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SOLUTIONS IN SOME BORDERLINE CASES OF CALDERON-ZYGMUND THEORY

In this paper we study the existence of W 1,1 0 (Ω) distributional solutions of Dirichlet problems whose simplest example is -div |∇u| p-2 ∇u = f (x), in Ω; u = 0, on ∂Ω.

Introduction

Let Ω be a bounded open set in IR N , N ≥ 2. The simplest example of nonlinear (and variational) boundary value problem is the Dirichlet problem for the p-Laplace operator (1.1)

-div |∇u| p-2 ∇u = f (x), in Ω; u = 0, on ∂Ω;

where (1.2) 1 < p < N, so that the growth of the differential operator is p -1. The classical theory of nonlinear elliptic equations states that W 1,p 0 (Ω) is the natural functional spaces framework to find weak solutions of (1.1), if the function f belongs to the dual space of W 1,p 0 (Ω) (see [START_REF] Brezis | Equations et inéquations non linéaires dans les espaces vectoriels en dualité[END_REF], [START_REF] Browder | Existence theorems for nonlinear partial differential equations[END_REF], [START_REF] Leray | Quelques résultats de Višik sur les problèmes elliptiques semi-linéaires par les méthodes de Minty et Browder[END_REF]). This approach fails if p = 1 or if we consider the problem of nonparametric minimal surfaces (where f (x) = 0, but the boundary datum is not zero, see [START_REF] Jenkins | The Dirichlet problem for minimal surface equation in higher dimension[END_REF]) because of the lack of compactness of bounded sequences (non-reflexivity of W 1,1 0 (Ω)), so that it is only possible to find solutions in the "larger" space BV (Ω). We recall that, thanks to a purely geometric argument ( [START_REF] Bombieri | Una maggiorazione a priori relativa alle ipersuperfici minimali non parametriche[END_REF], [START_REF] Giusti | Minimal surfaces and functions of bounded variation[END_REF]) or a duality argument ( [START_REF] Temam | Solutions généralisées de certaines équations du type hypersurfaces minima[END_REF]), existence of "generalized" solutions was obtained. More recently, for this kind of problems, some existence results in W 1,1 (Ω) have been proved in [START_REF] Bildhauer | A priori gradient estimates for bounded generalized solutions of a class of variational problems with linear growth[END_REF].

On the other hand, if p > 1, for the model problem (1.1), the existence of W 1,p 0 (Ω) solutions also fails if the right hand side is a function f ∈ L m (Ω) (m ≥ 1) which does not belong to the dual space of W 1,p 0 (Ω): it is possible to find distributional solutions in function spaces "larger" than W 1,p 0 (Ω), but contained in W 1,1 0 (Ω) (see [START_REF] Boccardo | Nonlinear elliptic and parabolic equations involving measure data[END_REF], [START_REF] Boccardo | Nonlinear elliptic equations with right hand side measures[END_REF]). In this paper Date: July 30, 2012.

we will prove, for general boundary value problems of the type (1.1) and for some values of p and m, the existence of solutions belonging to W 1,1 0 (Ω) and not belonging to W 1,q 0 (Ω), 1 < q < p: see also Remark 2.5.

To be more precise, in this paper, we study some existence results of W 1,1 0 (Ω) distributional solutions (not so usual in elliptic problems) for nonlinear elliptic boundary value problems of the type

(1.3) A(u) = f (x), in Ω; u = 0, on ∂Ω;
where

(1.4) f ∈ L m (Ω), m ≥ 1,
and A is the operator, acting on W 1,p 0 (Ω), defined by (1.5)

A(v) = -div (a(x, v, ∇v)) .
We assume the standard hypotheses on a : Ω × IR × IR N → IR N , that is, a is a Carathéodory function such that the following holds for almost every x ∈ Ω, for every s ∈ IR, for every ξ = η ∈ IR N :

(1.6)      a(x, s, ξ)ξ ≥ α |ξ| p , |a(x, s, ξ)| ≤ β|ξ| p-1 , [a(x, s, ξ) -a(x, s, η)](ξ -η) > 0 ,
where α, β are positive constants.

