tion in a squared or cubic geometry is a classical topic in Applied Mathematics
and Scientific Computing. The books [15, 20, 33, 35, 26, 29, 25] address this
question as a fundamental educative piece on numerical methods. We refer to
[13, 14] for examples of the numerous articles published in the 1960’s on the sub-
ject. For works in the last decade, we refer to [16, 36, 37, 40, 11]. Beyond the
design of specific numerical schemes, which deals with accuracy and stability,
the need of an efficient fast solver is a crucial issue to perform practical com-
putations. On this question we refer to the recent review [5] and the references
therein. The use of such solvers in canonical geometries persists to be at the
heart of many computing codes in physics. Examples are fluid dymanics (com-
pressible or incompressible Navier-Stokes equations), [34, 21, 3], the Helmholtz
equation [9, 12], computations in astrophysics, [32] or in geophysics, [38].

Here, we introduce a new fourth order compact scheme on a cartesian grid
for the Poisson problem in a rectangle, whose design is based on the prelimi-
nary work [17]. The scheme, referred as Hermitian Box-Scheme in the sequel,
combines a finite volume “box” approach with an hermitian computation of
the derivative. It provides by construction an approximation to u and ∇u. In
addition, only the averages of the data f(x, y) are used instead of the point-
wise values f(xi, yj) as in most finite-difference schemes. This is an interesting
feature when approximating Poisson problems in electromagnetism.

The main part of the paper is devoted to a fast resolution procedure which
uses the decomposition of the matrix of the scheme is the sum of a diagonal
matrix (in a spectral basis) and of a low-rank auxiliary matrix. This runs along
the lines of Golub (see Appendix in [19]). The practical resolution is performed
by a direct resolution algorithm using the Sherman-Morrison formula and the
FFT, (see [7], or [2] in a different context).

2

The outline of the paper is as follows. In Section 2, we briefly recall the
general principle of design of the Hermitian Box-Scheme in dimension one. Two
specific examples are given. First, the second order version of the scheme is
recalled (called HB-Scheme 1). Then a new fourth order scheme is introduced,
(HB-Scheme 2). In Section 3 we expand on the building block of the fast solver,
namely the diagonal form of the HB-Scheme 1. The matrix form of the HB-
Scheme 2 appears as a perturbation of the HB-Scheme 1. In Section 4, we
describe the design of HB-Schemes in a square as well as the fast solver principle
for the two versions of the HB-Scheme. A short comparison with other fourth
order schemes and an estimate of the computing cost is given. Numerical results
given in Section 5 indicate a fourth order accuracy of the new scheme and an
an asymptotic O(N2 log2(N)) computing complexity. In section 6, we briefly
outline future works, insisting on the general character of this kind of schemes.

2 One-dimensional Hermitian Box-Scheme

In this section, we recall briefly the principle of construction of the Hermitian
Box-Scheme (HB-Scheme) in dimension one, [17]. Let us consider the one-
dimensional Poisson problem on the interval Ω = (a, b) with length L = b − a,

(2.1)

{
−u′′(x) = f(x), a < x < b,
u(a) = ga, u(b) = gb.

Equation (2.1) is recast in mixed form:





v′(x) + f(x) = 0, (a) ,
v(x) − u′(x) = 0, (b) ,
u(a) = ga, u(b) = gb, (c).

(2.2)

We lay out on Ω a regular grid xj = a + jh, 0 ≤ j ≤ N with stepsize h = L/N .
The unknowns are denoted by uj ≃ u(xj) and ux,j ≃ u′(xj). The vectors

Ũ , Ũx ∈ R
N+1 (including boundary points) are

(2.3) Ũ = [u0, u1, u2, ..., uN]T ; Ũx = [ux,0, ux,1, ..., ux,N]T .

The vectors U, Ux ∈ R
N−1 stand for the unknowns at internal points,

(2.4) U = [u1, u2, ..., uN−1]
T ; Ux = [ux,1, ..., ux,N−1]

T .

As in box-schemes, [30], the HB-Scheme is derived from the integration of the
two equations (2.2)a,b on a box Kj =]xj−1, xj+1[of length 2h.
Suppose given the averaged values of the source term f(x) on the box Kj ,

(2.5) Π0fj =
1

2h

∫

Kj

f(x)dx, 1 ≤ j ≤ N − 1.

The conservation equation (2.2)a is approximated by

(2.6) −ux,j+1 − ux,j−1

2h
= Π0fj, 1 ≤ j ≤ N − 1.

3

Second, the equation (2.2)b is integrated on the box Kj . This yields

(2.7)
1

2h

∫ xj+1

xj−1

v(x)dx =
u(xj+1) − u(xj−1)

2h
, 1 ≤ j ≤ N − 1.

Approximating the integral in the left-hand side of (2.7) by the Simpson formula
suggests the fourth-order Hermitian approximation ,

(2.8)
1

6
ux,j−1 +

2

3
ux,j +

1

6
ux,j+1 =

uj+1 − uj−1

2h
, 1 ≤ j ≤ N − 1.

To fully define the HB-Scheme, we have further to specify four boundary con-
ditions:

• The Dirichlet boundary conditions u(a) = ga, u(b) = gb simply translate
to

(2.9) u0 = ga, uN = gb.

• The Hermitian relations (2.8) at points j = 1 and j = N − 1 require to
approximate the values ux,0, ux,N in terms of U, Ux, u0, uN .

Example 1: A first example of this approximation is obtained by approxi-
mating the derivatives ux,0, ux,N in terms of the internal unknowns by the two
relations

(2.10)





ux,0 =
3

2

(
u1 − u0

h
− 1

3
ux,1

)
,

ux,N =
3

2

(
uN − uN−1

h
− 1

3
ux,N−1

)
.

Formula (2.10) is considered in [17]. It coincides with the Simpson formula (2.8)
in the case of an odd function u(x) at the boundary.

Equations (2.6), (2.8), (2.9), (2.10) constitute the HB-Scheme 1. It is com-
pactly written as: find Ũ , Ũx ∈ R

N+1 solution of

(2.11)






−ux,j+1 − ux,j−1

2h
= Π0fj , 1 ≤ j ≤ N − 1,

2

3
ux,0 +

1

3
ux,1 =

u1 − u0

h
,

1

6
ux,j−1 +

2

3
ux,j +

1

6
ux,j+1 =

uj+1 − uj−1

2h
, 1 ≤ j ≤ N − 1,

2

3
ux,N +

1

3
ux,N−1 =

uN − uN−1

h
,

u0 = ga, uN = gb.

Example 2: A second approximation of ux,0, ux,N in terms of U, Ux, u0, uN is
given by

(2.12)





1

3
ux,0 +

2

3
ux,1 =

1

h

(
1

6
u2 +

2

3
u1 −

5

6
u0

)
, (a),

1

3
ux,N +

2

3
ux,N−1 =

1

h

(
5

6
uN − 2

3
uN−1 −

1

6
uN−2

)
, (b).

4

Relation (2.12)a is obtained in the following way. Let us consider a priori a
relation of the form

(2.13) αux,0 + (1 − α)ux,1 = β
u1 − u0

h
+ γ

u2 − u0

2h
,

where the parameters α, β, γ satisfy the highest possible consistency order at
x0 = 0. It is easily verified by Taylor expansions that this maximum order is
three and is achieved by the values

(2.14) α =
1

3
, β =

2

3
, γ =

1

3
.

An analogous treatment is performed for (2.12)b. Using the boundary conditions
(2.12)ab we obtain the HB-Scheme 2: find Ũ = [u0, u1, · · · , uN−1, uN]T , Ũx =
[ux,0, · · · , ux,N]T ∈ R

N+1 such that

(2.15)






−ux,j+1 − ux,j−1

2h
= Π0fj , 1 ≤ j ≤ N − 1,

1

3
ux,0 +

2

3
ux,1 =

1

h

(
1

6
u2 +

2

3
u1 −

5

6
u0

)
,

1

6
ux,j−1 +

2

3
ux,j +

1

6
ux,j+1 =

uj+1 − uj−1

2h
, 1 ≤ j ≤ N − 1,

1

3
ux,N +

2

3
ux,N−1 =

1

h

(
5

6
uN − 2

3
uN−1 −

1

6
uN−2

)
,

u0 = ga, uN = gb.

Note that specifying the approximation of ux,0, ux,N in terms of U, Ux can be
interpretated as specifying a discrete Dirichlet-to-Neumann operator

(2.16) (f, g) 7→ (u′(x0), u
′(xN)).

HB-Schemes 1 and 2 only differ by the definition of the discrete version of (2.16).
The HB-Scheme 1 is observed to be second order accurate in general, whereas
the HB-Scheme 2 is expected to be fourth order accurate. We refer to [1] for a
study of the truncation error analysis of both schemes.

3 Matrix form of the one-dimensional Hermi-

tian Box-Scheme

3.1 Finite-Difference and Matrix Notation

In this section, we summarize the finite-difference and matrix notation used in
the sequel. We call l2h the space of grid functions (ui)0≤i≤N . The subspace of
grid functions (ui)0≤i≤N with u0 = uN = 0 is called l2h,0. We review in the
sequel several finite-difference operators acting on grid functions.
• Centered One-dimensional Laplacian
The one-dimenional three-point Laplacian is

(3.1) δ2
xui =

ui+1 + ui−1 − 2ui

h2
, 1 ≤ i ≤ N − 1.

5

The N − 1 eigen grid functions of the operator −δ2
x are the zk ∈ l2h,0 defined by

(3.2) zk
j =

(
2

L

) 1
2

sin

(
kπjh

L

)
, 1 ≤ j, k ≤ N − 1.

