
HAL Id: hal-01283154
https://hal.science/hal-01283154v1

Submitted on 5 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integrality of hook ratios
Paul-Olivier Dehaye

To cite this version:
Paul-Olivier Dehaye. Integrality of hook ratios. 24th International Conference on Formal Power Series
and Algebraic Combinatorics (FPSAC 2012), 2012, Nagoya, Japan. pp.85-98, �10.46298/dmtcs.3022�.
�hal-01283154�

https://hal.science/hal-01283154v1
https://hal.archives-ouvertes.fr


FPSAC 2012, Nagoya, Japan DMTCS proc. AR, 2012, 85–98

Integrality of hook ratios

Paul-Olivier Dehaye1

1 D-MATH, ETH Zürich, 101 Rämistrasse, 8092 Zürich, Switzerland

Abstract. We study integral ratios of hook products of quotient partitions. This question is motivated by an analo-
gous question in number theory concerning integral factorial ratios. We prove an analogue of a theorem of Landau
that already applied in the factorial case. Under the additional condition that the ratio has one more factor on the
denominator than the numerator, we provide a complete classification. Ultimately this relies on Kneser’s theorem in
additive combinatorics.

Résumé. Nous étudions les fractions de produits d’équerres de partitions quotients. Cette question fait écho à une
question en théorie des nombres sur les quotients entiers de factorielles. Nous prouvons un analogue du théorème de
Landau, qui aidait déjà dans le cas des factorielles. Sous l’hypothèse supplémentaire d’une fraction avec un facteur de
plus au dénominateur qu’au numérateur, nous obtenons une classification complète. Cette partie de la preuve repose
sur un théorème de Kneser en combinatoire additive.

Keywords: partitions, hook products, Kneser’s theorem, McKay numbers, Beurling-Nyman criterion

1 Introduction
1.1 Questions

This paper starts with the following (unsolved) question, a classic in number theory:

Question 1 For which vectors of positive integers (γk : 1 ≤ k ≤ K) and (δl : 1 ≤ l ≤ L) is

v(n;~γ, ~δ) :=

∏K
k=0

⌊
n

γk

⌋
!

∏L
l=0

⌊
n

δl

⌋
!

(1)

an integer for all integers n?

From now on, we assume k runs between 1 and K and l between 1 and L. We call L − K the height.
Some easy reductions are immediately in order. We will require γk 6= δl for all k and l. We also assume
a balancing condition:

∑
k

1
γk

=
∑
l

1
δl

. This ensures the growth of v(n;~γ, ~δ) is exponential rather than
factorial in n. Historically, a closely related question is studied more often:
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Question 2 For which vectors of positive integers (αk : 1 ≤ k ≤ K) and (βl : 1 ≤ l ≤ L) is

u(n; ~α, ~β) :=

∏K
k=1(αkn)!∏L
l=1(βln)!

(2)

an integer for all integers n?

We will use footnotes to provide information in the context of Question 2, but these can be ignored for
understanding our results(i): they are only there to provide links with existing literature.

Our main goal is to study a generalization of Question 1, replacing n with a partition.
Consider a partition λ, or rather its Young diagram. Let H(λ) be the multiset of values of its hooks,

and H(λ) the product of these values, sometimes called the hook product (see Section 2 for definitions).
Let

Hr(λ) :=

{
h

r
: h ∈ H(λ) |h mod r = 0

}
, (3)

(with repetitions) and similarly (with repetitions) Hr(λ) the product of these values. We also set hr(λ) to
be the cardinality ofHr(λ). We see thatH(λ) = H1(λ) and H(λ) = H1(λ).

We will now use the notation n for the partition (n). To generalize Question 1, it is crucial to observe
thatHr(n) = {1, · · · , bn/rc}, so Hr(n) = bn/rc!. In other words, if the partition is one-rowed, its hook
product is a factorial that appears in Question 1 (and similarly if it has only one column, of course). This
suggests the following generalization, which will be primarily considered in this paper.

Question 3 For which vectors of positive integers ~γ = (γk) and ~δ = (δl) is

v(λ;~γ, ~δ) :=

∏
kHγk(λ)∏
lHδl(λ)

(4)

an integer for all partitions λ?

It is immediately clear that the condition required by Question 3 is stronger(ii) than the condition of Ques-
tion 1, since the latter corresponds to λ = n (i.e. one-rowed).