Thus A is a pseudomonotone and coercive differential operator and it is surjective (see [START_REF] Leray | Quelques résultats de Višik sur les problèmes elliptiques semi-linéaires par les méthodes de Minty et Browder[END_REF], [START_REF] Brezis | Equations et inéquations non linéaires dans les espaces vectoriels en dualité[END_REF], [START_REF] Browder | Existence theorems for nonlinear partial differential equations[END_REF]). The simplest example is given by the differential operator A(v) = -div(|∇v| p-2 ∇v), appearing in (1.1).

The existence of W 1,1 0 (Ω) solutions, instead of W 1,p 0 (Ω) or W 1,q 0 (Ω) (with 1 < q < p) solutions of the boundary value problem (1.3) is a consequence of the poor summability of the right hand side, even if the "growth" of the operator A is not zero, but p -1 > 0.

Existence of solutions for problem (1.3) with nonregular right hand side has been obtained by G. Stampacchia in [START_REF] Stampacchia | Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus[END_REF] (if A is a linear elliptic operator), by H. Brezis and W. Strauss in [START_REF] Brezis | Semi-linear second-order elliptic equations in L 1[END_REF] and [START_REF] Brezis | Some variational problems of the Thomas-Fermi type[END_REF] (for semilinear problems; see also [START_REF] Gallouët | Resolution of a semilinear equation in L 1[END_REF]) and in [START_REF] Boccardo | Nonlinear elliptic and parabolic equations involving measure data[END_REF], [START_REF] Boccardo | Nonlinear elliptic equations with right hand side measures[END_REF], [START_REF] Boccardo | Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data[END_REF], [START_REF] Benilan | An L 1 theory of existence and uniqueness of nonlinear elliptic equations[END_REF], for general nonlinear problems; in particular, we recall the following results contained in [START_REF] Boccardo | Nonlinear elliptic and parabolic equations involving measure data[END_REF], [START_REF] Boccardo | Nonlinear elliptic equations with right hand side measures[END_REF].

Theorem 1.1. Let m = 1 and (1.7) 2 - 1 N < p < N.
Then there exists a distributional solution u ∈ W 1,q 0 (Ω), q < N (p-1)

N -1 , of (1.3); that is Ω a(x, u, ∇u)∇v = Ω f v, ∀v ∈ W 1,∞ 0 (Ω) . W 1,1 0 SOLUTIONSIN SOME BORDERLINE CASES OF CALDERON-ZYGMUND THEORY 3 Observe that N (p-1) N -1 > 1 if and only if p > 2 -1 N . Theorem 1.2. Let 2 -1 N < p < N . If (1.8) Ω |f | log(1 + |f |) < ∞,
then there exists a distributional solution u ∈ W 1,

N (p-1) N -1 0
(Ω) of (1.3).

Theorem 1.3 (Calderon-Zygmund theory for infinite energy solutions).

If f ∈ L m (Ω), N N (p-1)+1 < m < N p pN +p-N = (p ) , p > 1 + 1 m -1 N , then there exists a distributional solution u ∈ W 1,(p-1)m 0 (Ω) of (1.3).
Moreover, if f belongs to L 1 (Ω) (see also [START_REF] Boccardo | Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data[END_REF], where the datum is sum of an element in W -1,p (Ω) and of a function in L 1 (Ω)), we recall that in [START_REF] Benilan | An L 1 theory of existence and uniqueness of nonlinear elliptic equations[END_REF] have been introduced notions of gradient and of solution for (1.3), with the purpose of proving its uniqueness (if the function a(x, s, ξ) does not depend on s) and of proving its existence if p does not satisfy (1.7).

In this paper we study the existence of W 1,1 0 (Ω) distributional solutions (without the functional framework of [START_REF] Benilan | An L 1 theory of existence and uniqueness of nonlinear elliptic equations[END_REF]) as a consequence of the fact that we improve the existence results of Theorems 1.2 and 1.3 in some borderline cases. Another elliptic problem with W 1,1 0 (Ω) solutions is studied in [START_REF] Boccardo | Nonlinear degenerate elliptic problems with W 1,1 0 solutions[END_REF].

