
HAL Id: hal-01283156
https://hal.science/hal-01283156

Submitted on 5 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Consecutive patterns in permutations: clusters and
generating functions

Sergi Elizalde, Marc Noy

To cite this version:
Sergi Elizalde, Marc Noy. Consecutive patterns in permutations: clusters and generating functions.
24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012),
2012, Nagoya, Japan. pp.247-258, �10.46298/dmtcs.3036�. �hal-01283156�

https://hal.science/hal-01283156
https://hal.archives-ouvertes.fr


FPSAC 2012, Nagoya, Japan DMTCS proc. AR, 2012, 247–258

Consecutive patterns in permutations:
clusters and generating functions

Sergi Elizalde1 and Marc Noy2

1Department of Mathematics, Dartmouth College, Hanover, NH 03755.
2Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, Barcelona, Spain.

Abstract. We use the cluster method in order to enumerate permutations avoiding consecutive patterns. We reprove
and generalize in a unified way several known results and obtain new ones, including some patterns of length 4 and
5, as well as some infinite families of patterns of a given shape. Our main tool is the cluster method of Goulden and
Jackson. We also prove some that, for a large class of patterns, the inverse of the exponential generating function
counting occurrences is an entire function, but we conjecture that it is not D-finite in general.

Résumé. On utilise la méthode des clusters pour énumérer permutations qui évitent motifs consécutifs. On redémontre
et on généralise d’une manière unifiée plusieurs résultats et on obtient de nouveaux résultats pour certains motifs de
longueur 4 et 5, ainsi que pour certaines familles infinies de motifs. L’outil principal c’est la méthode des clusters
de Goulden et Jackson. On démontre aussi que, pour une grande classe de motifs, l’inverse de la série génératrice
exponentielle qui compte occurrences est une fonction entière, mais on conjecture qu’elle n’est pas D-finie en général.

Keywords: Pattern avoidance; Consecutive patterns; Cluster method.

1 Introduction
Consecutive patterns in permutations are a natural variation of the classical definition of patterns. Con-
secutive patterns arise naturally when studying descents, double descents, peaks, and alternating permu-
tations. The systematic study of consecutive patterns in permutations was started by the authors in [6],
and several papers have been written on the topic since then. In this paper we use the cluster method
of Goulden and Jackson in order to obtain new results on avoiding consecutive patterns in permutations.
Given a pattern σ, the method consists of counting partial permutations in which each element is involved
in at least one occurrence of σ, the so-called clusters. By inclusion-exclusion, the enumeration of clusters
provides the enumeration of permutations according to the number of occurrences of σ.

Counting clusters can be seen as counting linear extensions in a certain poset. For instance, if σ is the
monotone pattern, the corresponding poset is simply a chain, and counting linear extensions is a trivial
task. It follows that not only the monotone pattern 12 · · · s can be analyzed in this way, but also the
pattern 123 · · · (s− 1)(s+ 1)s(s+ 2)(s+ 3) · · · 2s and other related ones, which we call chain patterns.
Another significant case is when σ is a non-overlapping pattern, which means that two occurrences of σ in
a permutation cannot overlap in more than one position. By analyzing the associated poset when σ1 = 1,
we prove that if σ = 1σ2 · · ·σm is non-overlapping, then the number of permutations avoiding σ depends
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only on the value b = σm, and the inverse w(z) of the associated exponential generating function satisfies
a linear differential equation of order b. This generalizes a result proved in [6] using a representation of
permutations as increasing binary trees. For chain patterns and non-overlapping patterns, the differential
equations that we obtain can also be deduced from the work of Khoroshkin and Shapiro [8].

A more intricate example is the pattern 1324. This case was left open in [6], and it cannot be solved
with the techniques from [8] either. The number of linear extensions of the associated poset is a Catalan
number and this allows us to prove in this case that the inverse of the generating function satisfies a linear
differential equation of order five with polynomial coefficients. Again, the technique can be extended
to cover the general pattern 134 · · · (s + 1)2(s + 2)(s + 3) · · · 2s. For other patterns, such as 1423 and
2143, we find recurrence relations satisfied by the cluster numbers, but we are not able to find a closed
solution in terms of differential equations. In fact, we conjecture that the inverse of the generating function
for permutations avoiding 1423 is not D-finite. If true, this conjecture would give the first instance of a
pattern with this property, and it would make a related conjecture of Noonan and Zeilberger for classical
patterns less believable.

