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Abstract. We present a family of simplicial complexes called multi-cluster complexes. These complexes generalize
the concept of cluster complexes, and extend the notion of multi-associahedra of types A and B to general finite
Coxeter groups. We study combinatorial and geometric properties of these objects and, in particular, provide a simple
combinatorial description of the compatibility relation among the set of almost positive roots in the cluster complex.

Résumé. Nous présentons une famille de complexes simpliciaux appelés complexes des multi-amas. Ces complexes
généralisent le concept de complexes des amas et étendent la notion de multi-associaèdre de type A et B aux groupes
de Coxeter finis. Nous étudions des propriétés combinatoires et géométriques de ces objets et, en particulier nous
fournissons une description combinatoire simple de la relation de compatibilité sur l’ensemble des racines presque
positives du complexe des amas.

Keywords: Subword complexes, cluster complexes, generalized associahedra, multi-triangulations, Coxeter–Catalan
combinatorics, sorting words

1 Introduction
Cluster complexes were introduced by S. Fomin and A. Zelevinsky to encode exchange graphs of clus-

ter algebras [FZ03]. N. Reading then showed that the definition of cluster complexes of finite types can
be extended to all finite Coxeter groups [Rea07a, Rea07b]. Recently, we presented a new combinatorial
description of cluster complexes of finite types using subword complexes [CLS11]. These were introduced
by A. Knutson and E. Miller, first in type A to study the combinatorics of determinantal ideals and Schu-
bert polynomials [KM05], and then for all Coxeter groups in [KM04]. We provide, for any finite Coxeter
group W and any Coxeter element c ∈W , a subword complex which is isomorphic to the c-cluster com-
plex of the corresponding type, and we thus obtain an explicit type-free characterization of c-clusters.
In crystallographic types, this characterization is equivalent to a description obtained by K. Igusa and
R. Schiffler in the context of cluster categories using algebraic techniques [IS10]. The present approach
allows us to define a new family of simplicial complexes. These simplicial complexes have an additional
parameter k, and they are, for k = 1, isomorphic to c-cluster complexes. Therefore, we call the elements
of this family multi-cluster complexes. They are different from generalized cluster complexes as defined
by S. Fomin and N. Reading in [FR05] ; in the generalized cluster complex, the vertices are given by the
simple negative roots together with several distinguished copies of the positive roots, while the vertices
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of the multi-cluster complex correspond to the positive roots together with several distinguished copies of
the simple negative roots. The multi-cluster complex is defined using the notion of sorting words intro-
duced by N. Reading in [Rea07a]. In this text, we present the multi-cluster complex, related results and
open problems contained in [CLS11]. In type A, the multi-cluster complex is isomorphic to the simpli-
cial complex of multi-triangulations of a convex polygon [PP10, Stu11]. In type B, we showed that the
multi-cluster complex is isomorphic to the simplicial complex of centrally symmetric multi-triangulations
of a regular convex polygon. This result implies that the latter is a vertex-decomposable simplicial sphere.
Multi-cluster complexes extend the concept of multi-associahedra to general finite Coxeter groups, and
they unify several questions about polytopality – namely of spherical subword complexes, and of multi-
associahedra of type A and of type B – in terms of polytopality of multi-cluster complexes. They also
raise the question of finding a type-free definition of multi-Catalan numbers counting the number of fa-
cets of multi-cluster complexes, and of finding a family of simplicial complexes including multi-cluster
complexes and generalized cluster complexes simultaneously.

Throughout the text, (W,S) denotes a finite Coxeter system of rank n, and c denotes a Coxeter element,
i.e., the product of the generators in S in some order. First, we adopt some writing conventions ; in order
to emphasize the distinction between words and group elements, we write a word in the alphabet S as a
sequence between brackets (a1, a2, . . . , ak) and use square letters such as w to denote them, and we write
a group element as a concatenation of letters a1a2 · · · ak using normal script such as w to denote them.

2 Preliminaries
In this section, we review the essential notions concerning multi-triangulations, subword complexes

and cluster complexes of finite type.