The grid functions zk form an orthonormal basis of l2h,0 for the scalar product

(u, v)h. The matrix matching δ2
x is −T/h2 where the matrix T ∈ MN−1(R) is

(3.3) T =




2 −1 0 . . . 0
−1 2 −1 . . . 0
...

...
... . . .

...
0 . . . −1 2 −1
0 . . . 0 −1 2




.

The dimensionless eigenvectors Zk ∈ R
N−1 of T are related to zk by Zk

j =
√

hzk
j ,

(3.4) Zk
j =

(
2

N

)1/2

sin

(
kjπ

N

)
.

Defining the matrix Z ∈ MN−1 byZ = [Z1, · · · , ZN−1], we have the relations

(3.5) T = ZΛZ, ZT = Z, IN−1 = Z2 = ZZT ,

where Λ = diag(λ1, ..., λN−1) is the diagonal matrix of the eigenvalues of T
given by

(3.6) λk = 4 sin2

(
kπ

2N

)
, 1 ≤ k ≤ N − 1.

• Simpson operator
The Simpson finite-difference operator σx is

(3.7) σxuj =
1

6
uj−1 +

2

3
uj +

1

6
uj+1, 1 ≤ j ≤ N − 1.

Its matching matrix is

(3.8) Ps = I − T/6 = Z(I − Λ/6)ZT .

• Centered One-dimensional difference operator
The centered operator δx is

(3.9) δxuj =
uj+1 − uj−1

2h
, 1 ≤ i ≤ N − 1.

The matching matrix is the antisymmetric matrix K ∈ MN−1(R) given by

(3.10) K =




0 1 0 . . . 0
−1 0 1 . . . 0
...

...
... . . .

...
0 . . . −1 0 1
0 . . . 0 −1 0




.

6

• Denoting (ei)1≤i≤N−1 the canonical basis of R
N−1, the matrices F1, F2 ∈

MN−1(R) are defined by

(3.11)





F1 = e1e
T
1 + eN−1e

T
N−1 = [e1, eN−1]

[
eT
1

eT
N−1

]
, (a),

F2 = −e1e
T
1 + eN−1e

T
N−1 = [−e1, eN−1]

[
eT
1

eT
N−1

]
, (b).

The two following relations hold

{
F2.F1 = F2, (a),
F2.F2 = F1, (b).

(3.12)

Using the preceding finite-difference operators, the two equations (2.6) and (2.8),
common to HB-Schemes 1 and 2, translate to

(3.13)

{
−δxux,j = Π0fj , 1 ≤ j ≤ N − 1, (a),
σxux,j = δxuj , 1 ≤ j ≤ N − 1, (b).

Let us turn now to the generic matrix form of any of the boundary conditions
(2.10) or (2.12). Using the notation for the boundary values

(3.14) UL = u0, UR = uN , Ux,L = ux,0, Ux,R = ux,N ,

we claim that (2.10) or (2.12) can be expressed as

(3.15) e1Ux,L + eN−1Ux,R =
1

h

(
AU − hBUx + C

(
e1UL + eN−1UR

))
.

Indeed, (2.10) can be written as
(3.16)




ux,0 =
1

h

(3
2
e1

)T
U −

(1
2
e1

)T
Ux − 1

h
(
3

2
e1)

T [u0, 0, .., 0, uN]T ,

ux,N =
1

h

(
− 3

2
eN−1

)T
U −

(1
2
eN−1

)T
Ux +

1

h

(3
2
eN−1

)T
[u0, 0, .., 0, uN]T .

This translates into (3.15) with the matrices A = A1, B = B1, C = C1 defined
by

(3.17)





A1 = 3
2 (e1e

T
1 − eN−1e

T
N−1) = − 3

2F2, (a),
B1 = 1

2 (e1e
T
1 + eN−1e

T
N−1) = 1

2F1, (b),
C1 = 3

2 (−e1e
T
1 + eN−1e

T
N−1) = 3

2F2, (c).

Similarly (2.12) can be written as
(3.18)



ux,0 =
1

h
(2e1 +

1

2
e2)

T U − (2e1)
T Ux − 1

h

(
5

2
e1

)T

[u0, 0, · · · , 0, uN]T ,

ux,N = − 1

h
(2eN−1 +

1

2
eN−2)

T U − (2eN−1)
T Ux +

1

h

(
5

2
eN−1

)T

[u0, 0, · · · , 0, uN]T .

7

This translates into matrix form as (3.15) with the matrices A = A2, B = B2,
C = C2 given by
(3.19)




A2 = 2e1e
T
1 +

1

2
e1e

T
2 − 2eN−1e

T
N−1 −

1

2
eN−1e

T
N−2 = −2F2 +

1

2
(e1e

T
2 − eN−1e

T
N−2), (a),

B2 = 2(e1e
T
1 + eN−1e

T
N−1) = 2F1 (b),

C2 =
5

2
(−e1e

T
1 + eN−1e

T
N−1) =

5

2
F2 (c).

Let us consider now the matrix form of the equations in (3.13).
First, (3.13)b translates to

(3.20) PsUx +
1

6

(
e1Ux,L + eN−1Ux,R

)
=

1

2h
KU +

1

2h
F2(e1UL + eN−1UR).

It follows from (3.15), (3.20) that

(3.21) Ux =
1

h
DU +

1

h
E(e1UL + eN−1UR),

D = D(A,B) and E = E(B, C) are

(3.22)






D =
1

2
(Ps −

1

6
B)−1(K − 1

3
A),

E =
1

2
(Ps −

1

6
B)−1(F2 −

1

3
C).

Second, equation (3.13)a translates to

(3.23) − 1

2h
KUx − 1

2h
F2(e1Ux,L + eN−1Ux,R) = F.

where F = [Π0f1, · · · , Π0fN−1]
T . Using (3.15) and (3.21) Ux is eliminated

which gives the expression of the HB-Scheme in the sole unknown U as

(3.24)
1

h2
HU = F − 1

h2
G
(
e1UL + eN−1UR

)
.

The matrices H,G are

(3.25)





H = −1

2

(
KD + F2(A− BD)

)
,

G = −1

2

(
KE + F2(C − BE)

)
,

or equivalently with (3.22),

(3.26)






H = −1

4
(K − F2B)(Ps −

1

6
B)−1(K − 1

3
A) − 1

2
F2A, (a),

G = −1

4
(K − F2B)(Ps −

1

6
B)−1(F2 −

1

3
C) − 1

2
F2C, (b).

If needed, the gradient is recovered as a postprocessing by (3.21).

8

3.2 Diagonal form of the HB-Scheme 1

According to the analysis in the previous section, the matrix form of the HB-
Scheme 1 is

(3.27)
1

h2
H1U = F − 1

h2
G1

(
e1UL + eN−1UR

)
.

The matrices H1,G1 are

(3.28)





H1 = −1

4
(K − F2B1)(Ps −

1

6
B1)

−1(K − 1

3
A1) −

1

2
F2A1, (a),

G1 = −1

4
(K − F2B1)(Ps −

1

6
B1)

−1(F2 −
1

3
C1) −

1

2
F2C1, (b).

We prove one of the essential result of this paper, namely that the resulting
matrix H1 is diagonal in the spectral basis Zk of the three-point Laplacian.
This is the basis of our fast solver in Section 4.
According to (3.28), and using that F2A1 = −3B1, F2B1 = − 1

3A1, the matrix
H1 can be rewritten as

(3.29) H1 = −1

4
(K +

1

3
A1)(Ps −

1

6
B1)

−1(K − 1

3
A1) +

3

2
B1.

The matrix H1 is symmetric, since Ps and A1,B1 are symmetric, (see (3.8),
(3.17)) and K is antisymmetric.

Proposition 3.1 The (N − 1) × (N − 1) matrix H1 in (3.29) is expressed in
terms of the matrix T as

(3.30) H1 = P−1
s (T − 1

4
T 2),

where Ps = I − T/6.

Remark: In other words, H1 is diagonal in the spectral basis Zk. It can be
expressed as

(3.31) H1 = ZMZT ,

where M is the diagonal matrix

(3.32) M = (I − Λ/6)−1(Λ − 1

4
Λ2) = diag(µ1, · · · , µN−1).

The eigenvalues µk of H1 are µk = (1 − λk/6)−1(λk − λ2
k/4) or equivalently

(3.33) µk =
sin2(kπ

N)
2
3 + 1

3 cos(kπ
N)

, 1 ≤ k ≤ N − 1.

9

Proof of Prop.3.1: Consider the grid function zk in (3.2). It is verified by a
direct computation that zk satisfies the equations

(3.34)





−
zk

x,j+1 − zk
x,j−1

2h
=

1

h2

sin2(kπh
L)

2
3 + 1

3 cos kπh
L

zk
j , 1 ≤ j ≤ N − 1,

2

3
zk

x,0 +
1

3
zk

x,1 =
zk
1 − zk

0

h
,

1

6
zk

x,j−1 +
2

3
zk

x,j +
1

6
zk

x,j+1 =
zk

j+1 − zk
j−1

2h
, 1 ≤ j ≤ N − 1,

2

3
zk

x,N +
1

3
zk

x,N−1 =
zk

N − zk
N−1

h
,

zk
0 = 0, zk

N = 0.

The grid function zk
x is found to be

(3.35) zk
x,j =

1

h

(
2

L

) 1
2 sin(kπh

L)
2
3 + 1

3 cos(kπh
L)

cos

(
kπjh

L

)
.