Existence

We recall the definition of T k (s), for s and k in IR, with k ≥ 0: T k (s) = max(-k, min(k, s)) and that, in the existence proof, we started in [START_REF] Boccardo | Nonlinear elliptic and parabolic equations involving measure data[END_REF], [START_REF] Boccardo | Nonlinear elliptic equations with right hand side measures[END_REF], [START_REF] Boccardo | Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data[END_REF], [START_REF] Benilan | An L 1 theory of existence and uniqueness of nonlinear elliptic equations[END_REF] with the Dirichlet problems (2.1)

u n ∈ W 1,p 0 (Ω) : A(u n ) = f n , with f n = T n (f ).
Thus every u n is a bounded function (see [START_REF] Stampacchia | Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus[END_REF]). Moreover in [START_REF] Benilan | An L 1 theory of existence and uniqueness of nonlinear elliptic equations[END_REF] it is proved that the use of T k (u n ) as test function yields (see also [START_REF] Boccardo | Problèmes unilatéraux dans L 1[END_REF], [START_REF] Boccardo | The role of truncates in nonlinear Dirichlet problems in L 1 . Nonlinear partial differential equations[END_REF]

) (2.2) α Ω |∇T k (u n )| p ≤ k Ω |f | .
Furthermore we have the following estimate.

Lemma 2.1. Let f ∈ L 1 (Ω), p > 1. The sequence {log(1+|u n |)sign(u n )} is bounded in W 1,p 0 (Ω). Proof. The use of [1 -(1 + |u n |) 1-p ]sign(u n ) as test function yields (2.3) α Ω |∇ log(1 + |u n |)| p ≤ α Ω |∇u n | p (1 + |u n |) p ≤ Ω |f n |[1 -(1 + |u n |) 1-p ] ≤ Ω |f |, which implies the result.
As a consequence of the previous lemma, there exists a subsequence (not relabelled) such that (2.4) log(1 + |u n |)sign(u n ) converges weakly in W 1,p 0 (Ω) and a.e. Then u n (x) converges a.e. to a measurable function u(x) such that log

(1 + |u|)sign(u) ∈ W 1,p 0 (Ω). Theorem 2.2. Let f ∈ L m (Ω), m = N N (p-1)+1 , 1 < p < 2 -1 N . Then there exists a distributional solution u ∈ W 1,1 0 (Ω) of (1.3). Proof. Step 1 -Note that m = N N (p-1)+1 implies m < N p .
The first part of the proof follows the approach of [START_REF] Boccardo | Nonlinear elliptic equations with right hand side measures[END_REF]. Let θ = (p-1)m pm -p . Note that pm -p > 0, since m < N p , and that θ < 1, since m < pN pN +p-N . Let be a strictly positive real number. The function

v = [( +|u n |) 1-p(1-θ) - 1-p(1-θ) ]sign(u n ) is bounded since 1 -p(1 -θ) > 0 (which is equivalent to p > 1)
. Thus we can use v as a test function in (2.1) and we have

(2.5) C 2,p Ω ( + |u n |) θ -θ p p p ≤ C 1,p Ω |∇u n | p ( + |u n |) p(1-θ) ≤ Ω |f | m 1 m Ω ( + |u n |) 1-p(1-θ) -1-p(1-θ) m 1 m
, where C i,p denotes a strictly positive constant. The limit as tends to zero yields, thanks to the Fatou lemma,

C 2,p Ω |u n | θ p p p ≤ α Ω |∇u n | p |u n | p(1-θ) ≤ Ω |f | m 1 m Ω |u n | [1-p(1-θ)]m 1 m . Note that p p > 1 m since m < N p . Moreover the choice of θ implies θ p = [1 -p(1 -θ)]m = (mp) p = N N -1 . Thus we proved that (2.6) C 2,p Ω |u n | N N -1 1 m -p N ≤ Ω |f | m 1 m
.

This estimate also implies (see the previous inequality) the boundedness, with respect to n, of

Ω |∇u n | p |u n | p(1-θ) .
and the following estimate

(2.7) meas{k ≤ |u n |} ≤ C 3,p k N N -1
, so that, if we fix > 0, there exists k such that, for k ≥ k , we have (2.8) meas{k ≤ |u n |} ≤ , uniformly with respect to n.
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Now we can estimate Ω |∇u n |. Indeed we have