This accounts for some of the motivation of Question 3: Question 1 admits only a partial answer at the
moment, and one could thus hope that additional conditions the pairs (~γ, ~δ) need to satisfy will slim the
set to classify to a more manageable structure.

1.2 Motivation
There is additional motivation for this new question, coming from both number theory and the represen-
tation theory of symmetric groups.

1.2.1 Motivation in number theory
The problem posed originally by Question 1 is connected to very deep questions in number theory, via the
following functions:

f(x) = f(x;~γ, ~δ) :=

K∑
k=1

⌊
x

γk

⌋
−

L∑
l=1

⌊
x

δl

⌋
. (5)

(i) In the setting of Question 2, the balancing condition requires
∑

k αk =
∑

l βl.
(ii) Note the abuse of notation, which is inconsequential as v(n;~γ, ~δ) = v(n;~γ, ~δ).
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The bridge between f(x;~γ, ~δ) and v(n;~γ, ~δ) was uncovered by Landau.

Theorem 1 ([Landau(1913)]) The ratio (1) is integral for all n if and only if the function (5) is nonneg-
ative for all real positive x.

Under the balancing condition, the function f is easily seen to be periodic, of period dividing M(~γ, ~δ) :=
lcm(γ1, · · · , γK , δ1, · · · , δL). We will present additional properties(iii) of f in the course of the proof of
Theorem 4, in Section 4.2.

The importance of functions of type (5) comes from the Beurling-Nyman criterion for the Riemann
Hypothesis. This asserts that the Riemann zeta function ζ(s) has no zeros in the half-plane σ > p−1

p

if and only if for any ε > 0 there exists a function f̃(x) =
∑N
n=1 cnbαnxc (with

∑
cnαn = 0 and

0 ≤ αn ≤ 1 for all n) such that (∫ ∞
1

∣∣∣∣∣1− f̃(x)

x

∣∣∣∣∣
p

dx

)1/p

< ε.

In other words, the Riemann Hypothesis is true if and only if linear combinations of similar to (5) can
successfully approximate the constant function 1 in the L2-norm (p = 2 gives p−1

p = 1
2 ).

An example of ~δ and ~γ would be (30, 1) and (2, 3, 5), which lead to the always-integral factorial ratio

v(n; (30, 1), (2, 3, 5)) =

⌊
n
30

⌋
! n!⌊

n
2

⌋
!
⌊
n
3

⌋
!
⌊
n
5

⌋
!
, (6)

thereby providing a positive example for Question 1(iv). Chebyshev used this ratio to prove the bound

0.92
x

log x
≤ π(x) ≤ 1.11

x

log x

on the prime counting function, after careful analysis of the valuation of (6) at all primes, which he knew
was positive. Later, Diamond and Erdös [Diamond and Erdős(1980)] showed that one can use similar
techniques to improve the constant in both of those bounds. It turns out that these improvements lead all
the way to values of 1 for both constants, but proving this requires the Prime Number Theorem (which is
of course equivalent to π(x) ∼ x

log x ).
Historically, integrality information for ratios such as (6) has been used to deliver elementary proofs of

several statements in number theory. It is our hope that generalizations such as Question 3 will eventually
lead to more powerful techniques, exploiting the fact that partitions extend in 2 dimensions (this would
give “more room” to construct interesting ratios).

The paper [Conrey and Farmer(2000)] was partly motivated by similar questions: random matrix the-
ory/number theory conjectures (the so-called Keating-Snaith conjectures) had previously led to some

(iii) Yet more properties result from the fact that this condition applies for all real x: we can perform a linear scaling of x to
help on Question 2 instead of Question 1. In fact, these rescalings show that the sets of parameters (~γ, ~δ) providing a positive
answer to Question 1 and the (~α,~δ) for Question 2 are in bijection. Define the bijection Φ : (~µ, ~ν)→ ((M/µk), (M/νl)) with
M = M(~µ, ~ν). If (~α, ~β) satisfies gcd(α1, · · · , αK , β!, · · · , βL) = 1 and is a solution to Question 2, then Φ(~µ, ~ν) is a solution
to Question 1. The converse is also true, and Φ is involutive if the gcd condition applies.

(iv) Under the bijection Φ defined in Footnote (iii), this corresponds to the always-integral ratio u(n; (30, 1), (15, 10, 6)) =
((30n)!n!)/((15n)!(10n)!(6n)!), which is actually closer to the ratio used by Chebyshev.
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unexpectedly-integral “bi-factorial ratios”, i.e. ratios of products of factorials at consecutive integers∏b
i=a i!. The authors studied these ratios in details in that paper, and their valuations at primes dis-

played intriguing fractal-like patterns. In the current paper, we are still interested in integer ratios, but
considering a different construction.