Comparing (2.11) and (3.34) and using the definition of the matrix H1 in (3.24)
as the matrix of the HB-Scheme 1, it turns out that (3.34) translates to

(3.36) H1Z
k = µkZk,

where µk is given by

(3.37) µk =
sin2(kπ

N)
2
3 + 1

3 cos(kπ
N)

, 1 ≤ k ≤ N − 1.

Using the value of λk in (3.6), it is verified that

(3.38)
λk − 1

4λ2
k

1 − 1
6λk

=
sin2(kπ

N)
2
3 + 1

3 cos(kπ
N)

, µk.

Consequently, the vectors Zk form a complete set of eigenvectors of H1. More-
over, the matrix H1 can be expressed in terms of T as

(3.39) H1 = P−1
s (T − 1

4
T 2).

�

3.3 Matrix form of the HB-Scheme 2

We derive in this section the matrix H2 of the HB-Scheme 2 in (2.15). According
to (3.26), the matrices H2,G2 are (we use A = A2, B = B2, C = C2, with A2,
B2, C2 given in (3.19)),

(3.40)





H2 = −1

4
(K − F2B2)(Ps −

1

6
B2)

−1(K − 1

3
A2) −

1

2
F2A2, (a),

G2 = −1

4
(K − F2B2)(PS − 1

6
B2)

−1(F2 −
1

3
C2) −

1

2
F2C2, (b).

10

The matrices Ps, K, F2 are given in (3.8), (3.10), (3.11)b. The HB-Scheme 2
reads, (see (3.24)),

(3.41)
1

h2
H2U = Π0f − 1

h2
G2

(
e1UL + eN−1UR

)
.

In the sequel, we show that H2 can be expressed as

(3.42) H2 = H1 + RST , R, S ∈ MN−1,p(R), p ≪ N,

where δH = RST is a low rank perturbation of H1. The perturbation δH is
only due to the fourth order boundary conditions. Later on, we apply to (3.42)
the Sherman-Morrison formula, ([22], Chap.2, p. 50) to express H−1

2 in terms
of H−1

1 by

(3.43) H−1
2 = H−1

1 −H−1
1 R(Ip + STH−1

1 R)−1STH−1
1 .

First, observe that the matrices A2, B2 can be expressed in terms of A1, B1 as

(3.44)






A2 = A1 −
1

2
F2 +

1

2
(e1e

T
2 − eN−1e

T
N−2), (a),

B2 = B1 +
3

2
(e1e

T
1 + eN−1e

T
N−1) = B1 +

3

2
F1, (b).

This yields using (3.12),

(3.45)





F2A2 = F2A1 −
1

2
F1 −

1

2
(e1e

T
2 + eN−1e

T
N−2),

F2B2 = F2B1 +
3

2
F2.

Therefore the matrix H2 in (3.40)a can be expressed as

(3.46) H2 = H(a)
2 + H(b)

2 .

with
(3.47)



H(a)
2 = −1

4
(K − F2B1)(Ps −

1

6
B2)

−1(K − 1

3
A1) +

3

8
F2(Ps −

1

6
B2)

−1(K − 1

3
A1) −

1

2
F2A1,

H(b)
2 =

1

4
F1 +

1

4
(e1e

T
2 + eN−1e

T
N−2) −

1

24
(K − F2B2)(Ps −

1

6
B2)

−1(F2 − e1e
T
2 + eN−1e

T
N−2).

Furthermore

(3.48) B2 = B1 +
3

2
[e1, eN−1]

[
eT
1

eT
N−1

]
.

By the Sherman-Morrison formula, (Ps −
1

6
B2)

−1 is expressed in terms of (Ps −
1

6
B1)

−1 by

(Ps −
1

6
B2)

−1 =

(
Ps −

1

6
B1 −

1

4
[e1eN−1]

[
eT
1

eT
N−1

])−1

= (Ps −
1

6
B1)

−1 +
[

v1, v2

] [vT
1

vT
2

]
.

(3.49)

11

The two vectors v1, v2 are

(3.50)





v1 =
1

2(α + β)
1
2

(Ps −
1

6
B1)

−1

(√
2

2
e1 −

√
2

2
eN−1

)
,

v2 =
1

2(α − β)
1
2

(Ps −
1

6
B1)

−1

(√
2

2
e1 +

√
2

2
eN−1

)
,

where the scalars α, β are

(3.51)





α = 1 − 1

4
eT
1 (Ps −

1

6
B1)

−1e1,

β =
1

4
eT

N−1(Ps −
1

6
B1)

−1e1.

Replacing (Ps−
1

6
B2)

−1 by its value given in (3.49), we obtain after some algebra,

(3.52) H(a)
2 = H1 + w1w

T
1 + w2w

T
2 + e1s

T
1 + eN−1s

T
2 ,

and

(3.53) H(b)
2 = r1(e1 + e2)

T + r2(eN−1 + eN−2)
T .

We deduce the following decomposition

(3.54) H2 = H1 + RST ,

where RST is the perturbation defined by

(3.55)

{
R = [w1; w2; e1; eN−1; r1; r2] ∈ MN−1,6(R),
S = [w1; w2; s1; s2; e1 + e2; eN−1 + eN−2] ∈ MN−1,6(R).

The six vectors w1, w2, r1, r2, s1, s2 ∈ R
(N−1) are

(3.56)





w1 = −1

2
(K +

1

3
A1)v1,

w2 = −1

2
(K +

1

3
A1)v2,

(3.57)






r1 = − 1

24
(−K +

1

4
F2B2)(Ps −

1

6
B2)

−1e1 +
1

4
e1,

r2 =
1

24
(−K +

1

4
F2B2)(Ps −

1

6
B2)

−1eN−1 +
1

4
eN−1,





s1 = −3

8
(−K − 1

3
A2

T)(Ps −
1

6
B2)

−1e1,

s2 =
3

8
(−K − 1

3
A2

T)(Ps −
1

6
B2)

−1eN−1,
(3.58)

where the vectors v1, v2 ∈ R
N−1 are given (3.50). The matrix H2 is non sym-

metric only because of the perturbation δH = RST .

12

4 Bidimensional Hermitian Box-Schemes

In this section we extend the design principle of the Hermitian Box-Scheme
from dimension one to dimension two. In Section 4.1, the derivation of the
bidimensional is carried out without any specific assumption on the discrete
form of the derivative on the boundary. In Section 4.2, the general matrix form
is obtained using Kronecker algebra in a systematic way. Particular examples
are the bidimensional HB-scheme 1 and HB-scheme 2 which are introduced In
Section 4.3. They differ only by the approximation of the boundary derivatives
in terms of the internal unknowns. A fast solver algorithm is given for each of
them.

4.1 Design of the Hermitian Box-Scheme in a rectangle

We consider the extension of the HB-Scheme to the bidimensional Poisson Prob-
lem in the square Ω = (a, b)2,

(4.1)

{
−∆u = f, (x, y) ∈ Ω (a)
u = g, on ∂Ω (b).

The square cell Ki,j centered at point (xi, yj) with length 2h is, (see Fig.1):

(4.2) Ki,j = [xi − h, xi + h] × [yj − h, yj + h], ∀1 ≤ i, j ≤ N − 1.

The three discrete unknowns at internal points are

(4.3) U = (ui,j)1≤i,j≤N−1, Ux = (ux,i,j)1≤i,j≤N−1, Uy = (uy,i,j)1≤i,j≤N−1,

with ui,j ≃ u(xi, yj), ux,i,j ≃ ∂u
∂x (xi, yj), uy,i,j ≃ ∂u

∂y (xi, yj). The design of
the scheme proceeds as in dimension one. First, using the Green theorem, the
average of (4.1)a on Ki,j yields (the outer normal vector to ∂Ki,j is −→n (n1, n2)),

(4.4) − 1

h2

∫

∂Ki,j

(
∂u

∂x
n1 +

∂u

∂y
n2) dσ = Π0fi,j , 1 ≤ i, j ≤ N − 1.

where

(4.5) Π0fi,j =
1

4h2

∫

Ki,j

f(x, y)dxdy, 1 ≤ i, j ≤ N − 1.

The left-hand side in (4.4) consists of four one-dimensional integrals corre-
sponding to the four edges of ∂Ki,j . Each of them is approximated in turn
by the Simpson formula. This gives the following approximation of (4.4), for

13

1 ≤ i, j ≤ N − 1,
(4.6)



− 1

(2h)2

{ [
1

6
ux,i+1,j−1 +

2

3
ux,i+1,j +

1

6
ux,i+1,j+1

]

−
[
1

6
ux,i−1,j−1 +

2

3
ux,i−1,j +

1

6
ux,i−1,j+1

]

+

[
1

6
uy,i−1,j+1 +

2

3
uy,i,j+1 +

1

6
uy,i+1,j+1

]

−
[
1

6
uy,i−1,j−1 +

2

3
uy,i,j−1 +

1

6
uy,i+1,j−1

]}
= Π0fi,j .

Second, the connection of u to ux is obtained as counterparts of (2.8), by
(4.7)
1

6
ux,i−1,j +

2

3
ux,i,j +

1

6
ux,i+1,j =

ui+1,j − ui−1,j

2h
, 1 ≤ i ≤ N − 1, 0 ≤ j ≤ N

Similarly in the y-direction, the connection of uy to u is given by
(4.8)
1

6
uy,i,j−1 +

2

3
uy,i,j +

1

6
uy,i,j+1 =

ui,j+1 − ui,j−1

2h
, 1 ≤ j ≤ N − 1, 0 ≤ i ≤ N.