Ω |∇u n | = Ω |∇u n | |u n | (1-θ) |u n | (1-θ) ≤ Ω |∇u n | p |u n | p(1-θ) 1 p Ω |u n | p (1-θ) 1 p . Note that p (1 -θ) = N N -1
, so the right hand side is bounded; then the sequence {u n } is bounded in W 1,1 0 (Ω), subsequently there exists R > 0 such that (2.9) [START_REF] Benilan | An L 1 theory of existence and uniqueness of nonlinear elliptic equations[END_REF], with θ as before, and we have, thanks to (2.6), (2.10)

u n W 1,1 0 (Ω) ≤ R. Thus there exists a subsequence (not relabelled) {u n } converging to u in L r (Ω), 1 ≤ r < N N -1 ,
[|u n | 1-p(1-θ) -k 1-p(1-θ) ] + sign(u n ) as a test function in (2.
C 4,p {k≤|un|} |∇u n | p |u n | p(1-θ) ≤ {k≤|un|} |f | m 1 m {k≤|un|} |u n | 1-p(1-θ) -k 1-p(1-θ) m 1 m ≤ {k≤|un|} |f | m 1 m {k≤|un|} |u n | [1-p(1-θ)]m 1 m ≤ C 5,p {k≤|un|} |f | m 1 m
. By Hölder's inequality we have (using again that p (1

-θ) = N N -1 ) (2.11) {k≤|un|} |∇u n | = {k≤|un|} |∇u n | |u n | (1-θ) |u n | (1-θ) ≤ {k≤|un|} |∇u n | p |u n | p(1-θ) 1 p Ω |u n | p (1-θ) 1 p ≤ C 6,p {k≤|un|} |f | m 1 m
. Thus, for every measurable subset E, thanks to (2.2) and (2.11), we have (2.12)

E ∂u n ∂x i ≤ E |∇u n | ≤ E |∇T k (u n )| + {k≤|un|} |∇u n | ≤ meas(E) 1 p k α f L 1 (Ω) 1 p + C 6,p {k≤|un|} |f | m 1 m
Now we want to prove that (2.13) u n weakly converges to u in W 1,1 0 (Ω) and we follow [START_REF] Boccardo | Nonlinear degenerate elliptic problems with W 1,1 0 solutions[END_REF]. The estimate (2.12) implies that the sequence { ∂un ∂x i } is equiintegrable, thanks to (2.8) and the absolute continuity of the integral. Thus, by Dunford-Pettis theorem, and up to subsequences, there exists Y i in L 1 (Ω) such that ∂un ∂x i weakly converges to Y i in L 1 (Ω). Since ∂un ∂x i is the distributional partial derivative of u n , we have, for every n in IN ,

Ω ∂u n ∂x i ϕ = - Ω u n ∂ϕ ∂x i , ∀ϕ ∈ C ∞ 0 (Ω) .
We now pass to the limit in the above identities, using that ∂ i u n weakly converges to Y i in L 1 (Ω), and that u n strongly converges to u in L 1 (Ω): we obtain

Ω Y i ϕ = - Ω u ∂ϕ ∂x i , ∀ϕ ∈ C ∞ 0 (Ω) .
This implies that Y i = ∂u ∂x i , and this result is true for every i. Since Y i belongs to L 1 (Ω) for every i, u belongs to W 1,1 0 (Ω), as desired. The almost everywhere convergence of ∇u n to ∇u, proved in Lemma 5.1 in Appendix A, and (2.13) allow us to use the Vitali theorem. Thus (2.14) ∇u n → ∇u in (L 1 (Ω)) N .

Step 3 -The inequality |a(x,

u n , ∇u n )| ≤ β |∇u n | p-1
and (again) the Vitali theorem imply that a(x, u n , ∇u n ) converges to a(x, u, ∇u) in (L

1 p-1 (Ω)) N . Note that 1 p-1 > 1.
Then it is possible to pass to the limit in (2.1). Thus we proved that u ∈ W 1,1 0 (Ω) is a distributional solution of (1.3).

Theorem 2.3. Assume (1.8) and p = 2 -1 N . Then there exists a distributional solution

u ∈ W 1,1 0 (Ω) of (1.3). Proof. Step 1 -Let 1 < λ < p. Taking [1 -(1 + |u n |) 1-λ ]sign(u n )
as a test function in the weak formulation of (1.3), we obtain

α Ω |∇u n | p (1 + |u n |) λ ≤ 1 λ -1 f L 1 (Ω) .
Then, using the Sobolev embedding theorem we have (2.15)

Ω {(1 + |u n |) 1-λ p -1} p p p ≤ C p,λ f L 1 (Ω) .
Noting that λ > 1 implies (1 -λ p )p < N N -1 , we prove that the sequence
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Step 2 -We will use the inequality there exists a r > 0, only depending on r, such that t log(1 + s) ≤ t log(1 + t) + s r + a r for all s, t ∈ IR + .