The present situation for small patterns is the following. There are two inequivalent patterns of length 3,
already solved in [6]. There are 7 inequivalent patterns of length 4, and we still do not have closed solu-
tions for 1423, 2143 and 2413. There are 25 inequivalent patterns of length 5, among which we can solve
only a few. For patterns of length 6, we prove four conjectures of Nakamura [11] regarding the equiv-
alence of certain pairs, completing the classification and proving that there are exactly 92 inequivalent
patterns. Similar techniques can be used to study permutations avoiding more than one pattern. See [8]
for work in this direction.

We finish this section with some definitions and preliminaries. In Sections 2 and 3 we study monotone
and non-overlapping patterns. Section 4 is devoted to the pattern 1324 and generalizations, and Section 5
to other patterns of length four. We conclude with some results on asymptotics, specially the fact that the
monotone pattern dominates all non-overlapping patterns, confirming in this case a conjecture of Elizalde
and Noy [6]. Due to lack of space, several results are presented without proofs.

1.1 Consecutive patterns
Given a sequence of distinct positive integers τ = τ1 · · · τk, we define the reduction st(τ) as the permu-
tation of length k obtained by relabelling the elements of τ with {1, . . . , k} so that the order relations
among the elements remains the same. For instance st(46382) = 34251. Given permutations π ∈ Sn
and σ ∈ Sm, we say that π contains σ as a consecutive pattern if st(πi · · ·πi+m−1) = σ for some
i ∈ {1, . . . , n − m + 1}. We denote by cσ(π) the number of occurrences of σ in π as a consecutive
pattern, and by αn(σ) be the number of permutations in Sn that avoid σ as a consecutive pattern. In this
paper, containment and avoidance always refer to consecutive patterns.

Let

Pσ(u, z) =
∑
n≥0

∑
π∈Sn

ucσ(π) z
n

n!

be the bivariate exponential generating function for occurrences of σ in permutations. It will be convenient
to define ωσ(u, z) = 1/Pσ(u, z). Note that

Pσ(0, z) =
1

ωσ(0, z)
=
∑
n≥0

αn(σ)
zn

n!
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is the generating function of permutations avoiding σ. We will remove the subscript σ from P and ω when
the pattern is clear from the context. If Σ is a set of patterns, we define PΣ(u, z) and ωΣ(u, z) similarly,
where u marks the total number of occurrences of all the patterns in Σ.

Two occurrences of σ in a permutation may overlap in certain positions. This motivates the fol-
lowing definition. Let Oσ be the set of indices i with 1 ≤ i < m such that st(σi+1σi+2 . . . σm) =
st(σ1σ2 . . . σm−i). Equivalently, i ∈ Oσ if there is some permutation in Sm+i where both its leftmost
m entries and its rightmost m entries form occurrences of σ (these occurrences overlap in exactly m − i
positions). We call Oσ the set of overlaps of σ. Note that if m ≥ 2, then m− 1 ∈ Oσ .

Given a pattern σ1 · · ·σm, its reversal is σm · · ·σ1, and its complementation is (m+ 1− σ1) · · · (m+
1 − σm). Reversal and complementation do not change the distribution of occurrences of a pattern.
Patterns of small length were first studied in [6]. It was shown that patterns of length three fall into two
classes, represented by 123 and 132, and the associated generating functions Pσ(u, z) were computed
explicitly. Patterns of length four fall into seven classes, and three of them were solved in [6] in terms of
the generating functions, namely 1234, 1342 and 1243.

1.2 The cluster method
The cluster method of Goulden and Jackson [7] is a powerful method for enumerating words with respect
to occurrences of certain substrings, based on inclusion-exclusion. Several extensions and implementa-
tions of the method have been given in the literature, most notably in [13]. It is also related to the lace
expansion of Brydges and Spencer [2]. Let us now summarize an adaptation of the cluster method to the
enumeration of permutations with respect to the number of occurrences of a consecutive pattern. This
adaptation has been recently used by Dotsenko and Khoroshkin [3], and it has many similarities with a
method of Mendes and Remmel [10] based on the combinatorics of symmetric functions.

For fixed σ ∈ Sm, a k-cluster of length n with respect to σ is a pair (π, (i1, i2, . . . , ik)) where

• π ∈ Sn,
• 1 = i1 < i2 < · · · < ik = n−m+ 1,
• for each 1 ≤ j ≤ k, st(πijπij+1 . . . πij+m−1) = σ,
• for each 1 ≤ j ≤ k − 1, ij+1 ≤ ij +m− 1.