Equations (4.6), (4.7), (4.8) constitute the core of the HB-Scheme in two dimen-
sions. To fully define the HB-Scheme, we have to add the boundary conditions.

• First, the Dirichlet boundary conditions translate to the four series of
relations, along the four sides of the square Ω,

(4.9)





ui,0 = g(xi, y0), 0 ≤ i ≤ N,
ui,N = g(xi, yN), 0 ≤ i ≤ N,
u0,j = g(x0, yj), 1 ≤ j ≤ N − 1,
uN,j = g(xN , yj), 1 ≤ j ≤ N − 1.

• Second, the approximation of the normal derivative ux,0,j, ux,N,j, 1 ≤ j ≤
N−1, and uy,i,0, uy,i,N , 1 ≤ i ≤ N−1 along each side has to be specified in
terms of the internal unknowns (discrete Dirichlet-to-Neumann operator).

As a first example, the bidimensional form of the HB-Scheme 1 consists
in writing along the four sides of the square the following equations, (see
(2.10)),

(4.10)






2

3
ux,0,j +

1

3
ux,1,j =

u1,j − u0,j

h
, 0 ≤ j ≤ N,

2

3
ux,N,j +

1

3
ux,N−1,j =

uN,j − uN−1,j

h
, 0 ≤ j ≤ N,

2

3
uy,i,0 +

1

3
uy,i,1 =

ui,1 − ui,0

h
, 0 ≤ i ≤ N,

2

3
uy,i,N +

1

3
uy,i,N−1 =

ui,N − ui,N−1

h
, 0 ≤ i ≤ N.

Observe that the total number of equations actually coincides with the number
of unknowns. The unknowns are (ui,j , ux,i,j, uy,i,j, 0 ≤ i, j ≤ N), which gives
3(N + 1)2 unknowns. On the other hand, we have

14

h

h

(i, j) (i + 1, j)(i − 1, j)

(i, j + 1) (i + 1, j + 1)(i − 1, j + 1)

(i, j − 1) (i + 1, j − 1)(i − 1, j − 1)

Figure 1: HB-Scheme in two dimensions. The flux is integrated along the thick
contour of the box Ki,j = [xi − h, xi + h] × [yj − h, yj + h].

15

• (N − 1)2 equations in (4.6),

• (N − 1)(N + 1) equations in (4.7) and in (4.8).

• 4N equations in (4.9),

• 4(N + 1) equations in (4.10).

This gives a total number of equations of (N − 1)2 + 2(N − 1)(N + 1) + 4N +
4(N + 1) = 3(N + 1)2, which coincides with the total number of equations.
Let us now turn to the finite-difference form of the three equations (4.6), (4.7),
(4.8). This form is used in Section 4.2 to derive the matrix form of the HB-
Scheme with Kronecker algebra. In analogy to the one-dimensional case, we
let finite-difference operators act on the space L2

h of two-dimensional grid func-
tions u = (ui,j)0≤i,j≤N . The discrete unknowns are the three grid functions
(u, ux, uy) ∈ L2

h. The subspace of grid functions with homogeneous bound-
ary conditions along the four sides of the square grid is L2

h,0. Finite-difference
operators in two dimensions useful in the sequel are

• the centered operators δx, δy

(4.11)





δxui,j =
ui+1,j − ui−1,j

2h
, 1 ≤ i, j ≤ N − 1, (a),

δyui,j =
ui,j+1 − ui,j−1

2h
, 1 ≤ i, j ≤ N − 1, (b).

• the Simpson average operators σx, σy

(4.12)





σxui,j =
1

6
ui−1,j +

2

3
ui,j +

1

6
ui+1,j , 1 ≤ i, j ≤ N − 1, (a),

σyui,j =
1

6
ui,j−1 +

2

3
ui,j +

1

6
ui,j+1, 1 ≤ i, j ≤ N − 1, (b).

Using these operators, the three equations of the HB-Scheme (4.6), (4.7),
(4.8) translate in terms of the grid functions u, ux, uy ∈ L2

h as
(4.13)




−σy(δxux)i,j − σx(δyuy)i,j = Π0fi,j , 1 ≤ i, j ≤ N − 1, (a),
σxux,i,j = δxui,j , 1 ≤ i ≤ N − 1, 0 ≤ j ≤ N, (b),
σyuy,i,j = δyui,j 0 ≤ i ≤ N, 1 ≤ j ≤ N − 1, (c).

4.2 Matrix form of the bidimensional Hermitian Box-Scheme:

general case

In this section, we show that the algebraic structure of the HB-Scheme can
be interpretated in a simple way using Kronecker matrix algebra. In many
situations one can take advantage of that structure to develop fast resolution
procedures. For a summary and basic properties of the Kronecker product of
matrices, we refer to [22, 28]. For recent applications in fast computing in high
dimensions, [23, 27]. We also make use of the mapping usually denoted by the

16

operator “vec” in Kronecker algebra, which maps the grid function v = (vi,j) ∈
L2

h,0 to the vector V = vec(v) ∈ R
(N−1)2 . The operator ”vec” creates a column

vector of size (N−1)2 from a (N −1)×(N−1) matrix A by stacking the column
vectors of A = [a1; a2; ..; aN−1] below one another as

(4.14) vec(A) =




a1

...
aN−1


 .

The vectors U, Ux, Uy ∈ R
(N−1)2 are defined by

(4.15) U = vec(u), Ux = vec(ux), Uy = vec(uy).

We need also the mapping of two vectors v, w ∈ R
N−1 onto a grid function with

v and w in left and right positions,

(4.16) [v1, . . . , vN−1, 0N−1, . . . , 0N−1, w1, . . . , wN−1]
T = e1 ⊗ v + eN−1 ⊗ w.

The transpose maps two vectors v, w ∈ R
N−1 onto a grid function with v and

w respectively in bottom and top positions,
(4.17)

[v1, 0, . . . , 0, w1, v2, 0, . . . , 0, w2,, 0, . . . , 0, vN−1, 0, .., 0, wN−1]
T

= v⊗e1+w⊗eN−1.

Here we denote UL, UR ∈ R
N−1 the left and right Dirichlet boundary vector

data at x = a and x = b. Similarly, UB, UT are the Bottom and Top Dirichlet
data at y = a and y = b,

(4.18)





UL = [u0,1, .., u0,N−1]
T ,

UR = [uN,1, .., uN,N−1]
T ,

UB = [u1,0, .., uN−1,0]
T ,

UT = [u1,N , .., uN−1,N]T .

The boundary gradient vectors in R
N−1 are denoted by (Ux,L, Uy,L), (Ux,R, Uy,R),

and (Ux,T , Uy,T), (Ux,B, Uy,B). For example, we have

(4.19) Ux,L = [ux,0,1, ux,0,2, · · · , ux,0,N−2, ux,0,N−1]
T .

We denote the four corner values u0,0, u0,N , uN,0, uN,N by

(4.20) ULB = u0,0, ULT = u0,N , URB = uN,0, URT = uN,N .

Similarly, the derivatives at the four corner points are

(4.21)






(Ux,LB, Uy,LB) = (ux,0,0, uy,0,0),
(Ux,RB, Uy,RB) = (ux,N,0, uy,N,0),
(Ux,LT , Uy,LT) = (ux,0,N , uy,0,N),
(Ux,RT , Uy,RT) = (ux,N,N , uy,N,N).

17

We consider now all the equations needed to eliminate the internal and boundary
derivatives in terms of U = vec(u), UL, UR, UB and UT .
• First, (4.7, 4.8) translate in matrix form as the extension of (3.21) to the
bidimensional case. This gives the derivatives Ux = vec(ux), Uy = vec(uy) in
terms of U = vec(u), UL, UR, UB, UT as

(4.22)





Ux =
1

h

(
(D ⊗ I)U + (E ⊗ I)(e1 ⊗ UL + eN−1 ⊗ UR)

)
, (a),

Uy =
1

h

(
(I ⊗D)U + (I ⊗ E)(UB ⊗ e1 + UT ⊗ eN−1)

)
, (b).

• Second, the normal derivatives along the four sides of the square are deduced
from (3.15). The bidimensional vector form turns out to be
(4.23)



e1 ⊗ Ux,L + eN−1 ⊗ Ux,R =
1

h

(
(A⊗ I)U − h(B ⊗ I)Ux + (C ⊗ I)

(
e1 ⊗ UL + eN−1 ⊗ UR

))
,

Uy,B ⊗ e1 + Uy,T ⊗ eN−1 =
1

h

(
(I ⊗A)U − h(I ⊗ B)Uy + (I ⊗ C)

(
UB ⊗ e1 + UT ⊗ eN−1

))
.

As an example, the case of the boundary conditions for the HB-scheme 1 in
(4.10) translates to (4.23) with A = A1, B = B1, C = C1 (see (3.17)).
• Third, we need the tangential derivatives along the four edges of the square.
Consider for example the bottom side, where the tangential derivative is the
derivative in the x− direction. Using (4.7) with j = 0 and (3.21), we observe
that Ux,B can be expressed in terms of UB as

(4.24) Ux,B =
1

h
DUB +

1

h
E(e1ULB + eN−1URB).

Using also the Dirichlet-to-Neumann relation along the bottom side considered
as a segment, (see (3.15)), the x− derivatives Ux,LB, Ux,RB at the two bottom
corner points LB and RB are expressed in terms of the bottom values UB ∈
R

N−1, ULB, URB ∈ R, by

(4.25) e1Ux,LB + eN−1Ux,RB =
1

h

(
AUB − hBUx,B + C

(
e1ULB + eN−1URB

))
.