Taking [log(1+|u n |)]sign(u n ) as a test function in the weak formulation of (1.3), we obtain (2.16)

α Ω |∇u n | p 1 + |u n | ≤ Ω |f | log(1 + |u n |) ≤ f log(1 + |f |) L 1 (Ω) + Ω |u n | r + a r meas(Ω).
Then the use of Hölder and Sobolev inequalities yields, since p p = N N -1 and 1

-1 p = N -1 2N -1 , (2.17) S 1 α 1 p Ω |u n | N N -1 N -1 N ≤ α 1 p Ω |∇u n | ≤ α Ω |∇u n | p 1 + |u n | 1 p Ω (1 + |u n |) p p 1 p ≤ f log(1 + |f |) L 1 (Ω) + C r r + a r meas(Ω) 1 p Ω (1 + |u n |) N N -1 N -1 2N -1 . Since N -1 2N -1 < N -1
N , we proved that the sequence {u n } is bounded in W 1,1 0 (Ω) and so it is compact in L r (Ω), 1 ≤ r < N N -1 . Thus there exist L r (Ω), 1 ≤ r < N N -1 and a subsequence (not relabelled) {u n } such that u n converges to u in L r (Ω) and almost everywhere.

Step 3 -Taking [log(1 + |u n |) -log(1 + k)]sign(u n ) as a test function in the weak formulation of (1.3), we obtain

α {k≤|un|} |∇u n | p 1 + |u n | ≤ {k≤|un|} |f | log(1 + |u n |) ≤ {k≤|un|} |f | log(1 + |f |) + {k≤|un|} |u n | r + a r meas{k ≤ |u n |},
which implies (following (2.17)) (2.18)

{k≤|un|} |∇u n | ≤ ≤ C 1 {k≤|un|} |f | log(1 + |f |) + {k≤|un|} |u n | r + a r meas{k ≤ |u n |} 1 p
.

Thus, for every measurable subset E, thanks to (2.2), we can follow (2.12) and we obtain (2.19)

E ∂u n ∂x i ≤ E |∇u n | ≤ E |∇T k (u n )| + {k≤|un|} |∇u n | ≤ meas(E) 1 p k α f L 1 (Ω) 1 p +C 1 {k≤|un|} |f | log(1 + |f |) + {k≤|un|} |u n | r + a r meas{k ≤ |u n |} 1 p
Thus we proved again the convergence (2.13) and we can repeat the last part of the proof of the previous theorem (mainly the convergence (2.14)) and then we can prove that u ∈ W 1,1 0 (Ω) is a distributional solution of (1.3).

Remark 2.4. Note that

lim p→1 N N (p -1) + 1 = N, lim p→2-1 N N N (p -1) + 1 = 1 Remark 2.5. Let 1 < p ≤ 2 -1 N and Ω = B(0, 1 2 ). Consider the boundary value problem (2.20)    -∆ p (u) = f (x) = 1 |x| α (-log |x|) β , in Ω; u = 0, on ∂Ω;
with α, β > 0. We look for radial solutions u(x) = u(r), r = |x|, so that we have

- 1 r N -1 r N -1 |u | p-2 u = 1 r α (-log r) β and (2.21) |u (s)| = p-1 1 s N -1 s 0 t N -1-α (-log t) β dt . Let now α = N m and β > N (p-1)+1 N ; thus α < N if m > 1. Then it results (2.22) B(0, 1 2 ) |∇u| = 1 2 0 |u (s)|s N -1 ds = 1 2 0 s (N -1)(p-2) p-1 s 0 t N -1-α (-log t) β dt 1 p-1 ds. W 1,1 0 SOLUTIONSIN SOME BORDERLINE CASES OF CALDERON-ZYGMUND THEORY 9
Now note that (using the de l'Hôpital rule)

lim t→0 s 0 t N -1-α (-log t) β dt t N -α (-log t) β = 1 N -α .
Thus, in (2.22), ∇u belongs to (L 1 (B(0

, 1 2 ))) N if      β p -1 > 1, that is β > p -1, (N -1)(p -2) + N -α p -1 = -1, that is α = N (p -1) + 1. Note that f ∈ L m (Ω), if α = N m and β > 1 m , which means now m = N N (p-1)+1 and β > N (p-1)+1
N (which is greater than p -1). Thus the example shows that the statement of Theorem 2.2 is optimal in the sense that u belongs to W 1,1 0 (Ω) and u does not belong to W 1,q 0 (Ω), q > 1.