In the context of using these integral hook ratios for number theory proofs, it is worth noting that
an important component in the elementary proofs is the analytic continuation for n! afforded by the Γ
function and the asymptotics given by the Stirling formula. Similarly, there exists an extensive theory of
hook products, substituting for a discrete product over boxes of the diagram an integral over the shape of
the diagram. This can also be replaced by an integral against the outline of the diagram (its graph after
rotation of the diagram into the Russian orientation, given by a piecewise linear function of slope either
equal to ±1 or not defined) of the Barnes G-function. For partitions of large size, this outline can be
approximated by a Lipshitz 1 function (see [Kerov(2003)] for explanations along those lines). This can
then be used to derive asymptotics as well as various expansions for the G-function are known.

1.2.2 Motivation in representation theory
In addition to potential applications in number theory, it is remarkable that the quantities investigated here
appear in group theory as well. Given an n, recall that the theory of representations of Sn in characteristic
0 can be fully understood via the action of the group its Specht modules, which form a complete set of
irreducible representations, are indexed by partitions of n, and actually realized over Z.

One can also define them over a field k of characteristic p > 0, but things get more complicated as the
Specht modules will no longer be simple. Instead, kSn will decompose into a sum ⊕iBi of two-sided
ideals, called p-blocks. One can then decompose 1 = e1 + · · · + er in this direct sum (each ei is central
and idempotent). Given a Specht module V λ associated to the partition λ, we see that only one of the
V λ · ei can be nontrivial. We say that V λ (and by extension the partition λ) belongs to the corresponding
block.

Nakayama’s conjecture (now a theorem of Brauer and Robinson) says that two partitions belong to the
same p-block iff they have the same p-cores, which are given by a combinatorial process described in
Section 2.

In addition, the p-valuation of hook products is related to conjectures on Sylow subgroups of symmet-
ric groups. Assume G is a finite group and let Mi(p,G) denote the set of ordinary irreducible charac-
ters of G of degree divisible by pi but not pi+1, for i a nonnegative integer. The integers mi(p,G) :=
|Mi(p,G)| are called the McKay numbers of G with respect to p. McKay has conjectured for instance
that m0(p,G) = m0(p,NG(H)) if H is a p-Sylow of G. This has been proved for symmetric groups by
Olsson [Olsson(1976)].

We remind the reader of the classical hook formula [Sagan(1991)]. If χλ is the ordinary character of Sn
(we have that λ partitions n), its degree, will satisfy degχλ = n!/H(λ). This quantity is also sometimes
called the dimension of λ, and counts the number of standard Young tableaux of shape λ.

We thus see that mi(p,Sn) is concerned with divisibility by powers of p of the hook product of λ (this
is perhaps most clearly expressed in the literature in [Kane(2007)]). Question 3 is similarly concerned
with divisibility by p (for all p) of ratios of hook products.

1.3 Results
We will actually proceed as for the classification of integral factorial ratios. This requires proving an
analogue of Landau’s theorem, with adaptations to our setting.
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Theorem 2 Let (γk) and (δl) be two vectors of integral parameters. Then, the following two statements
are equivalent: ∏

kHγk(λ)∏
lHδl(λ)

is integral for any partition λ; (7)

and ∑
k

hγk(µ)−
∑
l

hδl(µ) ≥ 0 for any partition µ. (8)

If we require both λ and µ to be one-rowed partitions, these two weaker statements are still equivalent
and that result is precisely Landau’s original theorem. This theorem will be used to give easy proofs that
would be very intricate otherwise, such as for the following theorem.

Theorem 3 Let s and t be positive integers. Then,

Hs(λ)

(Hst(λ))
t

is an integer for all partitions λ.

This theorem, when restricted to one-rowed partitions, of course reduces to the integrality of balanced
multinomial coefficients.

Despite this good start, we are unable to give a complete classification of integral hook ratios. It is
worth observing that the classification of integral factorial ratios is also incomplete.

For factorial ratios, in the special case of height 1, additional information is available: Bober developed
a complete classification in his thesis [Bober(2009)]. We will present part of his work in Section 4. The
final result includes a relatively complex list of parameters, involving 3 infinite families and 52 sporadic
cases (see Section 4.1). In contrast, we present here the counterpart of this classification, but this time for
hook ratios. The resulting list will reduce to essentially one case.