The tangential derivatives along the three other sides are derived in a similar
way.

By the principle already used in the one-dimensional case, we derive the
matrix form of the finite difference equation of (4.6), which is (4.13)a,

(4.26) −σy(δxux)i,j − σx(δyuy)i,j = Π0fi,j , 1 ≤ i, j ≤ N − 1.

Consider the first term σy(δxux). For all v ∈ L2
h, the grid function σyv ∈ L2

h is
defined by (see (4.12)b),

(4.27) σyvi,j =
1

6
vi,j−1 +

2

3
vi,j +

1

6
vi,j+1, 1 ≤ i, j ≤ N − 1.

18

Therefore, with V = vec(v) ∈ R
(N−1)2 , the vec operator applied to σyv can be

expressed as

(4.28) vec(σyv) = (I ⊗ Ps)V +
1

6
(I ⊗ e1)VB +

1

6
(I ⊗ eN−1)VT .

Using v = δxux, in (4.28) gives
(4.29)

vec(σy(δxux)) = (I⊗Ps) vec(δxux)+
1

6
(I⊗e1)(vec(δxux))B+

1

6
(I⊗eN−1)(vec(δxux))T .

Furthermore, vec(δxux) ∈ R
(N−1)2 is expressed as

vec(δxux) =
1

2h
(K ⊗ I)Ux − 1

2h
(e1 ⊗ I)Ux,L +

1

2h
(eN−1 ⊗ I)Ux,R

=
1

2h
(K ⊗ I)Ux +

1

2h
(F2 ⊗ I)(e1 ⊗ Ux,L + eN−1 ⊗ Ux,R).(4.30)

Substituting (4.30) in (4.29) yields

vec(σy(δxux)) =
1

2h
(I ⊗ Ps)

(
(K ⊗ I)Ux + (F2 ⊗ I)(e1 ⊗ Ux,L + eN−1 ⊗ Ux,R)

)

+
1

12h
(I ⊗ e1)

(
KUx,B + F2(e1Ux,LB + eN−1Ux,RB)

)

+
1

12h
(I ⊗ eN−1)

(
KUx,T + F2(e1Ux,LT + eN−1Ux,RT)

)
.

This provides the decomposition of the grid function σy(δxux) in four terms
(a), (b), (c), (d) as
(4.31)



vec(σy(δxux)) =
1

2h
(K ⊗ Ps)Ux (a)

+
1

2h
(F2 ⊗ Ps)

(
e1 ⊗ Ux,L + eN−1 ⊗ Ux,R

)
(b)

+
1

12h
(I ⊗ e1)KUx,B + 1

12h (I ⊗ e1)F2(e1Ux,LB + eN−1Ux,RB) (c)

+
1

12h
(I ⊗ eN−1)KUx,T + 1

12h (I ⊗ eN−1)F2(e1Ux,LT + eN−1Ux,RT) (d).

Each term (a), (b), (c), (d) in the preceding identity is expanded, by expressing
the derivatives in terms of the unknown U and of the boundary data.
• Term (a)
Using (4.22)a, the term (a) can be expressed as

(a) =
1

2h
(K ⊗ Ps)Ux

=
1

2h2
(K ⊗ Ps)

(
(D ⊗ I)U + (E ⊗ I)(e1 ⊗ UL + eN−1 ⊗ UR)

)
.

19

• Term (b)
The term (b) corresponds to the normal derivatives along the boundary. Using
(4.23), it can be written as

(b) =
1

2h
(F2 ⊗ Ps)(e1 ⊗ Ux,L + eN−1 ⊗ Ux,R)

=
1

2h2
(F2 ⊗ Ps)

{
(A⊗ I)U − h(B ⊗ I)Ux + (C ⊗ I)(e1 ⊗ UL + eN−1 ⊗ UR)

}

=
1

2h2
(F2 ⊗ Ps)

{
(A⊗ I)U − (B ⊗ I)

(
(D ⊗ I)U + (E ⊗ I)(e1 ⊗ UL + eN−1 ⊗ UR)

)

+ (C ⊗ I)(e1 ⊗ UL + eN−1 ⊗ UR)

}
.

This is rewritten as
(4.32)

(b) =
1

2h2

{(
F2(A−BD)⊗Ps

)
U +

(
F2(C−BE)⊗Ps

)
(e1⊗UL +eN−1⊗UR)

}
.

• Term (c)
The term (c) corresponds to the tangential derivatives along the bottom side.
Using (4.24, 4.25), it is expressed as

(4.33) (c) =
1

12h
(I ⊗ e1)KUx,B +

1

12h
(I ⊗ e1)F2(e1Ux,LB + eN−1Ux,RB),

or equivalently

(c) =
1

12h2
(I ⊗ e1)K

(
DUB + E(e1ULB + eN−1URB)

)

+
1

12h2
(I ⊗ e1)F2

(
AUB − hBUx,B + C(e1ULB + eN−1URB)

)
.

Using (4.24) again, the term (c) can be further expanded as

(c) =
1

12h2
(I ⊗ e1)(KD + F2A)UB − 1

12h2
(I ⊗ e1)F2B

(
DUB + E(e1ULB + eN−1URB)

)

+
1

12h2
(I ⊗ e1)

(
KE + F2C

)(
e1ULB + eN−1URB

)

=
1

12h2
(I ⊗ e1)

(
KD + F2(A− BD)

)
UB

+
1

12h2
(I ⊗ e1)

(
KE + F2(C − BE)

)(
e1ULB + eN−1URB

)
.

Using the expression of the matrices H and G given in (3.25), we obtain finally

(4.34) (c) = − 1

6h2
HUB ⊗ e1 −

1

6h2
G
(

e1ULB + eN−1URB

)
⊗ e1.

20

• Term (d)
The term (d) is

(4.35) (d) = − 1

6h2
HUT ⊗ eN−1 −

1

6h2
G
(

e1ULT + eN−1URT

)
⊗ eN−1.

Rearranging in (4.31) the term (a) + (b) and adding (c) and (d), we find that

vec(σy(δxux)) = − 1

h2
(H⊗ Ps)U − 1

h2
(G ⊗ Ps)(e1 ⊗ UL + eN−1 ⊗ UR)

− 1

6h2
HUB ⊗ e1 −

1

6h2
G(e1ULB + eN−1URB) ⊗ e1(4.36)

− 1

6h2
HUT ⊗ eN−1 −

1

6h2
G(e1ULT + eN−1URT) ⊗ eN−1.

Symmetrically, the matrix form of the term σx(δyuy) in (4.26) is,

vec(σx(δyuy)) = − 1

h2
(Ps ⊗H)U − 1

h2
(Ps ⊗ G)(UB ⊗ e1 + UT ⊗ eN−1)

− 1

6h2
e1 ⊗HUL − 1

6h2
e1 ⊗ G(e1ULB + eN−1ULT)(4.37)

− 1

6h2
eN−1 ⊗HUR − 1

6h2
eN−1 ⊗ G(e1URB + eN−1URT).

Collecting the terms in (4.36, 4.37), we find out that the matrix form of (4.26)
is

(4.38)
1

h2

(
H⊗ Ps + Ps ⊗H

)
U = F − Gx − Gy.

The vectors F corresponds to the averaged source term in (4.5),

(4.39) F = vec(Π0f).

The vectors Gx, Gy ∈ R
(N−1)2 correspond to the non homogeneous boundary

conditions,

(4.40)





Gx =
1

h2
(G ⊗ Ps)(e1 ⊗ UL + eN−1 ⊗ UR)

+
1

6h2

(
HUB + G(e1ULB + eN−1URB)

)
⊗ e1

+
1

6h2

(
HUT + G(e1ULT + eN−1URT)

)
⊗ eN−1,

and

(4.41)






Gy =
1

h2
(Ps ⊗ G)(UB ⊗ e1 + UT ⊗ eN−1)

+
1

6h2
e1 ⊗

(
HUL + G(e1ULB + eN−1ULT)

)

+
1

6h2
eN−1 ⊗

(
HUR + G(e1URB + eN−1URT)

)
.

21

The only parameter to specify in (4.38) consists in the choice of the discrete
Dirichlet-to-Neumann approximation in (4.23). This choice results in specific
matrices A, B, C, which in turn determine the matrices D, E in (3.22) and then
H, G in (3.26).

4.3 Fast solver for the HB-Scheme in two dimensions

4.3.1 Fast Solver for the HB-Scheme 1

It results from (4.38) that the matrix form of the HB-Scheme 1 is

(4.42)
1

h2
(H1 ⊗ Ps + Ps ⊗H1)U = F − Gx − Gy .

The matrices H1,G1 in (3.28) are substituted to the matrices H,G in (4.40,

4.41). The bidimensional HB-Scheme 1 reads: find U ∈ R
(N−1)2 solution of

(4.43) H1U = f

where the matrix H1 is defined by

(4.44) H1 = H1 ⊗ Ps + Ps ⊗H1,

and

(4.45) f = h2(F − Gx − Gy).

The vectors F, Gx, Gy ∈ R
(N−1)2 are given in (4.39, 4.40, 4.41). Since Ps, H1

are both diagonal in the basis Zk, with eigenvalues αk = 1 − λk/6, µk, the
matrix H1 is diagonal in the basis Zk ⊗ Z l with spectral decomposition, (see
(3.5), (3.32)),

(4.46) H1 =
(
Z ⊗ Z

)(
M⊗ (I − Λ/6) + (I − Λ/6) ⊗M

)(
ZT ⊗ ZT

)
.