Let

now α = N , β > 2. Then (2.21) is |u (s)| = p-1 1 s N -1 s 0 (-log t) -β t dt = p-1 1 (β -1)s N -1 (-log s) β-1 β-1 p-1 > 1 Then ∇u belongs to (L 1 (B(0, 1 2 ))) N if B(0, 1 2 ) |∇u| = 1 2 0 |u (s)|s N -1 ds = C β 1 2 0 1 s(-log s) β-1 p-1 ds is finite; that is if β-1 p-1 > 1. If p = 2-1 N , the last inequality is β > 2-1 N and note that N + 1 > 2 -1 N . Moreover Ω |f | log(1 + |f |) < ∞ means that B(0, 1 2 ) 1 |x| N (-log |x|) β log(1 + 1 |x| N (-log |x|) β ) < ∞, which is true as a consequence of B(0, 1 2 ) 1 |x| N (-log |x|) β-1 < ∞ (since β > 2)
. Thus the example shows that the statement of Theorem 2.3 is optimal in the sense that u belongs to W 1,1 0 (Ω) and u does not belong to W 1,q 0 (Ω), q > 1. However, we recall that, as a consequence of the convergence (2.14) and of a Theorem by De La Vallée Poussin, we can state that there exists a positive, continuous, even and convex real function, with the property

lim t→∞ Q(t) t = ∞, such that sup n Ω Q(|∇u n |) < ∞.
Then the Fatou lemma implies that Q(|∇u|) ∈ L 1 (Ω).

Uniqueness

The uniqueness of infinite energy distributional solutions, in general, is not true: see [START_REF] Serrin | Pathological solutions of elliptic differential equations[END_REF].

However, in [START_REF] Dall | Approximated solutions of equations with L 1 data. Application to the H-convergence of quasi-linear parabolic equations[END_REF] it is observed that, if p > 2 -1 N , it is possible to select a solution: the only solution which is found by means of approximations. The author calls it the solution obtained as limit of approximations (SOLA). Here we follow this approach. A different point of view can be found in [START_REF] Benilan | An L 1 theory of existence and uniqueness of nonlinear elliptic equations[END_REF], [START_REF] Porzio | An uniqueness result for monotone elliptic problems[END_REF].

In this section the differential operator does not depend on v, that is A(v) = -div(a(x, ∇v)), and we study the uniqueness of the solution found by of approximation.

To be more precise, we assume (1.6) and the standard assumption

(3.1) 1 < p < 2, [a(x, ξ) -a(x, η)][ξ -η] ≥ α |ξ -η| 2 (1 + |ξ| + |η|) 2-p . Lemma 3.1. Let f ∈ L m (Ω), m = N N (p-1)+1 , 1 < p < 2 -1
N . Consider the sequences {u n } and {f n } of Theorem 2.2, a sequence {g n } converging to f in L m (Ω) and the solutions w n of the Dirichlet problems

(3.2) w n ∈ W 1,p 0 (Ω) : A(w n ) = g n .
Then there exists a positive constant Q = Q(α, p, N, m) such that

(3.3) S 1 Ω | log(1 + |u n -w n |)| N N -1 N -1 N ≤ Ω |∇(u n -w n )| 1 + |u n -w n | ≤ Q Ω |f n -g n | 1 2
, where S 1 is the Sobolev constant.