In other words, the ij are starting positions of occurrences of σ in π, all the entries of π are in at least one
of the marked occurrences, and neighboring marked occurrences overlap. Note that ij+1 − ij ∈ Oσ for
all j, and that π may have more than k occurrences of σ. Sometimes we write (π; i1, i2, . . . , ik) instead of
(π, (i1, i2, . . . , ik)). For example, if σ = 1324, then (142536879; 1, 3, 6) is a 3-cluster of length 9, since
1425, 2536 and 6879 are occurrences of σ and all the entries are in at least one of the occurrences. Notice
that the 1425 and 2536 overlap in two positions, whereas 2536 and 6879 overlap only in one position.

Let rn,k be the number of k-clusters of length n with respect to a fixed σ. We denote by

Rσ(u, z) =
∑
n,k

rn,ku
k z

n

n!

the exponential generating function (EGF for short) for clusters, and by

R̂σ(u, x) =
∑
n,k

rn,ku
kxn
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the corresponding ordinary generating function (OGF for short). The following theorem, which is an
adaptation of [7, Theorem 2.8.6] to the case of permutations, expresses the EGF for occurrences of σ as a
consecutive pattern in permutations in terms of the EGF for clusters.

Theorem 1.1 ([7]) For any pattern σ we have

ωσ(u, z) = 1− z −Rσ(u− 1, z).

In particular, the EGF for σ-avoiding permutations is

Pσ(0, z) =
1

ωσ(0, z)
=

1

1− z −Rσ(−1, z)
.

It will be convenient to denote Â(u, x) = 1 − x − R̂(u, x) and A(u, z) = 1 − z − R(u, z), so that
ωσ(u, z) = A(u− 1, z).

Theorem 1.1 reduces the study of the distribution of occurrences of a pattern in permutations to com-
puting the cluster numbers rn,k. We now show that these numbers can be expressed in terms of linear
extensions of certain posets. Fix σ ∈ Sm. For given n, k, let

Iσn,k = {(i1, i2, . . . , ik) : i1 = 1, ik = n−m+ 1, and ij+1 − ij ∈ Oσ for 1 ≤ j ≤ k − 1},
and fix (i1, . . . , ik) ∈ Iσn,k. A permutation π ∈ Sn has the property that (π; i1, . . . , ik) is a k-cluster
of length n if and only if, for each 1 ≤ j ≤ k, we have st(πijπij+1 . . . πij+m−1) = σ. If we denote
by ς ∈ Sm the inverse of σ, so that ς` is the position of ` in σ, then this is equivalent to πς1+ij−1 <
πς2+ij−1 < · · · < πςm+ij−1. These conditions for 1 ≤ j ≤ k define a partially ordered set (poset)
Pσn,i1,...,ik on the entries of π. For example, the poset P 1324

6,1,3 is defined by π1 < π3 < π2 < π4 and
π3 < π5 < π4 < π6, and it is drawn in Figure 2 (where k = 2).

If we denote by L(P ) the set of linear extensions (i.e., compatible linear orders) of P , then it follows
that (π; i1, . . . , ik) is a k-cluster of length n with respect to σ if and only if π ∈ L(Pσn,i1,...,ik). We denote
by Pσn,k the multiset of such posets for all values of (i1, . . . , ik) ∈ Iσn,k. Note that some posets in Pσn,k can
appear with multiplicity, as in the cases discussed in Section 2. Alternatively, we could mark the elements
πi1 , πi2 , . . . , πik in Pσn,i1,...,ik , to ensure that all the posets in Pσn,k are different as marked posets. We
have that

rn,k =
∑

P∈Pσn,k

|L(P )|. (1)

We also define the multisets Pσn =
⋃
k≥1 Pσn,k and Pσ =

⋃
n Pσn .

1.3 Ordinary and exponential generating functions
Here we describe a tool that we use to switch between the OGF and the EGF of a sequence. Let L be the
linear operator on formal power series such that L(xk) = zk/k! for all k ≥ 0.

Lemma 1.2 Let Â(x) =
∑
n≥0 anx

n be an OGF with corresponding EGF A(z) =
∑
n≥0 anz

n/n!. Let
I denote the integral operator with respect to z, that is, IF (z) =

∫ z
0
F (v) dv, and let j ≥ 0. Then

L(xjÂ) = IjA, L(xj+1Â ′) = Ij(zA′), and L(xjÂ(j)) = zjA(j).

