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Abstract. In their paper on Wilf-equivalence for singleton classes, Backelin, West, and Xin introduced a transforma-
tion φ∗, defined by an iterative process and operating on (all) full rook placements on Ferrers boards. Bousquet-Mélou
and Steingrı́msson proved the analogue of the main result of Backelin, West, and Xin in the context of involutions,
and in so doing they needed to prove that φ∗ commutes with the operation of taking inverses. The proof of this com-
mutation result was long and difficult, and Bousquet-Mélou and Steingrı́msson asked if φ∗ might be reformulated in
such a way as to make this result obvious. In the present paper we provide such a reformulation of φ∗, by modifying
the growth diagram algorithm of Fomin. This also answers a question of Krattenthaler, who noted that a bijection
defined by the unmodified Fomin algorithm obviously commutes with inverses, and asked what the connection is
between this bijection and φ∗.

Résumé. Dans leur article sur l’équivalence de Wilf pour les classes de singletons, Backelin, West et Xin ont intro-
duit une transformation φ∗, définie par un processus itératif et opérant sur (tous) les placements complets de tours
sur un plateau de Ferrers. Bousquet-Melou et Steı́ngrimsson ont démontré l’analogue du résultat principal de Back-
elin, West et Xin dans le contexte d’involutions, et pour ce faire ont eu besoin de démontrer que φ∗ commute avec
l’opération inverse. La preuve de cette commutativité est longue et difficile, et Bousquet-Melou et Steingrömsson se
demandèrent s’il n’était pas possible de reformuler φ∗ de sorte que le resultat devienne évident. Dans le présent arti-
cle, nous proposons une telle reformulation de φ∗, en modifiant l’algorithme de croissance de diagramme de Fomin.
Cette reformulation répond également à une question de Krattenthaler, qui, remarquant qu’une bijection définie par
l’algorithme de Fomin non modifié commute évidemment avec l’opération inverse, se demanda quel était le rapport
entre cette bijection et φ∗.

Keywords: Wilf-equivalence, RSK correspondence, Growth Diagrams, Bijection, Permutations

1 Introduction
For any permutation τ = τ1τ2 . . . τr, let Sn(τ) denote the set of permutations in Sn that avoid τ , in the
sense that they have no subsequence order-isomorphic to τ.

In their paper Wilf-equivalence for singleton classes [1], Backelin, West, and Xin prove an important
general result about permutations avoiding a single pattern: If k, ` ≥ 1 and ρ is a permutation of {k +
1, . . . , k + `}, then for every n ≥ k + ` we have |Sn(12 . . . kρ)| = |Sn(k . . . 1ρ)|. The key tool in the
proof is a map φ∗, which operates on a permutation σ as follows: Order the k . . . 1-patterns σi1 . . . σik in σ
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lexicographically (according to the σj’s, not the j’s) and let φ(σ) be obtained from σ by taking the smallest
σi1 . . . σik and placing in positions i1, . . . , ik the values σi2 , . . . , σik , σi1 , respectively, and leaving all
other entries of σ fixed. Let φ∗(σ) be obtained by applying φ repeatedly until no k . . . 1-patterns remain.
It is shown that φ∗ induces a bijection from Sn(k−1 . . . 1k) onto Sn(k . . . 1), and that from this bijection
one can obtain an important ingredient of the proof, namely a bijection from Sn(1 . . . k) onto Sn(k . . . 1).

In [4], Bousquet-Mélou and Steingrı́msson prove the analogue of the Backelin-West-Xin Theorem in
the context of involutions, and in so doing they must prove that φ∗(σ−1) = (φ∗(σ))−1 for all permu-
tations σ, so that the bijection from Sn(1 . . . k) onto Sn(k . . . 1) will also commute with inverses. The
proof of the commutation result for φ∗ is long and difficult, and Bousquet-Mélou and Steingrı́msson ask
for a reformulation of φ∗ that will make this result obvious. In [7], Krattenthaler describes another bijec-
tion from Sn(1 . . . k) into Sn(k . . . 1), in terms of growth diagrams, and notes that this bijection clearly
commutes with inverses. He asks what connection there is between this bijection and φ∗. In the present
paper we answer both questions, by providing a reformulation of φ∗ in terms of growth diagrams.

In proving their theorem, Backelin, West, and Xin find it necessary to work in the context of full rook
placements on Ferrers boards, which includes permutations as a special case. For any Ferrers board F and
any permutation τ , let SF (τ) denote the set of all full rook placements on F that avoid τ. (The relevant
definitions will be reviewed in Section 2.)