The eigenvalues are βk,l given by

(4.47) βk,l = µkαl + αkµl, 1 ≤ k, l ≤ N − 1.

Solving (4.43) is performed by FFT using the following algorithm. It extends
the classical FFT algorithm used to solve the five-point Laplacian in a rectangle.

Algorithm 4.1 Algorithm 1: (Fast FFT algorithm for the HB-Scheme 1)

• Step 1: Decompose the source term f = h2(F−Gx−Gy), (see (4.39),(4.40),
(4.41)) with H = H1, G = G1), on the orthonormal basis Zk ⊗ Z l of

R
(N−1)2 . Recall that µk and αk = 1 − 1

6λk are the eigenvalues of matrix
H1 and Ps respectively. This step consists of computing the coefficients
fZ

k,l = (f, Zk ⊗ Z l), 1 ≤ k, l ≤ N − 1 and is performed by Fast Sine
Transform, [31].

22

• Step 2: Compute the components UZ
k,l of the solution in the Fourier space

by

(4.48) UZ
k,l =

fZ
k,l

βk,l
, 1 ≤ k, l ≤ N − 1.

• Step 3: Assemble componentwise the solution using the decomposition of
the grid function U ∈ R

(N−1)2 inZk ⊗ Z l by

(4.49) Ui,j =

N−1∑

k,l=1

UZ
k,lZ

k
i Z l

j .

The grid function u ∈ L2
h,0 is such that U = vec(u), therefore

(4.50) ui,j = Ui,j , 1 ≤ i, j ≤ N − 1.

Steps 1 and 3 are O(N2 log2(N)), and Step 2 is O(N2), which gives a O(2N2 log2(N))+
O(N2) algorithm.

4.3.2 Fast Solver for the HB-Scheme 2

In this section, we derive a fast direct resolution procedure for the fourth-order
HB-Scheme 2. Here (4.38) is expressed as

(4.51)
1

h2

(
H2 ⊗ Ps + Ps ⊗H2

)
U = F − Gx − Gy .

In (4.51), the matrices H2 and Ps are given in (3.40)a, (3.8). The three terms of
the right-hand side are given in (4.39), (4.40), (4.41) whith G = G2, (see(3.40)b).
Our first result states the algebraic structure of (4.51). Observe that the matrix
structure of the HB-Scheme 2 keeps exactly the same shape as the HB-Scheme
1. Using the structure of the matrix H2 in (3.54), we obtain that
(4.52)

H2 ⊗ Ps + Ps ⊗H2︸ ︷︷ ︸
H2

= (H1 ⊗ Ps + Ps ⊗H1)︸ ︷︷ ︸
H1

+
(
RST ⊗ Ps + Ps ⊗ RST

)
︸ ︷︷ ︸

δH

.

The linear system to solve is therefore

(4.53) H2U = f

where f = h2(F − Gx − Gy). Furthermore, rank (δH) = 12(N − 1) compared
to rank (H1) = (N − 1)2. Let us give the detailed structure of δH . The matrix
Ps can be expressed as

(4.54) Ps = Z diag(α1, · · · , αN1
)ZT .

Defining the vector Z ′,k = α
1/2
k Zk, the matrices Z ′, Ps ∈ MN−1(R) are

(4.55) Z ′ = [Z ′,1, · · · , Z ′,N−1], Ps = Z ′Z ′,T .

23

Therefore δH can be written as

δH = RST ⊗ Ps + Ps ⊗ RST

=

[
R1 ⊗ Z ′, · · · , R6 ⊗ Z ′, Z ′ ⊗ R1, · · · , Z ′ ⊗ R6

]




ST
1 ⊗ Z ′,T

...
ST

6 ⊗ Z ′,T

Z ′,T ⊗ ST
1

...
Z ′,T ⊗ ST

6




.

This result in δH = LMT where the rectangular matrices L, M ∈ M(N−1)2,12(N−1)(R)
are

(4.56) L = [L1, · · · , L12], M = [M1, · · · , M12].

The matrices Li, Mi ∈ M(N−1)2,(N−1)(R) are for 1 ≤ i ≤ 6,

(4.57)

{
Li = Ri ⊗ Z ′, Li+6 = Z ′ ⊗ Ri,
Mi = Si ⊗ Z ′, Mi+6 = Z ′ ⊗ Si.

The basis of our fast algorithm is the Sherman-Morrison formula (see ([22],
Chap. 2, pp. 50) applied to the matrix (4.52). It consists in expressing the
inverse of the matrix H2 = H1 + LMT as

(4.58) H−1
2 = H−1

1 − H−1
1 L

(
I12(N−1) + MT H−1

1 L

)−1

MT H−1
1 .

According to (4.58), the following algorithm summarizes the solution procedure.
Indications of the computing complexity are given at each step of the algorithm.
Despite the apparent length of the algorithm, which is given in full details, the
implementation keeps to be simple, using standard vector operations in matlab
or FORTRAN 90.

Algorithm 4.2 Algorithm 2 (Fast FFT algorithm for the HB-Scheme 2)

• Step 1: Let f = h2(F − Gx − Gy) ∈ R
(N−1)2 be the source-term vector.

Solve the linear system

(4.59) H1g = f.

It is solved using the Algorithm 4.1 at a cost O(2N2 log2(N)) + O(N2).

The vector g ∈ R
(N−1)2 is stored for the Step 7.

• Step 2: Given g ∈ R
(N−1)2 in Step 1, compute the vector MT g ∈

R
12(N−1) defined by

(4.60) MT g =
[
MT

1 g, MT
2 g, .., MT

12g
]T

.

24

The first component MT
1 g ∈ R

(N−1) is

(4.61) MT
1 g =

[
(S1 ⊗ Z ′,1)T g, · · · , (S1 ⊗ Z ′,N−1)T g

]T
.

For 1 ≤ l ≤ N − 1, the l-component of the vector MT
1 g in (4.61) is

(S1 ⊗ Z ′,l)T g =

N−1∑

i=1

(S1)i

N−1∑

j=1

gi,jZ
′,l
j(4.62)

= α
1/2
l

N−1∑

i=1

(S1)i

N−1∑

j=1

gi,jZ
l
j .

The terms

(4.63)
N−1∑

j=1

gi,jZ
l
j, 1 ≤ i ≤ N − 1,

are computed by FFT using

(4.64)

N−1∑

j=1

gi,jZ
l
j =

(
2

N

) 1
2

N−1∑

j=1

gi,j sin

(
jlπ

N

)
.

The same method is used to compute MT
2 g, · · · , MT

6 g. Similarly, the k−th
component in MT

7 g is

(Z ′,k ⊗ S1)
T g =

N−1∑

j=1

(S1)j

N−1∑

i=1

gi,jZ
′,k
i(4.65)

= α
1/2
k

N−1∑

j=1

(S1)j

N−1∑

i=1

gi,jZ
k
i .

Again the FFT is used to compute

(4.66)

N−1∑

i=1

gi,jZ
k
i =

(
2

N

) 1
2

N−1∑

i=1

gi,j sin

(
ikπ

N

)
.

The vectors MT
8 g, · · · , MT

12g are computed by the same method. The N−1
FFT computations in (4.64), (4.66) are performed at a cost O(2N2 log2(N)).
For each 1 ≤ l ≤ N − 1, the scalar product in (4.62) or (4.65) gives an
additional 2N cost. The cost of the scalar products is therefore 24N2. In
summary the cost of Step 2 is O(2N2 log2(N)) + 24N2.

• Step 3: Solve the 12(N − 1) × 12(N − 1) auxiliary linear system,

(4.67) (I12(N−1) + MT H−1
1 L)w = MT g.

The computing complexity of the whole algorithm relies on the efficiency
of this solving. We use the GMRES method. No preconditionning is used
for the time now. A computing cost analysis is given in Section 4.3.3.

25

• Step 4: The solution w ∈ R
12(N−1) in Step 3 is decomposed as

(4.68) w = [w1, w2, ..., w12]
T , w1, w2, .., w12 ∈ R

N−1.

Compute the vector t = Lw, w ∈ R
12(N−1), t ∈ R

(N−1)2 by

(4.69) t = t1 + t2 + t3 + ... + t12, tl = Llwl, 1 ≤ l ≤ 12

with
(4.70)



t1 = (R1 ⊗ [Z ′,1, · · · , Z ′,N−1])w1 , t2 = (R2 ⊗ [Z ′,1, · · · , Z ′,N−1])w2,
...
t5 = (R5 ⊗ [Z ′,1, · · · , Z ′,N−1])w5 , t6 = (R6 ⊗ [Z ′,1, ..., Z ′,N−1])w6,
t7 = ([Z ′,1, · · · , Z ′,N−1] ⊗ R1)w7 , t8 = ([Z ′,1, · · · , Z ′,N−1] ⊗ R2)w8,
...
t11 = ([Z ′,1, · · · , Z ′,N−1] ⊗ R5)w11, t12 = ([Z ′,1, · · · , Z ′,N−1] ⊗ R6)w12.

The components (tm)i,j , 1 ≤ i, j ≤ N − 1, 1 ≤ m ≤ 12 are
(4.71)



(t1)i,j = (R1)i

∑N−1
l=1 α

1/2
l (w1)lZ

l
j , (t2)i,j = (R2)i

∑N−1
l=1 α

1/2
l (w2)lZ

l
j ,

...