Proof. Define g(t) = t 1 + |t| and use g(u n -w n ) as a test function in (2.1) and (3.2). Then we have

Ω [a(x, ∇u n )-a(x, ∇w n )]∇(u n -w n ) g (u n -w n ) ≤ Ω (f n -g n )g(u n -w n ).
The assumption (3.1) gets

Ω |∇(u n -w n )| 2 (1 + |∇u n | + |∇w n |) 2-p g (u n -w n ) ≤ 1 α Ω (f n -g n )g(u n -w n ).
Then

Ω |∇(u n -w n )| 1 + |u n -w n | = W 1,1 0 SOLUTIONSIN SOME BORDERLINE CASES OF CALDERON-ZYGMUND THEORY 11 = Ω |∇(u n -w n )| g (u n -w n ) (1 + |∇u n | + |∇w n |) 1-p 2 (1 + |∇u n | + |∇w n |) 1-p 2 (1 + |u n -w n |) g (u n -w n ) = ≤ Ω |∇(u n -w n )| 2 g (u n -w n ) (1 + |∇u n | + |∇w n |) 2-p 1 2 Ω (1 + |∇u n | + |∇w n |) 2-p (1 + |u n -w n |) 2 g (u n -w n ) 1 2 which implies that Ω |∇(u n -w n )| 1 + |u n -w n | ≤ 1 α Ω |f n -g n | 1 2 Ω (1 + |∇u n | + |∇w n |) 2-p 1 2
From the assumption m = N N (p-1)+1 and the a priori estimates (2.9) of Theorem 2.2 it follows that the last term is bounded, since 2 -p ≤ 1.

Theorem 3.2. The solution u obtained in Theorem 2.2 is unique.

Proof. Consider the sequences {u n } and {f n } of Theorem 2.2, a sequence {g n } converging to f in L m (Ω) and the solutions w n of the Dirichlet problems 3.2. In the proof of Theorem 2.2 is proved that (up to a subsequence) u n converges to u in W 1,1 0 (Ω). The same proof says that (up to a subsequence) w n converges in W 1,1 0 (Ω) to a function w, distributional solution of (1.3). Now we pass to the limit in (3.3) and we obtain

S 1 Ω | log(1 + |u -w|)| N N -1 N -1 N ≤ 0, that is u = w.
With the same proof it is possible to prove the following theorem.

Theorem 3.3. The solution u obtained in Theorem 2.3 is unique.

Regularizing effect of a lower order term

Here we study the existence of W 1,1 0 (Ω) solutions of the following "semilinear" problem (4.1)

A(u) + g(u) = f (x), in Ω; u = 0, on ∂Ω;
where g(t) is a Lipschitz continuous, increasing real function such that (4.2) tg(t) ≥ 0.

We assume that, for some T * ≥ 0,

(4.3) b(t) =          0, t ∈ [0, T * ]; t T * ds g(s) m(p-1) , t > T * ; -b(-t), t < 0; is a bounded function: |b(t)| ≤ B.
We refer to [START_REF] Brezis | Semilinear equations in IR N without condition at infinity[END_REF], [START_REF] Gallouët | The equation -∆u + |u| α-1 u = f , for 0 ≤ α ≤ 1[END_REF], [START_REF] Boccardo | Nonlinear elliptic equations in R N without growth restrictions on the data[END_REF], [START_REF] Leoni | Nonlinear elliptic equations in R N with absorbing zero order terms[END_REF] and [START_REF] Cirmi | Regularity of the solutions to nonlinear elliptic equations with a lower order term[END_REF] for the existence of infinite energy distributional solutions of the "semilinear" problems like (4.1), if the right hand side belongs to L m (Ω) (with m ≥ 1), p > 2 -1 N , g(t) has a polynomial growth of order strictly greater than p -1.

Theorem 4.1. Let f ∈ L m (Ω), 1 ≤ m < N N (p-1)+1 , 1 < p < 2 -1
N . Assume (4.2) and (4.3). Then there exists a distributional solution u belonging to W 1,1 0 (Ω) of the boundary value problem (4.1). Proof. Consider now (4.4)

u n ∈ W 1,p 0 (Ω) : A(u n ) + g(u n ) = f n , with f n = T n (f ).
Recall that, for every n ∈ IN , u n is a bounded function and that (see [START_REF] Boccardo | Nonlinear elliptic and parabolic equations involving measure data[END_REF])

(4.5) {k≤|un|} |g(u n )| m ≤ {k≤|un|} |f n | m ≤ {k≤|un|} |f | m .
Moreover the use of b(u n ) as test function in (4.4) yields, dropping a positive term,

