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We present two algorithms for concatenating two branched manifolds. There exist two common

ways to describe representations of branched manifolds with linking matrices. The algorithms

provided permit to concatenate branched manifolds with each representation: a linking matrix with

an array or only one linking matrix. We also provide algorithms to switch between these two

descriptions. VC 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4942799]

This paper describes how to concatenate branched mani-

folds that are used to describe three-dimensional chaotic

attractors. This is a particularly useful tool for construct-

ing branched manifolds for dynamical systems that occur

when one stretch-and-squeeze mechanism is iterated one

or more times as occurs to create “symmetric attractors,”

for example, for the periodically driven Duffing and van

der Pol attractors and the autonomous Lorenz, Chua,

and Burke and Shaw attractors. Two different conven-

tions have been introduced to describe branched mani-

folds. We also provide an algorithm for translating back

and forth from one convention to the other.

I. INTRODUCTION

There are various ways to study chaotic attractors and

their properties (basins of attraction, fixed points and their

stability, periodic orbits, Lyapunov exponents, bifurcation

diagrams, etc.). In this paper, we focus on using the topologi-

cal properties of their periodic orbits to describe their struc-

ture using branched manifolds or templates. Templates are

constructed from drawings made of splitting charts, torsions,

permutations, and joining charts.1–3 They are adapted to

describe the flow of chaotic attractors. Linking matrices are

used to describe the torsions and permutations with inte-

gers.4,5 In this article, we use the conventional representation

described in Fig. 1 to define the sign of a torsion or a

permutation.

The purpose of this paper is to construct concatenations

of two (or more) templates. First, we introduce two distinct

but equivalent descriptions of templates: one with a matrix

and an array and the other with only one matrix. We provide

algorithms to switch between these two descriptions of a

branched manifold. Second, we present algorithms for con-

catenating two templates and constructing the matrix and

array for the resulting branched manifold. Finally, these

algorithms are illustrated with examples.

II. MATRIX DESCRIPTIONS OF TEMPLATES

For attractors bounded by a genus 1-torus, a template is

described by a square matrix and an array as first pro-

posed.4–8 We use a right-handed convention for the matrix;

and another convention described by an array, “the higher

the further behind,” to describe the insertion mechanism.

There is another way to describe a template using only one

square matrix using the “standard insertion convention.”9,10

This convention indicates that after torsions and permuta-

tions, the branch order from the left to right corresponds to

the bottom to top order in the insertion mechanism. Fig. 2

details two topologically equivalent templates with these two

conventions. The two following linking matrices describe

these templates (Fig. 2) of an attractor solution to the R€ossler

system11 established by Letellier et al.:12

TMðR€oÞ ¼
0 0 0

0 �1 �2

0 �2 �2

2
64

3
75

ArðR€oÞ ¼ 1 3 2
� �

����������
TðR€oÞ ¼

2
64

0 �1 �1

�1 �1 �2

�1 �2 �2

3
75
3
75:

(1)

In order to avoid any confusion in the matrix description, we

use a notation introduced in Ref. 13 to emphasize the inser-

tion mechanism respecting the standard insertion convention

with a double bracket on the right side.

These two conventions coexist in literature since the

1990s. The linking matrix with an array is constructed using

the linking numbers between period one orbits. Moreover, in

this conventional representation, the branch order before tor-

sions and permutations and after is the same (Fig. 2). On the

other hand, the description with one linking matrix eliminates

FIG. 1. Conventional representation of oriented crossings. The permutation

between two branches is positive if the crossing generated is equal to þ1, oth-

erwise it is a negative permutation. We use the same convention for torsions.
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the use of the array by providing a unique way to order

branches when the stretching and squeezing mechanism

occurs. With this representation using only one linking matrix,

Melvin and Tufillaro provide an algorithm9 to obtain the order

of the branches after the torsions and permutations. These two

conventions have been used to describe the classical Lorenz

attractor template. For instance, recently, this template was

described with a matrix and an array by Barrio et al. (Fig. 4 of

Ref. 14, see also Refs. 7 and 8), while only one matrix was

used to describe this chaotic mechanism in Ref. 15.