2.1 Multi-triangulations

Let ∆m be the simplicial complex with vertices being diagonals of a convex m-gon and faces being
subsets of non-crossing diagonals. Its facets correspond to triangulations (i.e., maximal subsets of dia-
gonals which are mutually non-crossing). This simplicial complex is the boundary complex of the dual
associahedron, see [Hai84, Lee89]. It can be generalized using a positive integer k with 2k < m : de-
fine a (k + 1)-crossing to be a set of k + 1 diagonals which are pairwise crossing. A diagonal is called
k-relevant if it is contained in some (k + 1)-crossing, that is, if there are at least k vertices of the m-gon
on each side of the diagonal. The complex ∆m,k is the simplicial complex of (k+ 1)-crossing free sets of
k-relevant diagonals. Its facets are given by k-triangulations (i.e., maximal subsets of diagonals which do
not contain a (k + 1)-crossing). The reason for restricting the set of diagonals is that including all other
diagonals would yield the join of ∆m,k and an mk-simplex. This simplicial complex has been studied
by several authors, see e.g. [DKM03, Jon05, JW07, Kra06, Nak00, Rub11, Stu11] ; an interesting recent
treatment of k-triangulations can be found in [PS09].

In [Stu11], the following description of ∆m,k is exhibited : let Sn+1 be the symmetric group generated
by the n simple transpositions si = (i i + 1) for 1 ≤ i ≤ n, where n = m − 2k − 1. The k-relevant
diagonals of a convex m-gon are in bijection with (positions of) letters in the word

Q = (sn, . . . , s1, · · · sn, . . . , s1︸ ︷︷ ︸
k times sn,...,s1

, sn, . . . , s1, sn, . . . , s2, · · · sn, sn−1, sn)
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of length kn +
(
n+1
2

)
=
(
m
2

)
−mk. If the vertices of the m-gon are cyclically labelled by the integers

from 1 to m, the bijection sends the i-th letter of Q to the i-th diagonal in lexicographic order. Under
this bijection, a collection of diagonals forms a k-triangulation if and only if the complement of the
corresponding subword inQ forms a reduced expression for the permutation [n+1, . . . , 2, 1] ∈ Sn+1. A
similar approach which admits various possibilities for the word Q was described in [PP10] in the context
of sorting networks.

Example 2.1 For m = 5 and k = 1, we get Q = (q1, q2, q3, q4, q5) = (s2, s1, s2, s1, s2). By labeling the
vertices of the pentagon with the integers {1, . . . , 5} cyclically, the bijection sends the (position of the)
letter qi to the i-th entry of the list of ordered diagonals [13, 14, 24, 25, 35]. On one hand, two cyclically
consecutive diagonals in the list form a triangulation of the pentagon. On the other hand, the complement
of two cyclically consecutive letters ofQ form a reduced expression for [3, 2, 1] = s1s2s1 = s2s1s2 ∈ S3.

The main objective is to describe and study a natural generalization of multi-triangulations to finite
Coxeter groups.

2.2 Subword complexes
Let Q = (q1, . . . , qr) be a word in the generators S of W and let π ∈ W . The subword complex

∆(Q, π) was introduced by A. Knutson and E. Miller in order to study Gröbner geometry of Schubert
varieties, see [KM05, Definition 1.8.1], and was further studied in [KM04]. It is defined as the simplicial
complex whose faces are given by subwords P of Q for which the complement Q \ P contains a redu-
ced expression of π. Note that subwords come with their embedding into Q ; two subwords P and P ′

representing the same word are considered to be different if they involve generators at different positions
within Q. In Example 2.1, we have seen an instance of a subword complex with Q = (s2, s1, s2, s1, s2)
and π = s1s2s1 = s2s1s2. In this case, ∆(Q, π) has vertices {q1, . . . , q5} and facets

{q1, q2}, {q2, q3}, {q3, q4}, {q4, q5}, {q5, q1}.

Let Q′ be the word obtained by adding s ∈ S at the end of a word Q. The Demazure product δ(Q′) is
recursively defined by

δ(Q′) =

{
πs if `(πs) > `(π)

π if `(πs) < `(π),

where π = δ(Q) is the Demazure product of Q, and where the Demazure product of the empty word
is defined to be the identity element in W . Here, ` denotes the length function on W . It was shown in
[KM04, Theorem 2.5] that subword complexes are vertex-decomposable. Moreover, a subword complex
∆(Q, π) is a sphere if and only if δ(Q) = π, and a ball otherwise [KM04, Corollary 3.8].