Given a linear differential equation for Â(x) with polynomial coefficients, Lemma 1.2 is used to obtain
a linear differential equation for A(z) with polynomial coefficients. All the derivatives of multivariate
generating functions are always partial derivatives with respect to z. Similarly, initial conditions are for z.
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2 Monotone and related patterns
2.1 The pattern σ = 12 . . .m

For the monotone pattern σ = 12 . . .m, a differential equation satisfied by ωσ(u, z) was given in [6,
Theorem 3.1]. The proof is based on representations of permutations as increasing binary trees.

Theorem 2.1 ([6]) Let m ≥ 3, let σ = 12 . . .m, and let ω(z) := ωσ(u, z). Then ω is the solution of

ω(m−1) + (1− u)(ω(m−2) + · · ·+ ω′ + ω) = 0 (2)

with ω(0) = 1, ω′(0) = −1, ω(i)(0) = 0 for 2 ≤ i ≤ m− 2.

Proof: Let us give an alternative proof using the cluster method. It is clear that Oσ = {1, 2, . . . ,m− 1},
so for π ∈ Sn, (π; i1, . . . , ik) is a k-cluster with respect to σ if and only if π1 < π2 < · · · < πn and
1 ≤ ij+1 − ij ≤ m− 1 for all j. It follows that the OGF for the cluster numbers is

R̂σ(u, x) =
uxm

1− u(x+ x2 + · · ·+ xm−1)
.

Clearing denominators in the expression for Â(u, x) = 1− x− R̂σ(u, x), applying the transformation L,
and using Lemma 1.2, we get

(1− u(I + I2 + · · ·+ Im−1))A(u, z) = 1− z − uz. (3)

Differentiating m− 1 times we obtain a differential equation for A(z) = A(u, z):

A(m−1) − u(A(m−2) + · · ·+A′ +A) = 0,

with initial conditions A(0) = 1, A′(0) = −1, and A(i)(0) = 0 for 2 ≤ i ≤ m − 2. Equation (2) is now
obtained making the substitution u = u− 1 and using Theorem 1.1. 2

2.2 Chain patterns
The above proof of Theorem 2.1 can be generalized to any pattern σ for which the poset satisfied by the
entries of π in every cluster is a chain. Recall that a poset is a chain if it is a linear order, i.e., all its
elements are comparable.

Definition 2.2 We say that σ ∈ Sm is a chain pattern if all the posets in Pσ are chains.

The following generalization can be proved along the lines of the proof of Theorem 2.1.

Theorem 2.3 Let m ≥ 3, and let σ ∈ Sm be a chain pattern. Let ω(z) := ωσ(u, z). Then ω is the
solution of

ω(m−1) + (1− u)
∑
d∈Oσ

ω(m−d−1) = 0 (4)

with ω(0) = 1, ω′(0) = −1, ω(i)(0) = 0 for 2 ≤ i ≤ m− 2.

An example of a chain pattern is the pattern 123 . . . (s− 1)(s+ 1)s(s+ 2)(s+ 3) . . . (2s), for arbitrary
s ≥ 3. In this case, Oσ = {s, s+ 1, . . . , 2s− 1}.
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Corollary 2.4 Let s ≥ 3, let σ = 123 . . . (s−1)(s+1)s(s+2)(s+3) . . . (2s), and let ω(z) := ωσ(u, z).
Then ω is the solution of

ω(2s−1) + (1− u)(ω(s−1) + · · ·+ ω′ + ω) = 0

with ω(0) = 1, ω′(0) = −1, ω(i)(0) = 0 for 2 ≤ i ≤ 2s− 2.

A more general family of chain patterns can be obtained as follows. Given σ ∈ Sm, let r ≥ 0 be the
largest index such that σ1σ2 . . . σr = 12 . . . r, let s ≥ 0 be the largest such that σm−s+1 . . . σm−1σm =
(m − s + 1) . . . (m − 1)m, let a ≥ 1 be the largest such that σ1σ2 . . . σa is increasing, let b ≥ 1 be the
largest such that σm−b+1 . . . σm−1σm is increasing, and let c = min{a, b}.
Corollary 2.5 Let σ ∈ Sm \ {12 . . .m}, and let r, s, a, b, c be defined as above. Suppose that r, s ≥ 1
and r + s ≥ c + 1, and that Oσ ∩ {1, 2, . . . ,m − c − 1} = ∅ (i.e., σ can only overlap with itself at the
initial and final increasing runs). Let ω(z) := ωσ(u, z). Then ω is the solution of

ω(m−1) + (1− u)(ω(c−1) + · · ·+ ω′ + ω) = 0

with ω(0) = 1, ω′(0) = −1, ω(i)(0) = 0 for 2 ≤ i ≤ m− 2.