Theorem 4 Assume ~γ and ~δ are such that v(λ;~γ, ~δ) is integral for all λ, under the balancing condition
that

∑
k

1
γk

=
∑
l

1
δl

. Assume further that this hook ratio is of height 1, i.e. L−K = 1.
Then, we actually have K = 1 and thus L = 2, and 2γ1 = δ1 = δ2.

2 Definitions
A partition λ = (λ1, · · · , λd) is a weakly decreasing, finite sequence of positive integers, called its parts.
The size of the partition λ, denoted |λ|, is the sum of its parts. We actually prefer to think of a partition in
terms of its Young diagram. This allows to consider its boxes, and to define a hook based at the box � as
the set of boxes exactly to the right, or exactly below �, or � itself. This associates to each box an integer,
the cardinality of the hook of that box, called the hook length. We give some illustrations in Figure 1.

Given a diagram λ, we can follow its 01-sequence as the (bidirectional) sequence of steps taken when
following the outline of the partition, starting at the bottom and ending to the right (see Figure 2 for an
example). A vertical step (up) is denoted by a 0, a horizontal step (right) by a 1. The 01-sequence (xi) of
a partition, which is indexed by integers, is thus eventually 0 for negative i and eventually 1 for positive
i. We have only defined the sequence up to a shift so far, so we follow the additional convention that
|{xi = 0 : i ≥ 0}| = |{xi = 1 : i < 0}|. There is then a unique 01-sequence associated to each partition,
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20191817161514121110 9 8 7 6 5 4 3 2 1
8 7 6 5 4 3 1
6 5 4 3 2 1

10 9 8 7 6 5
9 8 7 6 5 4
8 7 6 5 4 3
7 6 5 4 3 2
6 5 4 3 2 1

6 5 3 2 1
2 1

4 2 1
1

3 1
1

Fig. 1: The Young diagrams of the partitions (18, 7, 6), (6, 6, 6, 6, 6), (5, 2), (3, 1) and (2, 1), together with the hook
lengths of the corresponding boxes.

Fig. 2: The Young diagram of the partition λ = (18, 7, 6) together with its 01-sequence
· · · 0111|1110101111111111101 · · · (the | indicates the unique location where the number of 1s to the left
equals the number of 0s to the right, which is between index -1 and 0 in the 01-sequence; visually this corresponds to
the main diagonal in the Young diagram). Notice the mnemonic “RGB” for the colourings, starting after the | mark.
The grey shapes indicate a sequence of 3-hooks that can be removed from λ, to finally obtain the 3-core (3, 1) of
λ. One could start with the yellow shape for instance, and then make various choices for the order of the removals.
The process always ends with the same 3-core, (3, 1) (see Figure 1). Quotients will be · · · 01|1011111 · · · (partition
(2)), · · · 0|1111111 · · · (empty partition) and · · · 011|011101 · · · (partition (5, 2)). Remark that the yellow shape
connects two labels in the 01-sequence that are blue. It thereby corresponds to a specific box of the quotient partition
(5, 2) (see Figure 1 and compare with Equation (9)).
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and conversely this sequence determines the partition. We write x(λ) for the 01-sequence of λ. Figure 2
gives a particular example.

Let p be a positive integer, not necessarily prime. We say that a partition λ is a p-core if it has no hook
of length divisible by p (it is actually equivalent to ask for the partition not to have a hook of length exactly
p). For instance, (3, 1) is a 3-core as can be seen from Figure 1.

In terms of the 01-sequence (xi), a hook of length p in λ corresponds to a pair xi0 = 1, xi0+p = 0.
Swapping these two entries in the sequence (xi) gives the 01-sequence of a partition of size decreased by
p, due to the removal of a hook of length p. Starting with one partition λ, we can swap pairs at distance
p and iterate this procedure until no more p-hook can be found. The partition associated to this final
01-sequence is actually independent from the ordering of the hook removals (or the ordering of swaps of
a · · · 1 · · · 0 · · · into a · · · 0 · · · 1 · · · ), and called the p-core of λ, which we denote λ[]. We see in Figure 2
that the 3-core of the partition (18, 7, 6) is (3, 1).