In the Appendix, we propose an algorithm to obtain

the matrix T from TM and Ar, and vice-versa. This is useful

to compare the results presented in different papers in the

literature. For instance, the template of the Burke-Shaw

Attractor16 can be re-written with an array and a matrix to be

compared with other results with this description

TðBSAÞ ¼

3 2 2 3

2 2 2 3

2 2 3 3

3 3 3 4

3
775
3
775;

2
664 (2)

becomes

TMðBSAÞ ¼

3 2 2 4

2 2 2 4

2 2 3 4

4 4 4 4

2
66664

3
77775;

ArðBSAÞ ¼ 3 2 1 4
� �

:

(3)

III. CONCATENATION OF TEMPLATES

We start with a branched manifold A with pA branches,

followed by a second B with pB branches. To illustrate these

algorithms of concatenation, we apply this algorithm to A
with three branches describing the inside to outside scroll7,8

Inside to Outside Scroll

A

TMðAÞ ¼
0 0 0

0 1 2

0 2 2

2
64

3
75

ArðAÞ ¼ 3 1 2
� �

���������
TðAÞ ¼

2
64

0 0 0

0 1 1

0 1 2

3
75
3
75; (4)

and B with two branches describing the horseshoe

mechanism

Horseshoe

B

TMðBÞ ¼
0 0

0 �1

" #

ArðBÞ ¼ 1 2
� �

��������
TðBÞ ¼

�
0 �1

�1 �1

��
:

(5)

Fig. 3 shows the concatenation of these templates with the

two descriptions: with a matrix and an array and with a

matrix.

The template A is divided into pA branches, and at the

branch line A, each is further subdivided into pB pieces. The

final template will have pA � pB branches. In our example,

the template resulting from the concatenation will have six

branches.

IV. CONCATENATION: DESCRIPTION WITH A MATRIX
AND AN ARRAY

A. Array Ar

The ordering of the pieces aibj takes into account the

orientations demanded by the torsions (Fig. 4(a))

a1b1 a1b2 a2b2 a2b1 a3b1 a3b2: (6)

For A branch, a2 is orientation-reversing, and for B branch b2

is orientation reversing, so the ordering is reversed after a2

and b2. The ordering along branch line B is

b1a1 b1a2 b1a3 b2a3 b2a2 b2a1: (7)

The ordering array for the concatenated branched manifold

is given by the equation

ArðABÞðaibjÞ

¼
pA � ðArðbjÞ � 1Þ þ ArðaiÞ if TMðBÞjj is even

pA � ArðbjÞ � ðArðaiÞ � 1Þ else:

(
(8)

For example,

ða1b1; a1b2; a2b2; a2b1; a3b1; a3b2Þ ¼ ð3; 4; 6; 1; 2; 5Þ: (9)

B. Matrix TM

The ðpApB � pApBÞ matrix is determined from the link-

ing numbers of the pA � pB period-one orbits in the con-

catenated template. We find these as follows.

FIG. 2. Templates of an attractor solution of the R€ossler system. (a)

Template described by a matrix and an array (TMðR€oÞ and ArðR€oÞ of (1)).

(b) Template described by a matrix (TðR€oÞ of (1)).

033102-2 R. Gilmore and M. Rosalie Chaos 26, 033102 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  86.194.150.162 On: Sat, 05 Mar

2016 09:43:08



Follow the branches ai as constructed from the tem-

plate matrix and array for A. This is shown at the top in

Fig. 4(a). All of the crossings and torsions are read from

the template matrix TM(A). At the conclusion of this part

of the flow divides each of the components ai into pB parts

as indicated in (6) and follows these down to the branch

line B subdivided into components, as indicated in (7) and

the bottom part of Fig. 4. Since aibj and bjai belong to the

same period one orbit, it is easy to “connect the dots.”

Doing so,

1 2 3 4 5 6

1 6 5 2 3 4:
(10)

The segment 1ða1b1Þ ! 1ðb1a1Þ does not cross any other

segments. The segment 2ða1b2Þ ! 6ða3b2Þ crosses all seg-

ments k! l with 2 < k and l< 6. Since this segment lies in

branch a1, this segment is underneath all the segments it

crosses. As a result, all crossings are right handed and

are entered as þ1 in the appropriate matrix elements of

XðA # BÞ. The segment 3! 5 crosses both the segments

5! 3 and 6! 4 with left-handed crossings. Crossings of

segments in the same branch, e.g., 3! �; 4! ��, have al-

ready been counted in the matrix TM(A).

In general, if i< j and aib� crosses ajb��, then the sign of

the crossing is signðArðaiÞ � ArðajÞÞ.
The matrices determined in these two steps are

TMðAÞ � IpB
and XðA # BÞ

(11)

This part of the algorithm involves progression from branch

line A to branch line B and involves TM(A), and some addi-

tional crossing information encoded in the matrix XðA # BÞ
obtained using the array Ar(A).

The evolution from branch line B to branch line A
involves exactly the same steps. The computation is shown

in Fig. 4(b). We find

(12)

Adding the matrices in (11) and (12) after suitable permuta-

tion, we find for the concatenated branched manifold

FIG. 3. Concatenation of templates A before B. (a) Templates described by a

matrix and an array (TM(A),Ar(A)) and (TM(B),Ar(B)). (b) Templates

described by a matrix (T(A) and T(B)).
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(13)

In summary, the matrix TM(AB) describing the branched

manifold A concatenated with branched manifold B is

TMðABÞ ¼ TMðAÞ � IpB
þ XðA # BÞ

þ IpA
� TMðBÞ þ XðB # AÞ; (14)

and the array is given by Equation (8).