α Ω |∇u n | p |g(u n )| m(p-1) ≤ B f L 1 (Ω) . Thus we have α Ω |∇u n | = α Ω |∇u n | |g(u n )| m(1-1 p ) |g(u n )| m(1-1 p ) ≤ B 1 p f 1 p L 1 (Ω) Ω |g(u n )| m 1 p ≤ B 1 p f 1 p L 1 (Ω) f 1 p L m (Ω)
, which implies that the sequence

{u n } is bounded in W 1,1 0 (Ω) and it is compact in L r (Ω), 1 ≤ r < N N -1 . Thus there exist L r (Ω), 1 ≤ r < N N -1
and a subsequence (not relabelled) {u n } such that u n converges to u in L r (Ω) and almost everywhere. Moreover the inequality (4.5) yields, for every measurable subset E, which implies (2.13).

The almost everywhere convergence of ∇u n to ∇u, proved in Lemma 5.1, and (2.13) allow us to use the Vitali theorem. Thus we proved again the convergence (2.14).

The third step is equal to the third step of Theorem 2.2. Thus we proved that u ∈ W 1,1 0 (Ω) is a distributional solution of (4.1).

Appendix A

In order to have a self-contained paper, we prove here the following lemma, which is almost the same as the main lemma of [START_REF] Boccardo | Some nonlinear Dirichlet problems in L 1 involving lower order terms in divergence form[END_REF] and [START_REF] Boccardo | Nonlinear parabolic equations with measure data[END_REF]. We shall prove that the previous integral converges to zero. Indeed, it is equal to 

E

  |g(u n )| m ≤ [sup |t|≤k |g(t)| m ]meas(E) + {k≤|un|} |f | m ,so that the Vitali theorem implies(4.6) the convergence in L m (Ω) of g(u n ) to g(u).

Moreover, thanks again to ( 4
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Lemma 5 . 1 .

 51 Let {u n } be the sequence defined in (2.1). Assume (1) ≤ M, u n converges to u almost everywhere, ∇T k (u n ) converges weakly to ∇T k (u) in W 1,p 0 (Ω). Then ∇u n converges (up to a subsequence) a.e. to ∇u.Proof. Let 0 < θ < 1 p and k > 0. ConsiderI Ω,n = Ω {[a(x, u n , ∇u n ) -a(x, u n , ∇u)]∇(u n -u)} θ

  (x, u n , ∇u n ) -a(x, u n , ∇u)]∇(u n -u)} θ + A k {[a(x, u n , ∇u n ) -a(x, u n , ∇u)]∇(u n -u)} θ = I C k ,n + I A k ,n, whereC k = {x ∈ Ω : |u(x)| ≤ k}, A k = {x ∈ Ω : |u(x)| > k}.We can write I C k ,n asC k {[a(x, u n , ∇u n ) -a(x, u n , ∇T k (u))]∇(u n -T k (u))} θ ,

  and almost everywhere. Moreover (2.2) implies that ∇T k (u n ) converges weakly to ∇T k (u) in W 1,p 0 (Ω).Step 2 -Now we need an estimate not only of Ω |∇u n |, but also of We adapt the method of Step 1. Thus we use

{k≤|un|} |∇u n |.
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which is smaller than Ω {[a(x, u n , ∇u n ) -a(x, u n , ∇T k (u))]∇(u n -T k (u))} θ = J Ω,n , since the integrand is positive. Then the use of Hölder inequality (with exponents 1 pθ and 1 1-pθ ) and (1.6) in I A k ,n imply that

By means of the estimate u n W 1,1 0 (Ω) ≤ M , we get

where denote by ω i (k) quantities such that lim k→∞ ω i (k) = 0. Now we study the behaviour of J Ω,n ; it can be split as (j ∈ IN )

The first integral can be written as

Then we use twice the Hölder inequality (with exponents 1 θ and 1

1-θ and with exponents 1 pθ and 1 1-pθ ) and the estimate

for n > j + k and for almost every j we have

Hence we have proved that

Therefore

and also (since θ is positive) {[a(x, u n , ∇u n ) -a(x, u n , ∇u)]∇(u n -u)} → 0 almost everywhere.

Then, in [START_REF] Leray | Quelques résultats de Višik sur les problèmes elliptiques semi-linéaires par les méthodes de Minty et Browder[END_REF], it is proved that, under our assumptions on the function a(x, s, ξ), the previous limit implies that ∇u n (x) → ∇u(x) almost everywhere.