(t5)i,j = (R5)i

∑N−1
l=1 α

1/2
l (w5)lZ

l
j , (t6)i,j = (R6)i

∑N−1
l=1 α

1/2
l (w6)lZ

l
j ,

(t7)i,j = (R1)j

∑N−1
k=1 α

1/2
k (w7)kZk

i , (t8)i,j = (R2)j

∑N−1
k=1 α

1/2
k (w8)kZk

i ,
...

(t11)i,j = (R5)j

∑N−1
k=1 α

1/2
k (w11)kZk

i , (t12)i,j = (R6)j

∑N−1
k=1 α

1/2
k (w12)kZk

i .

Each sum in each right hand side in (4.71) is computed by FFT , which
gives a cost of O(12N log2(N)). Each of the 12 vectors t1, · · · , t12 re-
quires also N2 multiplications. The sum in (4.69) requires further 12N2

additions. This gives a global cost of O(12N log2(N)) + 24N2.

• Step 5: Solve the linear system in R
(N−1)2

(4.72) w = H−1
1 t,

via the fast FFT solver as in Step 1. The cost is O(2N2 log2(N))+O(N2).

• Step 6: Assemble the solution U ∈ R(N−1)2 of the linear system (4.51)
by

(4.73) U = g − w,

where g, w ∈ R(N−1)2are given in (4.59, 4.72). The cost is O(N2).

• Step 7: Compute (if needed) the hermitian gradient Ux, Uy ∈ R(N−1)2

given in (4.22) as a post-processing of the grid values of U .

Remark:

Not that the spectral radius of H−1
1 δH is close to 1.48. This discards an itera-

tions using H−1
1 δH as iterative matrix.

26

4.3.3 Further comments on the computational cost of Algorithm 4.2

1- Resolution of (4.67)
The complexity of the previous algorithm relies on the efficiency of solving the
auxiliary linear system (4.67). The matrix of the linear system is I12(N−1) +

MT H−1
1 L where

(4.74) MT H−1
1 L =




MT
1 H−1

1 L1 MT
1 H−1

1 L2 .. MT
1 H−1

1 L12

MT
2 H−1

1 L1 MT
2 H−1

1 L2 .. MT
2 H−1

1 L12

..
MT

12H
−1
1 L1 MT

12H
−1
1 L2 .. MT

12H
−1
1 L12




Suppose that kit matrix-vector products are needed to reach a prescribed accu-
racy (for a specified iterative solver). Due to the structure of the matrix (4.74),
it turns out that each matrix vector product MT H−1

1 Lw requires:

• One matrix vector product w ∈ R
12(N−1) 7→ Lw := t ∈ R

(N−1)2 . This
product coincides with Step 4.

• One resolution H1s = t, where s, t ∈ R
(N−1)2 which coincides with Step

1.

• One matrix-vector product s ∈ R
(N−1)2 7→ MT s ∈ R

12(N−1) which coin-
cides with Step 2.

Summing up the costs in Step 4, Step 2, Step 1 gives a cost of O(2N2 log2(N))
+O(49N2) for each matrix vector product in (4.67). This has to be multiplied
by the number of iterations kit. The total cost for Algorithm 2 4.2 is found
to be O(6N2 log2(N) + 51N2) + kitO(2N2 log2(N) + 49N2). In Table 4.3.3 the
condition number of the matrix (4.67) is displayed. It appears to be independent
of the grid size.
2- Comparison with other fourth order schemes
Let us briefly comment the differences between the scheme (4.53) with other
fourth order schemes on regular cartesian grids. The classical fourth order
scheme of Collatz [15] is usually solved using multigrid solvers, [41, 24]. This
makes difficult an accurate cost analysis comparison with any direct solver. In
[8, 35] a family of high order compact finite finite difference schemes (HODIE
methods) is systematically studied in two and three dimensions for elliptic or
Helmholtz problems. A broad series of test cases is solved using direct and
iterative solvers. A specific solver is the Fourier-tridiagonal method, [10]. The
Orthogonal Spline Collocation (OSC) method ([6], [4]) is fourth order accurate
for the unknown and the gradient. It uses Hermite cubic splines. For many
HODIE schemes as well as for the OSC method, it is possible to compute in
a preliminary step the discrete spectral basis. This allows a direct resolution
at a cost O(C1N

2 log2(N) + O(C2N
2) with optimal constants C1, C2. This

is also the case for the HB1 scheme (see Algorithm 4.1). We refer to [5] for
additional properties of OSC schemes. Finally, the algorithm in [11] based on a
subtractional solver uses a decomposition of the solution in an analytical part

27

Mesh size 8 16 32 64 128 256 512
Cond. number 11.3376 11.2784 11.2299 11.2015 11.1851 11.1757 11.1703

Table 1: Condition number of the matrix I12(N−1) + MT H−1
1 L

and a spectral part. This algorithm performs optimally in particular cases.
The design of the HB-scheme is quite different from the preceding schemes. It
relies on the mixed form of the equation. The fourth order accuracy for u and
∇u results from the one of quadrature formulas and not from pointwise Taylor
expansions. As in finite volume methods, only averaged values of the source term
are used. at the points (ih, jh). The FFT/Sherman-Morrison solver proposed
in Algorithm 4.2 is an example of a fast solver for (4.53).

5 Numerical Results

In this section we display some numerical results which prove the efficiency of
the fourth-order version of HB-Scheme 2 in different cases of computational
interest. Moreover, in some cases, the HB-Scheme 1 is also observed to be
fourth order accurate. The F90 computing code is sequential and on a desktop
computer with a processor Intel i7, 3.20 Ghz, 6GB memory. The compiler is
g95 with -O3 optimization level. We use the package FFTPACK5 for the Fast
Fourier Transform, [39]. The reported CPU time is obtained using the cputime

function. We use the discrete L2
h norm to measure the errors, defined by

(5.1) ‖u − uh‖h =

(
h2

N−1∑

i,j=1

(u(xi, yj) − ui,j)
2

) 1
2

.

Recall that taking into account non homogeneous boundary conditions gives an
additional contribution to the right-hand side for near boundary points which
is given in the Gx and Gy vectors, see (4.40, 4.41). The average operator Π0

in (4.39) is approximated by the (tensorial) Simpson formula, which is fourth
order.
The number of GMRES iterations for the resolution of (4.67) is observed to be
independent of N in practice. For a relative residual condition set to 10−13, 15
iterations are typically needed.
Case 1: We consider the Gaussian function u(x, y) = exp(−((x − 0.5)2 + (y −
0.5)2)). This case is considered in [11]. The results are reported on Table 2 up to
a grid of size N = 1024 in the x− and y− directions. Observe the fourth-order
accuracy for the three unknowns (up to the computer accuracy).

Case 2: We consider the Poisson problem with exact solution u(x, y) =
ln(x + y2 + 1). The results are reported in Table 5. Note the singularity of the
gradient along the boundary.
Case 3: In Table 4 a more difficult case is reported, with isolines along the

28

Mesh size ‖u − uh‖ ‖ux − ux,h‖ T=CPU(in s.) T/(N2 ln2(N)) GMRES it.
N = 128 2.385(−10) 5.793(−10) 0.12 1.04(-6) 15
conv. rate 3.98 4.01
N = 256 1.504(−11) 3.585(−11) 0.44 8.39(-7) 15
conv. rate 3.99 3.97
N = 512 9, 446(−13) 2.284(−12) 1.81 7.67(-7) 15
conv. rate 4.00 2.06
N = 1024 5.884(−14) 5.459(−13) 8.49 8.09(-7) 15

Table 2: Error and convergence rate with the bidimensional HB-Scheme 2 for
u(x, y) = exp(−(x − 0.5)2 − (y − 0.5)2) on [0, 1]2.

Mesh size ‖u − uh‖h ‖ux − ux,h‖h ‖uy − uy,h‖h T=CPU(in s.) T/(N2 ln2(N)) GMRES it.
N = 128 3.478(−10) 1.813(−9) 2.697(-9) 0.11 9.59(-7) 15
conv. rate 4.00 3.83 3.92
N = 256 2.167(−11) 1.268(−10) 1.780(-10) 0.42 8.01(-7) 15
conv. rate 4.00 3.86 3.92
N = 512 1.351(−12) 8.721(−12) 1.171(-11) 1.89 8.01(-7) 15
conv. rate 4.00 3.36 3.62
N = 1024 8.420(−14) 8.446(−13) 9.477(-13) 8.22 7.84(-7) 15

Table 3: Error and convergence rate with the bidimensional HB-Scheme 2 for
u(x, y) = ln(x + y2 + 1) on [0, 1]2.

29

Mesh size ‖u − uh‖h ‖ux − ux,h‖h T=CPU(in s.) T/(N2 ln2(N)) GMRES it.
N = 512 1.163(−7) 5.835(−6) 1.91 8.09(-7) 14
conv. rate 4.00 3.88
N = 1024 7.247(−9) 3.967(−7) 8.65 8.24(-7) 14
conv. rate 4.00 3.90
N = 2048 4.520(−10) 2.660(−8) 37.18 8.06(-7) 14
conv. rate 4.00 3.91
N = 4096 2.821(−11) 1.768(−9) 162.8 8.09(-7) 14

Table 4: Error and convergence rate with the bidimensional HB-Scheme 2 for
u(x, y) = cos

(
5π(x − y)3

)
on [0, 1]2.