For example, for σ = 123546, we have r = 3, s = 1, a = 4, b = 2, c = 2, Oσ = {4, 5}, and for
σ = 124536 all the parameters are the same except that r = 2. By Corollary 2.5, both ω123546(u, z) and
ω124536(u, z) satisfy ω(5) + (1 − u)(ω′ + ω) = 0, and in particular P123546(u, z) = P124536(u, z). This
proves a conjecture of Nakamura [11].

3 Non-overlapping patterns
We say that σ ∈ Sm is non-overlapping if Oσ = {m− 1}, that is, two occurrences of σ cannot overlap in
more than one position. We assume in this section that m ≥ 2. In [1], Bóna gives asymptotic estimates
on the number of non-overlapping permutations of length m, showing in particular that there is a positive
fraction of them. In [6, Theorem 3.2], the authors used binary trees to enumerate occurrences of non-
overlapping patterns of the form σ = 12 . . . (b − 1)τb, where 2 ≤ b < m, and τ is any permutation of
{b+1, b+2, . . . ,m}. In fact, the formula holds for slightly more general patterns, as noted in [3], namely
non-overlapping patterns with σ1 = 1.

Theorem 3.1 (a weaker version appears in [6]) Let σ ∈ Sm be a non-overlapping pattern with σ1 = 1,
let b = σm, and let ω(z) := ωσ(u, z). Then ω is the solution of

ω(b) + (1− u)
zm−b

(m− b)!ω
′ = 0 (5)

with ω(0) = 1, ω′(0) = −1, ω(i)(0) = 0 for 2 ≤ i ≤ b− 1.

For the special case of b = 2, that is, when σ = 1τ2, we have the explicit expression

ωσ(u, z) = 1−
∫ z

0

e(u−1) v
m−1

(m−1)! dv,

which can be easily checked to be the solution of equation (5).



Consecutive patterns in permutations: clusters and generating functions 253

Given an arbitrary non-overlapping pattern, let a = σ1 and b = σm, and note that a 6= b. Without
loss of generality we can assume that a < b, since σ and its reversal have the same cluster numbers. A
k-cluster (π; i1, i2, . . . , ik) with respect to σ has length n = k(m−1)+1 and satisfies ij+1− ij = m−1
for all j. We have that Iσn,k = {(1,m, 2m − 1, 3m − 2, . . . , (k − 1)(m − 1) + 1)}, and Pσn,k consists
of exactly one poset P . To find the shape of P , denote by ς ∈ Sm the inverse of σ, and observe that the
first m entries of π must satisfy πς1 < πς2 < · · · < πςm to form an occurrence of σ. Similarly, the entries
in positions between m and 2m − 1 must satisfy πς1+m−1 < πς2+m−1 < · · · < πςm+m−1. Note that
πςb = πm = πςa+m−1 appears in both lists of inequalities. Repeating this argument for each of the k
occurrences of σ in the cluster, we see that P is the poset in Figure 1. Note that this poset depends only
on σ1 and σm but not on the other entries of σ, and hence so do the cluster numbers. It follows, using
Theorem 1.1, that for a non-overlapping pattern σ ∈ Sm, the generating function Pσ(u, z) depends only
on σ1 and σm. This fact was recently observed by Dotsenko and Khoroshkin [3] and by Remmel [14].

a− 1

b− 1

m− a

m− b

a− 1

b− 1

m− a

m− b

b − a

Fig. 1: The poset corresponding to clusters of a non-overlapping pattern σ ∈ Sm with σ1 = a and σm = b.

Proof of Theorem 3.1: The above description of the clusters when σ1 = 1 can be used to show that the
OGF R̂σ satisfies the differential equation

R̂σ(u, x) = uxm +
uxm

(m− b)!
∂m−b

∂xm−b

(
xm−b−1R̂σ(u, x)

)
.

