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On the degree-chromatic polynomial of a tree

Diego Cifuentes1

1Departamento de Matemáticas, Universidad de los Andes, Bogotá, Colombia

Abstract. The degree chromatic polynomial Pm(G, k) of a graph G counts the number of k-colorings in which no
vertex has m adjacent vertices of its same color. We prove Humpert and Martin’s conjecture on the leading terms of
the degree chromatic polynomial of a tree.

Résumé. Le polynôme degré chromatique Pm(G, k) d’un graphe G compte le nombre de k-colorations dans lesquelles
aucun sommet n’a m sommets adjacents de sa même couleur. On démontre la conjecture de Humpert et Martin sur
les coefficients principaux du polynôme degré chromatique d’un arbre.
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George David Birkhoff defined the chromatic polynomial of a graph to attack the renowned four color
problem. The chromatic polynomialP (G, k) counts the k-colorings of a graphG in which no two adjacent
vertices have the same color [Read(1968)].

Given a graph G, Humpert and Martin defined its m-chromatic polynomial Pm(G, k) to be the number
of k-colorings of G such that no vertex has m adjacent vertices of its same color. They proved this is
indeed a polynomial. When m = 1, we recover the usual chromatic polynomial of the graph.

The chromatic polynomial is of the form

P (G, k) = kn − ekn−1 + o(kn−1),

where n is the number of vertices and e the number of edges of G. For m > 1 the formula is no longer
true, but Humpert and Martin conjectured the following formula which we now prove:

Theorem 1 ([Humpert and Martin(2010), Humpert and Martin(2011)], Conjecture) Let T be a tree
with n vertices and let m be an integer with 1 < m < n, then the following equation holds.

Pm(T, k) = kn −
∑

v∈V (T )

(
d(v)

m

)
kn−m + o(kn−m)

Proof: For a given coloring of T , say vertices v1 and v2 are “friends” if they are adjacent and have the
same color. For each v, let Av be the set of colorings such that v has at least m friends. We want to find
the number of colorings which are not in any Av , and we will use the inclusion-exclusion principle. As
the total number of k-colorings is kn, we have

Pm(T, k) = kn −
∑
v∈V
|Av|+

∑
v1,v2∈V

|Av1 ∩Av2 | − . . .
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We first show that |Av| =
(
d(v)
m

)
kn−m + o(kn−m). Let A(l)

v be the set of k-colorings such that v has
exactly l friends. In order to obtain a coloring in A(l)

v , we may choose the l friends in
(
d(v)
l

)
ways, the

color of v and its friends in k ways, the color of the remaining adjacent vertices to v in (k−1)d(v)−l ways,
and the color of the rest of the vertices in kn−1−d(v) ways. Then

|Av| =
n−1∑
l=m

|A(l)
v | =

n−1∑
l=m

(
d(v)

l

)
kn−d(v)(k − 1)d(v)−l

=

(
d(v)

m

)
kn−m + o(kn−m).

To complete the proof, it is sufficient to see that for any set S of at least 2 vertices |
⋂

v∈S Av| =
o(kn−m); clearly we may assume S = {v1, v2}. Consider the following cases:

Case 1 v1 and v2 are not adjacent.

Split Av1 into equivalence classes with the equivalence relation

σ1 ∼ σ2 ⇔ σ1(w) = σ2(w) for all w 6= v2.

Note that each equivalence class C consists of k colorings, which only differ in the color of v2. In
addition, for each C at most d(v2)

m of its colorings are in Av2 , as if σ ∈ Av2 there must be m vertices
adjacent to v2 with the color σ(v2). Therefore

|Av1 ∩Av2 | =
∑
C

|C ∩Av2 | ≤
∑
C

d(v2)

m
=
|Av1 |
k
· d(v2)
m

.

It follows that |Av1∩Av2 |
|Av1

| goes to 0 as k goes to infinity, so |Av1 ∩Av2 | = o(kn−m).

Case 2 v1 and v2 are adjacent.

LetW be the set of adjacent vertices to v2 other than v1. They are not adjacent to v1 as T has no cycles.
Split Av1 into equivalence classes with the equivalence relation

σ1 ∼ σ2 ⇔ σ1(w) = σ2(w) for all w /∈W.

Each equivalence class Cconsists of k|W |colorings, which may only differ in the colors of the vertices
in W . If v1and v2are friends in the colorings of C, then a coloring in |C ∩ Av2 |must contain at least
m− 1vertices in Wof the same color as v2. Therefore

|C ∩Av2 | =
|W |∑

l=m−1

(
|W |
l

)
(k − 1)|W |−l <

|W |∑
l=0

(
|W |
l

)
k|W |−1 = 2|W |k|W |−1.

Notice that here we are using m ≥ 2so that l ≥ 1. Otherwise, if v1 and v2 are not friends in the
colorings of C, then
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|C ∩Av2 | =
|W |∑
l=m

(
|W |
l

)
(k − 1)|W |−l <

|W |∑
l=0

(
|W |
l

)
k|W |−1 = 2|W |k|W |−1.

Therefore

|Av1 ∩Av2 | =
∑
C

|C ∩Av2 | <
∑
C

2|W |k|W |−1

=
|Av1 |
k|W |

· 2|W |k|W |−1 =
|Av1 | · 2|W |

k

and |Av1 ∩Av2 | = o(kn−m) follows as in the first case.
This completes the proof of the theorem. 2
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