V. CONCATENATION WITH ONE MATRIX
DESCRIPTION

In this section, we present the same algorithm using the

description with only one matrix. There are still pB branches

in each branch of A and pA branches in each branch of B.

The ordering is the following at the beginning (Fig. 5):

a1b1 a1b2 a2b2 a2b1 a3b1 a3b2: (15)

The ordering depends on the parity of the torsion of the

branches of A.

After the torsion and permutations of the branches of A,

the order of the strips before the insertion is

a1b1 a1b2 a3b1 a3b2 a2b1 a2b2: (16)

This can be obtained using the algorithm given by Equation

(2) of Ref. 9. Then, to respect the standard insertion, the

branches are distributed in the branches of B. This distribu-

tion enables us to obtain this order before B

a1b1 a3b1 a2b1 a1b2 a3b2 a2b2: (17)

These three orders are illustrated in Fig. 5. We used them to

split the template into three parts, each one described by a

matrix.

A. Expansion of matrices

First, the matrix of A is expanded to a block pB � pB

square matrix

(18)

The same can be done for B, but with branch order (17). This

gives a block square pA � pA matrix

(19)

FIG. 4. (a) The branch line A is subdivided into pA components and each is

further subdivided into pB components, following direct and reverse order-

ing (at top). The linking specified by the template matrix TM(A) is imple-

mented (top to middle). Further crossings are determined by connecting

each component aibj in branch line A to the component bjai in branch line

B (middle to bottom). The signs of the crossings are determined from

Ar(A), and this information is encoded in the symmetric crossing matrix

XðA # BÞ. (b) Similar treatment for transition from branch line B to branch

line A.
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After the rows and columns are permuted to the order given

in Eq. (15), we find

(20)

The order of branches depends on the parity of the associated

branch of A. For instance, consider the block for the second

row and third column. Because TðAÞ22 is odd, the row order

is permuted, and because TðAÞ33 is even, the column order is

the same; this leads to the block

a2b2

a2b1

�1 �1

0 �1

����
����: (21)

The matrix TðAÞexpand and TðBÞexpand are easy to com-

pute and contain permutations and torsions due to T(A) and

T(B) (Fig. 5).

B. Permutation from insertion mechanism

Only the permutations due to the insertion mechanism

of T(A) are not taken into account with the expanded matri-

ces. These permutations are computed using (16) and (17) by

looking for permutations of branches in these arrays. The

insertion mechanism respects the standard insertion conven-

tion, so only positive permutations or crossings can occur. If

a permutation occurs, then it is a positive permutation

between these two branches. For instance, a1b2 is before

a3b1 in (16) and a1b2 is after a3b1 in (17), this implies a posi-

tive permutation between these branches. It leads to the fol-

lowing matrix:

(22)

Note that no permutation occurs for branches coming from the

same branch of A. Thus, diagonal blocks of TðA! BÞinsertion

are empty. There is no need to take into account the insertion

mechanism of the branched manifold B, because the distribu-

tion in the insertion mechanism of A respects this insertion

convention. The branches distributed in B also respect this con-

vention. Then, the branches are ordered at the end with respect

to this convention.

To conclude, the matrix T(AB) describing the branched

manifold A concatenated before the branched manifold B is

the sum of the three matrices (18), (22), and (20)

TðABÞ ¼ TðAÞexpand þ TðA! BÞinsertion þ TðBÞexpand

¼

2
666666664

0 �1 �1 0 0 �1

�1 �1 �1 0 0 �1

�1 �1 0 0 0 0

0 0 0 1 1 1

0 0 0 1 2 1

�1 �1 0 1 1 1

3
777777775

3
777777775
: (23)

FIG. 5. Concatenation of branched manifold A before B. The three branches

of A are split into two branches. Then, the insertion mechanism of A distrib-

utes the branches in B. Finally, the two branches of B are split in three

branches. The order of the three branches, (15)–(17), is indicated. This order

splits the template into three parts, the first part is described with matrix

TðAÞexpand (18). The second part is described with TðA! BÞinsertion (22).

The last part is described by TðBÞexpand (20). The addition of these three mat-

rices gives the result of the concatenation.
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VI. ANOTHER APPLICATION

We will compute the concatenation for two oppositely

oriented Smale horseshoe branched manifolds, each fol-

lowed by a half-twist. The concatenation of such a pair can

be used to construct the branched manifold for a chaotic

attractor with inversion symmetry. One such attractor has

been proposed by Malasoma,17 and the concatenation has

been applied for this attractor in Ref. 18.