This gives a differential equation for Â(u, x) = 1 − x − R̂σ(u, x), which then, applying the operator L
and using Lemma 1.2, becomes

A(u, z) = 1− z +
u

(m− b)!I
b

(
zm−b

∂

∂z
A(u, z)

)
,

where A(u, z) = 1 − z − Rσ(u, z). Differentiating b times, making the change of variable u = u − 1,
and using Theorem 1.1, we get the differential equation (5) for ωσ(u, z). 2

Using similar ideas, we have obtained differential equations satisfied by ωσ(u, z) for certain non-
overlapping patterns, such as 12534 or 13254, which are also covered by [8, Corollary 3.9]. Additionally,
we can prove two conjectures of Nakamura [11], stating that P123645(u, z) = P124635(u, z) (their in-
verses satisfy ω(5) + (1 − u)z(ω′′ + ω′) = 0) and P132465(u, z) = P142365(u, z) (their inverses satisfy
ω(5) + (1− u)(ω′′ + zω′) = 0).



254 Sergi Elizalde and Marc Noy

4 The pattern 1324 and generalizations
4.1 The pattern 1324

This pattern, which is neither non-overlapping nor a chain pattern, cannot be solved with the techniques
from [6] or [8], but it has been considered in [3, 9]. In [3], Dotsenko and Khoroshkin give a recurrence for
its cluster numbers rn,k. In [9], Liese and Remmel use a technique developed in [10] to obtain an ordinary
generating function that is equivalent to R̂1324(−1, x). Here we find the differential equation satisfied by
ω1324(u, z).

Theorem 4.1 Let ω(z) = ω1324(u, z). Then ω is the solution of

zω(5) − (vz − 3)ω(4) − 3v(2z + 1)ω(3) + v((4v + 1)z − 6)ω′′ + v(8vz − 3)ω′ + 4v2zω = 0

with ω(0) = 1, ω′(0) = −1, ω′′(0) = ω(3)(0) = 0, and v = u− 1.

Proof: In a cluster (π; i1, . . . , ik) with respect to 1324, we have ij+1 − ij ∈ O1324 = {2, 3} for all j.
Consider first k-clusters of length nwhere ij+1−ij = 2 for all j, i.e., (i1, . . . , ik) = (1, 3, 5, . . . , 2k+1) ∈
Iσn,k, where n = 2k + 2. The poset in Pσn,k corresponding to this choice of indices is drawn in Figure 2
(when k = 1, this poset is just a chain). Linear extensions of this poset are in bijection with Dyck paths
with 2k steps, so their number is the Catalan number Ck = 1

k+1

(
2k
k

)
.

π1

π2

π3

π4

π5

π6

π7

π2k−2

π2k−1

π2k

π2k+1

π2k+2

Fig. 2: The order relationships in k-clusters with respect to 1324 where neighboring occurrences overlap in two
positions.

A cluster (π; i1, . . . , ik) may contain two neighboring occurrences of 1324 that overlap in only one
entry, i.e., ij+1 − ij = 3 for some j. In this case, that entry πij+1

is larger than all the entries of π to its
left and smaller than all the entries to its right. In general, a poset in Pσn,k consists of a tower of pieces
isomorphic to the poset in Figure 2, where the top element of each piece is identified with the bottom
element of the piece immediately above. A linear extension of the poset is uniquely determined by giving
a linear extension for each one of the pieces, since there are no incomparable elements in different pieces.
It follows that the OGF for the cluster numbers is

R̂1324(u, x) =
x

1−∑k≥1 Cku
kx2k+1

− x =
x

1 + x− xC(ux2)
− x. (6)
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where C(x) =
∑
k≥0 Ckx

k = 1−√1−4x
2x . To be able to apply Theorem 1.1, we need the EGF for the

cluster numbers. From equation (6) and the fact that C(x) = 1 + xC(x)2, we deduce that Â(u, x) =

1− x− R̂1324(u, x) satisfies the algebraic equation

(1− ux(1 + x)2)Â(u, x)2 + (2ux(1 + x) + x− 2)Â(u, x)− ux− x+ 1 = 0.