2.3 Cluster complexes
In [FZ03], S. Fomin and A. Zelevinsky introduced the cluster complex associated to any crystallo-

graphic root system. This simplicial complex along with the generalized associahedron has become
the object of intensive studies and generalizations in various contexts in mathematics, see for instance
[CFZ02, MRZ03, Rea07a, HLT11]. A generator s ∈ S is called initial (respectively final) in a Coxeter
element c if `(sc) < `(c) (resp. `(cs) < `(c)). The groupW acts naturally on the real vector space V with
basis ∆ = {αs : s ∈ S}, its elements are called simple roots. Let ∆ ⊆ Φ+ ⊆ Φ ⊂ V be the set of positive
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roots and the set of roots for (W,S), respectively. Furthermore, let Φ≥−1 = Φ+∪−∆ be the set of almost
positive roots. By convention, we denote the maximal standard parabolic subgroup generated by S \ {s}
by W〈s〉, and the associated subroot system by Φ〈s〉. For s ∈ S, the involution σs : Φ≥−1 −→ Φ≥−1 is
given by

σs(β) =

{
β if − β ∈ ∆ \ {αs}
s(β) otherwise.

In finite types, c-cluster complexes can be defined using a family ‖c of c-compatibility relations on Φ≥−1,
see [RS11, Section 5]. This family ‖c is characterized by the following two properties :

(i) for s ∈ S and β ∈ Φ≥−1,
−αs ‖c β ⇔ β ∈

(
Φ〈s〉

)
≥−1 ,

(ii) for β1, β2 ∈ Φ≥−1 and s being initial in c,

β1 ‖c β2 ⇔ σs(β1) ‖scs σs(β2).

A maximal subset of pairwise c-compatible almost positive roots is called c-cluster. The c-cluster complex
is the simplicial complex whose vertices are the almost positive roots and whose facets are c-clusters.
It turns out that all c-cluster complexes for the various Coxeter elements are isomorphic, see [Rea07a,
Proposition 7.2] and [MRZ03, Propositions 3.4 and 4.10 and Section 1]. In crystallographic types, they
are moreover isomorphic to the cluster complex as defined in [FZ03]. In particular, they are pure of
dimension n − 1, see [FZ03, Theorem 1.8] for crystallographic types and [Rea07a] for finite Coxeter
groups in general.

3 The multi-cluster complex
We are now in the position to present the results and to define the central object, the multi-cluster

complex. Let c = (c1, . . . , cn) be the word corresponding to a Coxeter element c ∈ W , and let w◦(c) =
(w1, . . . , wN ) be the lexicographically first subword of c∞ which represents a reduced expression for
the longest element w◦ ∈ W . The first theorem gives a description of the cluster complex as a subword
complex.

Theorem 3.1 The subword complex ∆(cw◦(c), w◦) is isomorphic to the c-cluster complex. The isomor-
phism is given by sending the letter ci of c to the negative root −αci , and the letter wi of w◦(c) to the
positive root w1 · · ·wi−1(αwi

).

As an equivalent statement, we obtain the following explicit description of the c-compatibility relation.

Corollary 3.2 A subset C of Φ≥−1 is a c-cluster if and only if the complement of the corresponding
subword in cw◦(c) = (c1, . . . , cn, w1, . . . , wN ) represents a reduced expression for w◦.

Remark 3.3 This description was obtained by K. Igusa and R. Schiffler [IS10] for finite crystallographic
Coxeter groups in the context of cluster categories using algebraic techniques. The present approach holds
uniformly for all finite Coxeter groups, and is developed purely in the context of Coxeter group theory.
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Example 3.4 Let W be the Coxeter group of type B generated by S = {s1, s2} and let c = c1c2 = s1s2.
Then the word cw◦(c) is given by (c1, c2, w1, w2, w3, w4) = (s1, s2, s1, s2, s1, s2). The corresponding
list of almost positive roots is

[−α1, −α2, α1, α1 + α2, α1 + 2α2, α2].

The subword complex ∆(cw◦(c), w◦) is an hexagon with facets being any two cyclically consecutive
letters. The corresponding c-clusters are

{−α1,−α2}, {−α2, α1}, {α1, α1 + α2}, {α1 + α2, α1 + 2α2}, {α1 + 2α2, α2}, {α2,−α1}.

Inspired by results in [Stu11] and [PP10], we generalize the subword complex in Theorem 3.1 by
considering any Coxeter element word c to a power k ∈ N. In type A, this generalization coincides with
the description of the complex ∆m,k given in [PP10].

Definition 3.5 The multi-cluster complex ∆k
c (W ) is the subword complex ∆(ckw◦(c), w◦).

The multi-cluster complex is a vertex-decomposable sphere of dimension kn− 1. The first interesting
property of the multi-cluster complex is that it is independent of the Coxeter element c.

Theorem 3.6 All multi-cluster complexes ∆k
c (W ) for the various Coxeter elements are isomorphic.

We have seen in Section 2.1 that the multi-cluster complex of type Am−2k−1 is isomorphic to the
simplicial complex whose facets correspond to k-triangulations of a convex m-gon,

∆k
c (Am−2k−1) ∼= ∆m,k.