Mesh size ‖u − uh‖h ‖ux − ux,h‖h T=CPU(in s.) T/(N2 ln2(N)) GMRES it.
N = 512 9.480(−9) 1.283(−7) 1.66 7.04(-7) 11
conv. rate 4.00 4.00
N = 1024 5.923(−10) 8.021(−9) 7.51 7.16(-7) 11
conv. rate 4.00 4.00
N = 2048 3.702(−11) 5.013(−10) 32.07 6.95(-7) 11
conv. rate 4.00 3.99
N = 4096 2.314(−12) 3.156(−11) 132.7 6.59(-7) 11

Table 5: Error and convergence rate with the bidimensional HB-Scheme 2 for
u(x, y) = exp

(
− 30((x − 0.5)2 + (y − 0.5)2)

)
cos
(
20(x + y − 1)

)
on [0, 1]2.

first diagonal, u(x, y) = cos
(
5π(x − y)3

)
. We display results with grids from

N = 512 to N = 4096. Again the rate is close to four for the three unknowns
u, ∂xu, ∂yu.
Case 4: We consider in Table 5 a case presented in [11] with the exact function

(5.2) u(x, y) = exp
(
− 30((x − 0.5)2 + (y − 0.5)2)

)
cos
(
20(x + y − 1)

)
.

This function is both steep and oscillating and is more difficult than the previous
ones to compute. The accuracy obtained on the final grid (N = 4096) is the
same than the one obtained for N = 512 with the optimal spectral subtractional
solver in [11] which uses a decomposition into an explicit part and a computed
part. The HB-scheme does not use such a decomposition. In addition, the
unknown and the gradient are provided by the scheme.

6 Conclusion

This paper introduces a methodology to design compact finite difference schemes
in cartesian geometries. A specific example of interest for the Poisson problem

30

is worked out. The new scheme appears to be fourth order for the principal un-
known and the gradient. The computational cost is found to be O(C1N

2 log2(N))
+ O(C2N

2). The performances on a desktop are quite good. The scheme does
not use any kind of staggered grid. All the unknowns are located at point
(xi, yj).
The work is going on in several directions including extending the accuracy to
order six and eight and the extension to dimension three. In addition, a strategy
to generalize this scheme to multiscale grids and to irregular geometries using
embedded grids, [18], in underway. We refer to the forthcoming [1] for a detailed
numerical analysis.

Acknowledgment: The authors acknowledge the referees for their careful re-
view that helped greatly to enhance this paper. They are also very grateful to
Prof. G. Fairweather for his appreciation of this work.

References

[1] A. Abbas. Schémas compacts hermitiens: algorithmes rapides pour la
discrétisation des équations aux dérivées partielles. PhD thesis, Univ. Paul
Verlaine - Metz, to appear.

[2] M. Ben-Artzi, J-P. Croisille, and D. Fishelov. A fast direct solver for
the biharmonic problem in a rectangular grid. SIAM J. Scient. Comp.,
31(1):303–333, 2008.

[3] M. Ben-Artzi, J-P. Croisille, and D. Fishelov. Navier-Stokes equations in
planar domains. World Scientific Publishing, to appear, 2011.

[4] B. Bialecki, G. Fairweather, and K.R. Bennett. Fast direct solvers for
piecewise Hermite bicubic orthogonal spline collocation equations. SIAM
J. Numer. Anal., 29:156–173, 1992.

[5] B. Bialecki, G. Fairweather, and A. Karageorghis. Matrix decomposition
algorithms for elliptic boundary value problems: a survey. Numerical Al-
gorithms, 2010, to appear.

[6] B. Bialecki, G. Fairweather, and K.A. Remington. Fourier methods for
piecewise Hermite bicubic orthogonal spline collocation. East-West J. Nu-
mer. Math, 2:1–20, 1994.

[7] P. Bjørstad. Fast numerical solution of the biharmonic Dirichlet problem
on rectangles. SIAM J. Numer. Anal., 20, No. 1:59–71, 1983.

[8] R.F. Boisvert. Families of high order accurate discretizations of some el-
liptic problems. SIAM J. Sci. Stat. Comput., 2(3):268–284, 1981.

[9] R.F. Boisvert. A fourth order accurate Fourier method for the Helmholtz
equation in three dimensions. ACM Trans. Math. Soft., 13:221–234, 1987.

31

[10] R.F. Boisvert. Algorithms for special tridiagonal systems. SIAM J. Sci.
Stat. Comput., 12(2):423–442, 1991.

[11] E. Braverman, B. Epstein, M. Israeli, and A. Averbuch. A fast spectral
subtractional solver for elliptic equations. J. Sci. Comput., 21(1):91–128,
2004.

[12] E. Braverman, M. Israeli, and A. Averbuch. A hierarchical 3-D direct
Helmholtz solver by domain decomposition and modified Fourier method.
SIAM J. Sci. Comput., 26(5):1504–1524, 2005.

[13] B.L. Buzbee and F.W. Dorr. The direct solution of the biharmonic equation
on rectangular regions and the Poisson equation on irregular regions. SIAM
J. Numer. Anal., 1974.

[14] B.L. Buzbee, G.H. Golub, and C. W. Nielson. On direct methods for solving
Poisson’s equations. SIAM J. Numer. Anal., 1970.

[15] L. Collatz. The Numerical Treatment of Differential Equations. Springer-
Verlag, 3-rd edition, 1960.

[16] G. Coppola and C. Meola. Generalization of the spline interpolation based
on the principle of compact schemes. J. Sci. Comput., 17(1-4):695–706,
2002.

[17] J-P. Croisille. A Hermitian Box-Scheme for one-dimensional elliptic equa-
tions - Application to problems with high contrasts in the ellipticity. Com-
puting, 78:329–353, 2006.

[18] M.D. de Tullio, R. Verzicco, and G. Iaccarino. Immersed Boundary Tech-
niques for Large-Eddy-Simulation (in Large Eddy Simulation and Related
Techniques). VKI Lectures Series. Von Karman Institute, 2010 to appear.

[19] L. W. Ehrlich. Solving the biharmonic equations as coupled finite difference
equations. SIAM J. Numer. Anal., 8(2):278–287, 1971.

[20] G.E. Forsythe and W.R. Wasow. Finite Difference Methods for Partial
Differential Equations. Applied Mathematics Series. John Wiley & Sons,
6th edition, 1960.

[21] G.H. Golub, L.C. Huang, H. Simon, and W-P. Tang. A fast Poisson solver
for the finite difference solution of the incompressible Navier-Stokes equa-
tions. SIAM J. Sci. Comput., 19(5):1606–1624, 1998.

[22] G.H. Golub and C.F. Van Loan. Matrix computations. John Hopkins Univ.
Press., 1996, 3rd edition.

[23] L. Grasedyck. Existence and computation of low Kronecker-Rank approx-
imations for large linear systems of tensor product structure. Computing,
72:247–265, 2004.

32

[24] M. M. Gupta, J. Kouatchaou, and J. Zhang. Comparison of second order
and fourth order scheme discretizations for multigrid Poisson solver. J.
Comput. Phys., 132:226–232, 1997.

[25] B. Gustafsson. High Order Difference Methods for Time Dependent PDE.
Springer-Verlag, 2008.

[26] W. Hackbusch. Elliptic Differential Equations, volume 15 of Springer Series
in Comp. Math. Springer-Verlag, 1992.

[27] W. Hackbusch, B.N. Khoromskij, and E.E. Tyrtyshnikov. Hierarchical
Kronecker tensor-product approximations. Jour. Numer. Math, 13(2):119–
156, 2005.

[28] D.A. Harville. Matrix algebra from a statistician perspective. Springer,
2008.

[29] A. Iserles. A First Course in the Numerical Analysis of Differential Equa-
tions. Cambridge Univ. Press, 1996.

[30] H. B. Keller. A new difference scheme for parabolic problems. In Numerical
Solution of Partial Differential Equations, II (SYNSPADE 1970) (Proc.
Sympos., Univ. of Maryland, College Park, Md., 1970), pages 327–350.
Academic Press, New York, 1971.

[31] C. Van Loan. Computational Frameworks for the Fast Fourier Transform.
SIAM, 1992.

[32] P. Londrillo. Adaptive grid-based gas-dynamics and Poisson solvers for
gravitating systems. Mem. A.A. It. Suppl., 4(69):69–74, 2004.

[33] A.R. Mitchell and D.F. Griffiths. The Finite Difference Method in Partial
Differential Equations. John Wiley & Sons, 1980.

[34] Y. Morinishi, T.S. Lund, O.V. Vasilyev, and P. Moin. Fully conservative
higher order finite difference schemes for incompressible flows. Jour. of
Comp. Phys., 143:90–124, 1998.

[35] J.R. Rice and R.F. Boisvert. Solving elliptic problems using ELLPACK.
Springer-Verlag, 1985.

[36] T.K. Sengupta, G. Ganeriwal, and D. De. Analysis of central and upwind
compact schemes. Journal of Computational Physics, 192:677–694, 2003.

[37] S.E. Sherer and J.N. Scott. High order compact finite difference methods
on general overset grids. Journal of Computational Physics, 210:459–496,
2005.

[38] K. Shiraishi and T. Matsuoka. Wave propagation simulation using the CIP
method of characteristics equations. Comm. Comput. Physics, 3(1):121–
135, 2008.

33

[39] P. Swarztrauber. Fast Fourier Transform Algorithms for Vector Computers.
Parallel Computing, pages 45–63, 1984.

[40] Yin Wang and Jun Zhang. Sixth order compact scheme combined with
multigrid method and extrapolation technique for 2d Poisson equation.
Journal of Computational Physics, 2009.

[41] J. Zhang. An explicit fourth-order compact finite difference scheme for three
dimensional convection-diffusion equation. Comm. Num. Meth, 14:263–280,
1998.

34