Backelin, West, and Xin prove that |SF (1 . . . kρ)| = |SF (k . . . 1ρ)|, for all F and all permutations ρ
of {k + 1, . . . , k + `}, and in so doing they use an extension of φ∗ to full rook placements. Bousquet-
Mélou and Steingrı́msson also use this extension, so they prove that φ∗ commutes with inverses in this
broader context. Accordingly, our reformulation of φ∗ will be given in this context, or rather in the even
broader context of arbitrary rook placements (not necessarily full), with the term “inverse” interpreted
appropriately.

The outline of this extended abstract is as follows. In Section 2 we review the needed background
material on the Robinson-Schensted correspondence for partial permutations, Ferrers boards and rook
placements, and growth diagrams. In Section 3 we give our reformulation of φ∗ and the proof that it
works, modulo a “Main Lemma”. In Section 4 we introduce the tool that will be used to prove this
lemma: the “pivots” of a rook placement on a rectangular Ferrers board. The pivots are related to the
“L-corners” of [2], and are a generalization of the “rcL-corners” of [9]. (We have chosen to use the
term “pivots”, instead of “corners”, because of the prior use of the term “corners” in connection with the
diagram of a permutation.) Section 5 contains the proof of the Main Lemma. Although omitted in the
abstract our paper [3] contains a concluding Section 6 indicates how the proof leads naturally to a notion
of generalized Knuth transformations.

2 Background

2.1 Ferrers boards, rook placements and φ∗

Consider an n × n array of squares, and identify the pair (i, j) with the square located in the ith column
from the left and the jth row from the bottom. For any square (i, j) in the array, let R(i, j) denote the
rectangle consisting of all squares (k, `) such that k ≤ i and ` ≤ j. A Ferrers board (in French notation)
is any subset F of such an array with the property that for all (i, j) ∈ F we haveR(i, j) ⊆ F. So for some
t and some λ1 ≥ . . . ≥ λt, the Ferrers board consists of the first λj squares from the jth row of the array,
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1 ≤ j ≤ t. The conjugate of F is the Ferrers board F ′ = {(j, i) : (i, j) ∈ F}, so that F ′ is obtained by
reflecting F across the SW -NE diagonal.

A rook placement on a Ferrers board F is a subset of F that contains at most one square from each row
of F and at most one square from each column of F . We indicate the squares in the placement by putting
markers (e.g., dots or X’s) in them. A rook placement is called full if it includes exactly one square from
each row and column of F . (So if there exists a full rook placement on F , then F has the same number of
columns as rows.) From any rook placement P on F there results a partial permutation π such that square
(i, j) is in P if and only if j is the value of the bijection π at input i. P is a full placement if and only if
F has n rows and n columns for some n and π is a permutation of {1, . . . , n}. For any rook placement
P on F , the inverse P ′ of P is the placement on the conjugate board F ′ obtained by reflecting F and all
the markers for P across the SW -NE diagonal. The partial permutations resulting from P and P ′ are
inverses of each other, if we regard them as bijections between sets. If they are permutations, they are
inverses in the usual sense.

We say that a rook placement P contains a permutation τ ∈ Sr if and only if the resulting partial
permutation π contains a subsequence πi1 . . . πir order isomorphic to τ such that there is a rectangular
subboard of F that contains all the squares (ij , πij ). In this case we refer to the sequence of squares
(ij , πij ) as an occurrence of τ in P . We say that P avoids τ if P does not contain τ .

It is clear how to extend the definitions of φ and φ∗ to rook placements, by using only the occurrences
of k . . . 1 in P , in the sense of the preceding paragraph.

2.2 Growth diagrams
Our reformulation of φ∗ will be accomplished by modifying Fomin’s ([5,6], see also [7]) construction of
the growth diagram of a rook placement P on a Ferrers board F .

Fomin’s construction assigns partitions to the corners of all the squares in F , using the markers of P ,
in such a way that the partition assigned to any corner either equals the partition to its left or is obtained
from it by adding 1 to one entry, and the partition assigned to any corner either equals the partition
below it or is obtained from this partition by adding 1 to one entry. We start by assigning the empty
partition ∅ to each corner on the left and bottom edges of F . We then assign partitions to the other corners
inductively. Assuming that the northwest, southwest, and southeast corners of a square (i, j) have been
assigned partitions NW,SW, and SE, we assign to the northeast corner the partition NE determined by
the following rules.

1. If NW 6= SE then let NE = NW ∪ SE, the partition whose ith entry is the maximum of the ith
entries of NW and SE. (Here we regard the absence of an entry as the presence of an entry 0.)

2. If SW 6= NW = SE then NW is obtained from SW by adding 1 to the ith entry of SW , for
some i. We obtain NE from NW by adding 1 to the (i+ 1)th entry.