The algebraic description of a Smale horseshoe is

0 0

0 �1

" #
;

0 1
� �

;

(24)

for two branches labeled 0; 1. When this is followed by a

half-twist and the branches are labeled r; s, this description

is as shown on the left in (25) below:

A
r s

1 0

0 0

" #

2 1
� �

����������

r s

1 0

0 0

" ##
B

R S

�1 0

0 0

" #

1 2
� �

����������

R S

�1 �1

�1 0

� �� : (25)

The second branched manifold is described on the right in (25).

A. Concatenation using TM and Ar

The order of the four segments on branch line A is

ðrS; rR; sR; sSÞ ¼ ð1; 2; 3; 4Þ and along branch line B it is

ðRs;Rr; Sr; SsÞ ¼ ð1; 2; 3; 4Þ.
When the algorithm described above is applied to con-

catenate the two templates (lower case, followed by upper

case), the results are

(26)

The crossing segments are shown to the right in (26). This in-

formation comes from ðrS; rR; sR; sSÞ ! ðSr;Rr;Rs; SsÞ or

ð1;2;3;4Þ!ð4;3;1;4Þ, which implies two positive crossings.

For the transition from B to A, we find

(27)

In this step, ðRs;Rr; Sr; SsÞ ! ðsR; rR; rS; sSÞ or ð1; 2; 3; 4Þ
! ð3; 2; 1; 4Þ, which implies two negative crossings.

Finally, rearranging the rows and columns as appropri-

ate and adding all these matrices, we find

(28)

B. Concatenation using T

For the concatenation using the branched manifold

description with only one matrix, we first compute the

branch order. We first obtain the branch order at the begin-

ning of A

rS rR sR sS: (29)

Then, we obtain the order of the branches at the end of A and

before the insertion mechanism

rR rS sR sS: (30)

And finally, the order of the branches at the beginning of B is

rR sR rS sS: (31)

We expand the matrices A and B

(32)

and compute the matrix containing the permutations induced

by the insertion mechanism from (30) and (31)

(33)

Finally, we add the three matrices (32) and (33) to obtain

TðABÞ ¼ TðAÞexpand þ TðA! BÞinsertion þ TðBÞexpand

¼

rS

rR

sR

sS

1 0 0 0

0 0 �1 �1

0 �1 �1 �1

0 �1 �1 0

2
6664

3
7775
3
7775: (34)
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VII. CONCLUSION

In this paper, we present algorithms to concatenate

branched manifolds. These algorithms are described for two

conventions: with a matrix and an array or only with one ma-

trix. We take this opportunity to give algorithms to move

from one convention to the other. The concatenation has al-

ready been described and applied as mentioned in this paper,

and here we provide efficient algorithms, described in a sim-

ple way, to concatenate templates.

APPENDIX: ALGORITHMS TO OBTAIN THE
EQUIVALENT REPRESENTATION

These algorithms are important because the two descrip-

tions of branched manifold coexist in the literature. This will

help researchers to compare their results.

The algorithms below are used to transform one mathe-

matical description of a branched manifold A using TM(A)

and Ar(A) to another using T(A), and inversely. These algo-

rithms were used to show the equivalence of the descriptions

presented in (13) and (23).

1. From a matrix and an array to one matrix

The following algorithm transforms a template

description from TM and Ar to T with n the number of

branches:

T  TM

For j from 1 to n

tabðjÞ  ArðjÞ
end For

swapped  true

While swapped ¼ true do

swapped  false

For i from 1 to n� 1

If tabðiÞ < tabðiþ 1Þ then

k  position of tabðiÞ in Ar

l position of tabðiþ 1Þ in Ar

Tðk; lÞ  Tðk; lÞ � 1

Tðl; kÞ  Tðl; kÞ � 1

swapped  true

end If

end For

n n� 1

end While

(A1)

2. From a matrix to a matrix and an array

The following algorithm transforms a template descrip-

tion from T to TM and Ar with n the number of branches.

First, we obtain Ar:

For i from 1 to n

positive 0

negative 0

For j from 1 to i� 1

If Tði; jÞ is odd then

negative negativeþ 1

end If

end For

For j from iþ 1 to n

If Tði; jÞ is odd then

positive positiveþ 1

end If

end For

Arðiþ positive� negativeÞ  n� iþ 1

end For

(A2)

Then, we obtain TM:

tab Ar

TM T

swapped  true

While swapped ¼ true do

swapped  false

For i from 1 to n� 1

If tabðiÞ < tabðiþ 1Þ then

k  position of tabðiÞ in Ar

l position of tabðiþ 1Þ in Ar

TMðk; lÞ  TMðk; lÞ þ 1

TMðl; kÞ  TMðl; kÞ þ 1

swapped  true

end If

end For

n n� 1

end While

(A3)
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