We now define the p-quotients of the partition λ, for p still not a prime. We start with (xi) := x(λ), and
consider the p-tuple of subsequences given by ((xpi+j) : 0 ≤ j ≤ p − 1). For each 0 ≤ j ≤ p − 1, this
defines a 01-sequence and thus an associated partition, which we call the jth p-quotient of λ and denote
λ(j). We obtain a p-tuple of p-quotients for λ. Figure 2 presents a computation of quotients.

These quotient partitions have the property, essential for us, that

Hp(λ) = ∪
0≤j≤p−1

H
(
λ(j)

)
, (9)

with the union taken with multiplicity (Figure 1 has the hook lengths for the partition that appears in Fig-
ure 2 and its quotients). In other words, the union of the hook lengths of the p-quotients of λ give the hook
lengths of λ that are divisible by p, divided by p. In particular, this implies hp(λ) =

∑
0≤j≤p−1 h

(
λ(j)

)
or even hpk(λ) =

∑
0≤j≤p−1 hk

(
λ(j)

)
.

For each positive integer p, we have so far defined a map, {partitions} → {p− cores} × {partitions}p,
called the Littlewood decomposition at p, and the construction actually shows that this map is a bijection.
This can be thought of as a generalization of Euclidian division for integers. We refer the reader to
[Macdonald(1995)] for more information. The Littlewood decomposition also satisfies

|λ| = |p− core(λ)|+ p

p−1∑
j=0

|λ(j)|, (10)

which will be useful for us (we repeat that there is no requirement for p to be prime).
Integers admit representations in any base p (assuming p > 1). Similarly, given a partition λ, we will

iterate the Littlewood decomposition at p. We define recursively λ(i1,··· ,id) = λ(i1,··· ,id−1)(id). For each
tuple in {0, 1, · · · , p − 1}d, this defines a partition. Note that by convention λ() = λ. We also define
λ[i1,··· ,id] = λ(i1,··· ,id)[] (i.e. the core of that particular quotient).

We see these two definitions as two mappings, from S = {{0, · · · , p−1}d : d ∈ N} to either partitions
or p-cores. We see elements of S as indices for the vertices of the p-ary infinite rooted tree(v): recursively,
the index (i1, · · · , id) corresponds to the ithd child of the vertex indexed by (i1, · · · , id−1), with the index
() mapped to the root. This means λ(i1,··· ,id) (resp. λ[i1,··· ,id]) provides a labelling of the vertices of the

(v) A p-ary infinite rooted tree is an infinite connected graph with no cycle such that each vertex is of degree p+1, with the exception
of a distinguished vertex, called its root, which is of degree p.
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p-ary infinite rooted tree by partitions (resp. p-cores), called the p-quotient tower of λ (resp. p-core tower
of λ). We can deduce from (10) that all but finitely many labels of the p-core tower or the p-quotient tower
will be trivial partitions. An example is presented in Figure 3.

(18,7,6)
···0111|1110101111111111101···

(3,1)

(2)
···01|101···

()

φ φ φ

φ (5,2)
···011|011101···

(1)

φ (2)
···01|101···

()

φ φ φ

φ

φ :=

()
···00|11···

()

φ φ φ

Fig. 3: We give the 3-ary infinite rooted tree and three different labellings of the vertices of that tree associated to the
partition λ = (18, 7, 6). Selecting the first line at each vertex gives the 3-quotient tower of the λ. Selecting the third
line at each vertex gives the 3-core tower of λ. The second line gives the 01-sequence of the label in the 3-quotient
tower of λ. Of course, this tree is infinite: to write the trivial entries more compact, we rely on the recursive definition
on the right, which also happens to be these same labellings for the partition λ = (). The children of a node can be
computed via the 01-sequence, by splitting the 0s and 1s according to the colouring conventions explained in Figure 2.

We can now state the following lemma, where vp(n) for the largest exponent α such that pα divides n.

Lemma 5 Let p be a prime. Then,

vp(H(λ)) =
∑
d=1

d
∑

(qi)∈{0,··· ,p−1}d

∣∣∣λ[q1,··· ,dd]∣∣∣ . (11)

Proof: The proof of this lemma is an easy consequence of the stronger statement that for d a positive
integer

|{� ∈ λ : vp(h(�)) = d}| =
∑

(qi)∈{0,··· ,p−1}d

∣∣∣λ[q1,··· ,dd]∣∣∣ , (12)

which itself results from the recursive definition of the p-core tower and Equation (9) for the base case. 2

Remark. If p is not prime, (12) remains true, but fails to imply (11). Consider the example of p = 6
and λ = (6). In that case, the 6-core tower of (6) consists of a single nontrivial label, by the partition of
size 1, at a a node adjacent to the root (so the RHS evaluates to 1). Meanwhile, we have H(λ) = 720, so
the LHS of (11) evaluates to 2. This extra factor of 6 actually comes from the presence of hooks of length
2 and 3, with no direct consequence on the 6-core tower.
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3 Proofs of Theorem 2 and 3
We immediately prove Theorem 2, the generalization of Landau’s theorem.