It follows that Â(u, x) satisfies a linear differential equation, which we have found using the Maple pack-
age gfun. Applying to it the operator L and using Lemma 1.2, we get

(4u2I5 + 8u2I4 + (4u2 − u)I3 − 6tI2 − tI + 1)z
∂

∂z
A(u, z)

+ (4u2I5 − 4u2I3 − 2tI3 + 6tI2 − 1)A(u, z) + (4u2 + 2u)
z3

6
− 7u

z2

2
+ 1 = 0. (7)

Differentiating (7) four times with respect to z, we obtain an equation for A(z) = A(u, z), namely

zA(5) − (uz − 3)A(4) − 3u(2z + 1)A(3) + u((4u− 1)z − 6)A′′ + u(8uz − 3)A′ + 4u2zA = 0,

with initial conditions A(0) = 1, A′(0) = −1, A′′(0) = 0, A(3)(0) = 0. Making the substitution u =
u− 1 and using Theorem 1.1, we obtain an equation for ω. 2

4.2 The pattern 134 . . . (s+ 1)2(s+ 2)(s+ 3) . . . (2s)

The method that we used to find a differential equation satisfied by ω1324(u, z) can be generalized to the
pattern σ = 134 . . . (s+ 1)2(s+ 2)(s+ 3) . . . (2s) for arbitrary s ≥ 2.

Theorem 4.2 Fix s ≥ 2, and let σ = 134 . . . (s+ 1)2(s+ 2)(s+ 3) . . . (2s). Then

R̂σ(u, x) =
xs(B(uxs)− 1)

1− (x+ x2 + · · ·+ xs−1)(B(uxs)− 1)
, (8)

where

B(x) =
∑
k≥0

1

(s− 1)k + 1

(
sk

k

)
xk.

The proof is based on the fact that in any cluster (π; i1, . . . , ik) with respect to σ, we have ij+1 − ij ∈
Oσ = {s, s+ 1, . . . , 2s− 1} for all j, and the overlaps that create incomparable elements in the poset are
between neighboring occurrences of σ that share s entries. We call a k-cluster of length n = (k + 1)s
where ij+1 − ij = s for all j a dense cluster. The number of dense k-clusters is the number of linear
extensions of the associated poset, which are in bijection with lattice paths from (0, 0) to (ks, 0) with
steps u = (1, s− 1) and d = (1,−1) that do not go below the x-axis. This is why the generating function
B(x) appears in the previous statement.

Example 1. Let σ = 134256, which is the case s = 3. From Theorem 4.2, we obtain using Maple that
Â(u, x) = 1− x− R̂σ(u, x) satisfies a differential equation of the form

p0(u, x)x2 ∂
2

∂x2
Â(u, x) + p1(u, x)x

∂

∂x
Â(u, x) + p2(u, x)Â(u, x) +

12∑
i=1

ci(u)xi = 0,
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where the pi(u, x) and the ci(u) are polynomials, and the pi(u, x) have degree 16 in x. Applying the
transformation L and using Lemma 1.2 we obtain the following equation for A(u, z):

p0(u, I)z2 ∂
2

∂z2
A(u, z) + p1(u, I)z

∂

∂z
A(u, z) + p2(u, I)A(u, z) +

12∑
i=1

ci(u)
zi

i!
= 0.

Differentiating 16 times with respect to z, we get a linear differential equation for A(u, z), and hence also
for ωσ(u, z). It is a differential equation of order 18 with polynomial coefficients.

5 Other patterns of length four
5.1 The pattern 1423

As in the case of the pattern 1324, we have that O1423 = {2, 3}. In this case, for each k ≥ 1 there is a
unique k-cluster (π; i1, . . . , ik) of length n = 2k + 2 where ij+1 − ij = 2 for all j, because in this case,
the poset P 1423

n,i1,...,ik
is a chain π1 < π3 < π5 < · · · < π2k+1 < π2k+2 < · · · < π4 < π2.

A general k-cluster consists of blocks of marked occurrences that overlap in two positions as above,
where the last occurrence in each block overlaps the first occurrence of the next block in one position (so
that ij+1 − ij = 3). If the first such block has k1 occurrences of 1423, then, in the corresponding poset,
the block forms a chain with 2k1 + 2 elements. The element just above the middle of the chain is π2k1+2,
which is also the first entry of the second block, and thus the bottom element of another chain with 2k2 +2
elements.