The simplicial complex of centrally symmetric k-triangulations of a regular 2m-gon (or k-triangulations
of type B) was studied in algebraic and combinatorial contexts, see [SW09, RS10]. This simplicial com-
plex is isomorphic to the multi-cluster complex of type Bm−k.

Theorem 3.7 The multi-cluster complex ∆k
c (Bm−k) is isomorphic to the simplicial complex of centrally

symmetric k-triangulations of a regular 2m-gon.

Using algebraic techniques, D. Soll and V. Welker proved that this simplicial complex is a (mod 2)-
homology-sphere [SW09, Theorem 10]. The previous theorem implies the following stronger result.

Corollary 3.8 The simplicial complex of centrally symmetric k-triangulations of a regular 2m-gon is a
vertex-decomposable simplicial sphere of dimension k(m− k)− 1.

This result together with the proof of [SW09, Conjecture 13] given in [RS10] (i) implies the following
conjecture by Soll and Welker.

Corollary 3.9 ([SW09, Conjecture 17]) For the term-order � defined in [SW09, Section 7], the initial
ideal in�(In,k) of the determinantal ideal In,k defined in [SW09, Section 3] is spherical.

The last result describes all spherical subword complexes in terms of faces of multi-cluster complexes.

Theorem 3.10 A simplicial sphere can be realized as a subword complex of a given finite type W if and
only if it is the link of a face of a multi-cluster complex ∆k

c (W ).

(i). The proof appeared in Section 7 in the arxiv version, see http://arxiv.org/abs/0904.1097v2.
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Corollary 3.11 The following two statements are equivalent.
(i) Every spherical subword complex is polytopal.

(ii) Every multi-cluster complex is polytopal.

4 Open problems
In this last section, we discuss open problems on multi-cluster complexes.

Open Problem 4.1 Find multi-Catalan numbers counting the number of facets in the multi-cluster com-
plex.

Although a formula in terms of invariants of the group for the number of facets of the generalized
cluster complex defined by S. Fomin and N. Reading is known [FR05, Proposition 8.4], a general formula
in terms of invariants of the group for the multi-cluster complex is yet to be found. An explicit formula for
typeA can be found in [Jon05, Corollary 17]. In typeB, a formula was conjectured in [SW09, Conjecture
13] and proved in [RS10] (ii). In type I2(m), the number of facets of the multi-cluster complex is equal to
the number of facets of a 2k-dimensional cyclic polytope on 2k + m vertices. These three formulas can
be reformulated in terms of invariants of the Coxeter groups of type A, B and I2 as follows,∏

0≤j<k

∏
1≤i≤n

di + h+ 2j

di + 2j
,

where d1 ≤ . . . ≤ dn are the degrees of the corresponding group, and h is its Coxeter number. In general,
this product is not an integer. The smallest example we are aware of is type D6 with k = 5. Thus, this
product cannot count facets of the multi-cluster complex in general. Observe that this counting formulas
in types A, B and I2 can naturally be enriched with the parameter m such that it reduces for k = 1 to
the Fuss-Catalan numbers counting the number of facets in the generalized cluster complexes. The next
open problem raises the question of finding a family of simplicial complexes that includes the generalized
cluster complexes of S. Fomin and N. Reading [FR05] and the multi-cluster complexes.

Open Problem 4.2 Find a family of simplicial complexes which simultaneously contains the generalized
cluster complexes and the multi-cluster complexes.

The next problem extends the open problem of finding the diameter of the associahedron to the family
of multi-cluster complexes.

Open Problem 4.3 Find the diameter of the facet-adjacency graph of the multi-cluster complex ∆k
c (W ).

In view of Corollary 3.11, the next conjecture restricts the study of [KM04, Question 6.4].

Conjecture 4.4 The multi-cluster complex is the boundary complex of a simplicial polytope.

This conjecture holds for k = 1 ; the multi-cluster complex in this case is the dual of the polytopal reali-
zation of c-generalized associahedra constructed in [HLT11]. In types A and B, this conjecture coincides
with the conjectures on polytopality of multi-associahedra, see [Jon05][SW09]. Using Gale’s evenness
condition, it can be shown in type I2(m), that the multi-cluster complex ∆k

c (I2(m)) is isomorphic to the
boundary complex of a 2k-dimensional cyclic polytope on 2k+m vertices. This last example shows that
the conjecture also holds for dihedral groups.

(ii). The proof appeared in Section 7 in the arxiv version, see http://arxiv.org/abs/0904.1097v2.
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