Proof of Theorem 2:
(7)⇒ (8): We prove the statement by contraposition. Assume that for some µ the sum in (8) is negative,

i.e.
∑
i hri(µ)−

∑
j hsj (µ) < 0. We will construct a partition λ that fails to satisfy Equation (7).

Take a prime p, larger than any hook length in µ. Consider now the partition λ whose core is the
empty partition and whose quotient consists of p copies of µ (many other choices are possible). Then the
valuation of the LHS of (7) at p is negative (and at least -p), our contradiction.

(8)⇒ (7): Pick a prime p. Our goal is to prove that the valuation of (7) at p is positive. Because (7)
is a quotient, this valuation is given as a linear combination of the counts of hooks of λ divisible by the
γk and δl. This is thus a linear combination of the valuations at p of the hook product of ν, for ν running
through the various γk and δl quotients of λ. Each such valuation can be expressed, thanks to Lemma 5, as
a(n effectively finite) sum over the labels in the p-core tower of ν. We now swap this linear combination
over ν and the infinite sum over label positions in a p-core tower. We then get a sum over positions in the
p-core tower of an expression of the form (8) (µ runs through the p-cores appearing in the p-core tower of
ν). Since each such expression is positive by assumption, the overall sum is also positive. 2

Once Theorem 2 is proved, Theorem 3 is indeed trivial to prove:

Proof of Theorem 3: Thanks to Theorem 2, we know we only need to show

hs(λ)− t · hst(λ) ≥ 0 (13)

for all λ, s and t. This follows immediately from applying (10) to each of the s-quotients of λ. 2

Remark. The same proof works for v(λ; (x), ~δ), as long as x divides each of the δls. This case corre-
sponds under Φ to a multinomial coefficient u(n; (

∑
l βl),

~β), but not all u of that form map back to v that
answer Question 3 positively. Consider ~β = (9, 6, 3, 3, 3), which then gives v(λ; (3), (8, 12, 24, 24, 24)),
which is non-integral as soon as λ is a 3-core with a hook of length 8 (by Theorem 2), for instance (6, 4, 2).

3.1 Explicit construction of non-integral ratios
The proof of Theorem 2 actually constructs example partitions leading to non-integral ratios: it translates
a µ failing Condition (8) into a λ failing Condition (7).

Consider for instance the parameters (γk) = (1, 30) and (δl) = (2, 3, 5). Take the partition µ =
(6, 6, 6, 6, 6) and evaluate Condition (8) (maybe with the help of Figure 1). We get 30+0−15−10−6 =
−1 (a one-rowed µ would have given 0, see Theorem 6, page 94). Now that we have found a µ that fails
(8), we construct a λ that fails (7). The largest hook length in µ is 10. We thus pick p = 11, and compute
that the partition with empty core and quotients given by 11 copies of µ is (6655), where (7) evaluates to
the fraction

26035359735191223232929313137374141434347475353595561556754715073487942

833889329724101201031810714109121138

1111
.

In order to show a set of parameters fails at Question 3, it is thus efficient to exhibit a µ that fails
Equation (8). For the classification at height 1, we will produce µs more systematically, of a very slim
shape, and that are actually hooks themselves (i.e. their diagrams will not contain a 2× 2 rectangle).
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4 Ratios of height 1
To better appreciate Theorem 4, we first present the situations for integral factorial ratios.

4.1 Classification of integral factorial ratios
Based on an interpretation due to Rodriguez-Villegas of Question 2 in terms of hypergeometric functions
(Question 2 succeeds if and only if the hypergeometric function

∑
n u(n; ~α, ~β)zn is algebraic), Bober

[Bober(2009)] was able to fully classify parameters providing a positive answer to Question 2, if the
height L−K is assumed to be 1. For completeness, we now present this classification.