It follows that the cluster numbers satisfy the recurrence

rn,k =

bn/2c∑
i=2

(
n− i− 1

i− 1

)
rn−2i+1,k−i+1 (9)

with initial conditions r1,0 = 1 and ri,j = 0 for i ≤ 3 in all other cases. Multiplying (9) by (−1)k on both
sides, summing over all k, and letting bn =

∑
k(−1)krn,k, we obtain a corresponding recurrence for the

bn. If we let B(x) = 1 +
∑
n≥1 bnx

n = 1 + x+ R̂1423(−1, x), it satisfies the functional equation

B(x) = 1 +
x

1 + x
B

(
x

1 + x2

)
. (10)

Although it is straightforward to expand this equation to recover (9), we had to use a generating tree with
three labels for the set of clusters to find this equation. Backed by numerical computations by Mireille
Bousquet-Mélou using the Maple package gfun, we conjecture thatB(x) is not D-finite. This is equivalent
to the following statement.

Conjecture 5.1 The generating function ω1423(0, z) is not D-finite.

Proving this conjecture would give the first known instance of a pattern σ for which ωσ(0, z) =
1/Pσ(0, z) is not D-finite. This becomes particularly interesting when compared with the related con-
jecture of Gessel, later extended by Noonan and Zeilberger [12], that for any classical pattern σ (i.e.,
where occurrences are not restricted to consecutive positions), the generating function for the number of
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permutations avoiding σ is D-finite. Note also that Pσ(0, z) is already not D-finite for σ = 123, since its
denominator has a factor cos(3z/2 + π/6) [6], hence P123(0, z) has infinitely many singularities.

A similar argument to the one used for the pattern 1423 shows that P154263(u, z) = P165243(u, z),
since the corresponding posets are isomorphic. This proves another conjecture of Nakamura [11], and
completes the classification of inequivalent patterns of length up to 6.

5.2 The pattern 2143

Again we have that O2143 = {2, 3}. Similarly to the case of the pattern 1423, k-clusters with respect to
2143 can be broken into blocks in such a way that inside that each block, adjacent occurrences overlap in
two positions, and each block overlaps with the next in one position. Let rn,k,` be the number of k-clusters
of length n where π1 = `+ 2. For these refined cluster numbers, we obtain the recurrence

rn,k,` = δn,k,` +

n/2∑
i=1

k−2∑
j=`−1

(n− 2i− j)(`+ 1)

(
2i+ j − `− 3

2i− 4

)
rn−2i+1,k−i+1,j , (11)

where δn,k,` equals 1 if n = 2k + 2 and ` = 0, and 0 otherwise.

6 Asymptotic results
The growth constant of a consecutive pattern σ is defined as

ρσ = lim
n→∞

(
αn(σ)

n!

)1/n

,

where αn(σ) is the number of permutations in Sn that avoid σ. This limit always exists, as shown in [5].

Proposition 6.1 ([5]) For every σ ∈ Sm, m ≥ 3, there are constants 0 < c < d < 1 such that cnn! <

αn(σ) < dnn! for all n. Additionally, limn→∞ (αn(σ)/n!)
1/n exists, and it is between 0.7839769 and 1.

The growth constant was determined in [6] for all patterns of length three and several patterns of length
four. The conjecture that the monotone pattern is always dominating [6] is still open.

Conjecture 6.2 ([6]) For any σ ∈ Sm, we have ρσ ≤ ρ12...m.

We can prove that the above conjecture is true for non-overlapping patterns, which as mentioned before
represent a positive fraction of all patterns.

Theorem 6.3 Let σ ∈ Sm (m ≥ 3) be a non-overlapping pattern. There is an n0 such that for all n ≥ n0

αn(σ) < αn(12 . . .m).

An important recent result of Ehrenborg, Kitaev and Perry [4], proved using methods from spectral
theory is the following:

Theorem 6.4 ([4]) For every pattern σ, αn(σ)/n! = γρnσ + O(rn), where γ, ρσ and r are positive
constants such that ρσ > r.
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In all cases we have been able to solve, ωσ(0, z) is an entire function and so the EGF Pσ(0, z) is
meromorphic. Theorem 6.4 implies that ρσ must then be a simple zero of ωσ(0, z), hence a simple pole of
Pσ(0, z). Concerning the nature of the function ωσ(u, z), we have proved that it is entire in several cases.

Theorem 6.5 For any non-overlapping pattern σ ∈ Sm and for any fixed u ∈ C, ωσ(u, z) is an entire
function of z.

Theorem 6.6 If σ ∈ Sm satisfies σ1 = 1, then for any fixed u ∈ C, ωσ(u, z) is an entire function of z.

On the other hand, ωσ(u, z) is not always entire for all values of u.

Proposition 6.7 The function ω2413(2, z) is not entire.
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