Theorem 6 ([Bober(2009)]) Let L = K + 1. Assume αk 6= βl for all k, l, that
∑
k αk =

∑
l βl and that

gcd(α1, · · · , αk, β1, · · · , βl) = 1. Then, u(n; ~α, ~β) is an integer for all n if and only if

1. (~α, ~β) takes one of the three forms: ((x+ y), (x, y)) for gcd(x, y) = 1, ((2x, y), (x, 2y, x− y)) for
gcd(x, y) = 1 and x > y or ((2x, 2y), (x, y, x+ y)) for gcd(x, y) = 1.

2. (~α, ~β) is one of 52 sporadic parameter sets, for instance ((30, 1), (15, 10, 6)), which corresponds
under Φ to (~γ, ~δ) = ((30, 1), (2, 3, 5)).

4.2 Integral hook ratios
Since the conditions presented in Question 3 are stronger than in Question 1, we expect a subset of the
(image under Φ of the) parameter list presented in Theorem 6 to provide a positive answer to Question 3.
In fact, we can show that this stronger condition slims down entirely the infinite families and the sporadic
cases, with the exception of one lone set of parameters. This is Theorem 4, which we now prove.

Proof of Theorem 4: We start by recalling parts of the theory for integral factorial ratios, based on the
functions f(x;~λ,~γ). In the balanced case, for integral factorial ratios of height L−K, Landau’s theorem
and Bober’s theory lead to a f(x;~γ, ~δ) with values in {0, 1, · · · , L−K} (this is property (P0)). In addition,
some extra properties are satisfied (these are easy to prove from the definition in (5)):

(P1) f is periodic, of period P dividing M = M(~γ, ~δ) = lcm(γ1, · · · , γK , δ1, · · · , δL);

(P2) for small enough ε > 0, we have f(x) + f(ε+M − 1− x) = L−K for all real x;

(P3) f(M − ε) = f(P − ε) = L−K, for ε > 0 small enough.

Property (P3) is a direct consequence of (P2), and (P0) is derived slightly more streinuously from (P2).
By the discussion in Section 3.1, for a given pair (~γ, ~δ) to fail Question 1, we need a µ such that∑

k

hγk(µ)−
∑
l

hδl(µ) < 0. (14)

From this µ, one can then construct (much bigger) examples of partitions λ failing Question 3 outright.
Since hi(µ) counts hooks of µ divisible by i, an equivalent condition to (14) is∑

�∈µ

g(h(�)) < 0, (15)
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if g(x) = g(x;~γ, ~δ) :=
∑
k 1(γk divides x) −

∑
l 1(δl divides x) (and 1(condition) is 1 or 0 depending

on whether the condition is true or false). Crucially, we have (for nonnegative integral x)

x∑
y=1

g(y;~γ, ~δ) = f(x;~γ, ~δ). (16)

We are now only thinking of ratios of height 1. Therefore, by (P0), the values of f are either 0 or 1.
Hence, the values of g are either 0,1 or -1. It is clear that g is periodic as well, of period P .

Because Question 3 is stronger than Question 1, we can assume all the properties (P0)-(P3) for the
functions f and g. These requirements come from considering partitions with just one row.

We now consider partitions of hook shape only. Take µ = (1 + a, 1, · · · , 1), with l repetitions of 1
at the end (a stands for arm, l for leg). This partition has hooks of length 1, 2, · · · , l, 1, 2, · · · , a, and
a+ l + 1. Therefore, Condition (15) for finding a µ reduces to

a∑
i=1

g(i) +

l∑
i=1

g(i) + g(a+ l + 1) = f(a) + f(l) + f(a+ l + 1)− f(a+ l) < 0. (17)

Given the possible values of f , we are left with no choice. We must have

f(a) = f(l) = f(a+ l + 1) = 0 and f(a+ l) = 1. (18)

We will soon need Kneser’s theorem, a generalization of the Cauchy-Davenport theorem. Let G be
an abelian group. If A ⊆ G, define the stabilizer of A to be S(A) = {g ∈ G|A + g = A}. Clearly,
0 ∈ S(A) ≤ G. Let A,B ⊆ G, finite and nonempty sets, with S = S(A + B). Then, Kneser’s theorem
affirms that |A+B| ≥ |A+ S|+ |B + S| − |S|.

Let P be the period of f , which we know divides M . Define Ai = {0, · · · , P − 1} ∩ {x|f(x) = i}.
We have thanks to (P2) that |A0| = |A1| = P/2. We will now take G = Z/PZ, with A = B = A0. By
the definition of the period, we know that |S| = 1. We then have that |A0 +A0| ≥ P − 1.

Set Y = {y : y ∈ {0, · · · , P − 1}|g(y) = 1 and g(y + 1) = 0}. By (P3), we know that P − 1 ∈ Y .
To solve (18), we thus need to find a and l such that a + l ∈ Y ∩ (A0 + A0) (this equation is in
Z/PZ, not merely Z). Because of the cardinality bounds |Y | ≥ 1 and |A + A| ≥ P − 1, this argument
can only fail to provide a µ if both bounds are actually equalities. In that case we would thus have
A0 + A0 = {0, · · · , P − 2}, with a unique drop for f along one period (this is the definition of Y )
occurring at P − 1, P (by (P3)) and of height 1 (by (P0)). Since f has only one drop, it can also have
only one increase (since its values can only be 0 or 1). The location of that unique increase can then be
determined to be at P/2− 1, P/2 (due to (P0)), and this gives the whole statement. 2

Example. We provide another µ than (6, 6, 6, 6, 6) for ~γ = (30, 1), ~δ = (2, 3, 5) (see Section 3.1). In
that case, the values taken by f(x; (30, 1), (2, 3, 5)) are

x mod 30 0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829 · · ·
f 0 1 1 1 1 1 0 1 1 1 0 1 0 1 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 · · ·

We see that P = 30, Y = {5, 9, 11, 14, 17, 19, 23, 29} and A0 = {0, 6, 10, 12, 15, 16, 18, 20, 21, 22, 24,
25, 26, 27, 28}, with A1 the complement to A0. One can check that A0 + A0 = {0, · · · , 28} (remember
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this is in Z/30Z!), with 29 missing. Because Y is not a singleton, any element of Y different from 29
leads to a µ. Take 9 ∈ Y . Then, we solve (non-constructively and mod 30) 9 = 15 + 24 ∈ A0 + A0.
Therefore, we have found an example partition µ that does not satisfy (8): it has an arm length a = 15,
and leg length l = 24, i.e. (16, 1, · · · , 1), with 24 trailing zeroes. This µ can be used to construct a λ that
fails to satisfy (7), using the technique of Section 3.1.

5 Bounds
For integral factorial ratios, some bounds are known [Bell and Bober(2009)] for K + L given the value
of L −K. These techniques were improved in [Schmerling(2010)]. The bounds obtained can be stated
in different ways: as an explicit bound on K + L as a function of L−K, as an asymptotic bound on the
growth of that function, or optimized and explicit for specific values of L−K.

For the small values of L − K, these bounds seem to overestimate the actual value of L + K: in the
case of L−K = 1 for instance, the exhaustive classification of Bober (Theorem 6) gives a maximal value
of 9 for K + L (for one of the 52 sporadic cases). Schmerling’s optimized version of the bound when
L − K = 1 gives an upper bound of 43, still far off the truth. For L − K = 2 or 3, non-exhaustive
computer searches point to a similar overshoot of the upper bounds.

As Question 3 is stronger than Question 1, these bounds will also apply for integral hook ratios. For
completeness we state a general version of the bounds here.

Theorem 7 ([Schmerling(2010)], improving on [Bell and Bober(2009)], restated for hook ratios) Assume
((γk : 1 ≤ k ≤ K), (δl : 1 ≤ l ≤ L)) are such that γk 6= δl for all k, l,

∑
k

1
γk

=
∑
l

1
δl

and provide a
positive answer to Question 3. Then, (K + L) ≤ 287(L−K)3.44, and there exists an absolute constant
C > 0 such that (K + L) ≤ C(L−K)2(log | log(L−K)|)2.

6 Related questions
Question 1 is equivalent to Question 2 for factorial ratios. Question 3 extends Question 1 to hook ratios,
but Question 2 does not extend in the same way. Indeed, quotients of partitions are given by the Littlewood
correspondence but there is no suitable operation constructing multiples of partitions (at least not with the
correct effect on partition sizes). Still, another question might extend Question 2 rather than Question 1.

A second remark concerns the motivation in number theory. In their paper [Diamond and Erdős(1980)],
Diamond and Erdös need not have an integral factorial ratio u(n; ~α, ~β) for all n, but they are satisfied
with a sequence (ni) going to infinity such that u(ni; ~α, ~β) is always integral. It would be interesting to
consider a similar relaxation to Question 3 (for instance by restricting the sizes of the partitions considered
to be in some subset of the integers).
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