3. If SW = NW = SE then we let NE = SW unless the square (i, j) contains a marker, in which
case we obtain NE from SW by adding 1 to the first entry.

For an example of these rules see Figure 1.

Lemma 1 ([7, Theorem 5.2.4] or [12, Theorem 7.13.5]). For any square (i, j), the partition assigned to
the northeast corner of (i, j) is the shape of the Robinson-Schensted tableaux for the partial permutation
resulting from the restriction of P to the rectangle R(i, j).
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In general, if we are given F and the partitions in the growth diagram for P that occur along the right/up
border of F (i.e., the border of F minus the horizontal bottom edge and the vertical left edge), we can
inductively reconstruct the rest of the growth diagram and the placement P .
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Fig. 1: An example of Fomin’s growth diagram algorithm (GDA).

3 The Reformulation of φ∗

We now modify the growth diagram algorithm (GDA) of subsection 2.3 to get a new algorithm GDAk

for any k ≥ 2. GDAk retains rules (1) and (3) of GDA, but replaces rule (2) by the following variant.

2k. Apply rule (2) with the proviso that if rule (2) produces a NE with k (nonzero) entries then delete the
last entry and increase the first entry by 1.

The motivation for rule (2k) comes from the theorem of Schensted which relates the number of parts
of the insertion tableau with the length of the longest decreasing sequence. Therefore keeping the number
of entries in a partition λ less than k prevents decreasing subsequences of length k in partial permutations
whose Robinsion-Schensted tableaux have shape λ.

Definitions For any rook placement P on a Ferrers board F , let seq(P, F ) (respectively, seqk(P, F ))
denote the sequence of partitions along the right/up border of F that results from the application of GDA
(respectively, GDAk) to P and F .

Main Theorem Fix k ≥ 2 in the definition of φ∗. Then for any rook placement P on a Ferrers board F ,

seqk(P, F ) = seq(φ∗(P ), F ).

Corollary For any rook placement P on a Ferrers board F ,

φ∗(P ′) = (φ∗(P ))′.

Proof. This is essentially clear from the fact that the algorithms GDA and GDAk commute with the
operation of taking the inverse of a placement.
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In a bit more detail, seqk(P ′, F ′) is the reverse of seqk(P, F ), so, by the Main Theorem, seq(φ∗(P ′), F ′)
is the reverse of seq(φ∗(P ), F ), and this reverse is seq((φ∗(P ))′, F ′). By rules (A), (B), and (C) for the
inverse algorithm for GDA, we conclude that φ∗(P ′) = (φ∗(P ))′. 2

We will now give an example, to illustrate the Main Theorem and indicate the structure of its proof.

Example Consider the placement P (left) and φ∗(P ) (right) with k = 3.
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The partitions on the left are obtained by performing GDA3 while the partitions on the right are ob-
tained by performing GDA. Observe that the partitions along the right/up border of F are the same in
both cases, so seq3(P, F )=seq(φ∗(P ), F ), although the partitions in the interiors of the diagrams are not
always the same.

Lastly, consider (below) the partitions obtained by performing GDA3 on φ(P ).

•
•

•
•

•
•

•
•

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

∅ ∅ ∅ ∅ ∅ ∅ 1 1 1

∅ ∅ ∅ ∅ ∅ ∅ 1 1 2

∅ 1 1 1 1 1 11 11 21

∅ 1 1 1 1 1 11 21 22

∅ 1 2 2 2 2 21 22 32

∅ 1 2 2 3 3 31

∅ 1 2 2 3 4

∅ 1 2 3

Notice that, while the results of performing GDA3 on P and on φ(P ) are not the same diagram, they do
agree on the boundary of R(7, 4), the smallest rectangular subboard of F that contains the 321-pattern on
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which φ acted and extends to the left and bottom edges of F . Because of the definition of GDA3, this is
enough to make the two diagrams agree everywhere outside the rectangle. The idea of the proof of the
Main Theorem will be to show that performing GDAk on P and on φ(P ) yields the same partitions on
the boundary of the smallest rectangular subboard of F that contains the k . . . 1-pattern on which φ acted
and extends to the left and bottom edges of F .

Proof of the Main Theorem: We proceed by induction on the number of applications of φ required to
compute φ∗(P ). If no applications are required, the result is obvious, since φ∗(P ) = P and performing
GDAk is the same as performing GDA.

Now suppose that m applications of φ are required to compute φ∗(P ). Since computing φ∗(φ(P ))
requires only m− 1 applications of φ, we assume inductively that

seqk(φ(P ), F ) = seq(φ∗(φ(P )), F ),

i.e., that
seqk(φ(P ), F ) = seq(φ∗(P ), F ).

We want to show that seqk(φ(P ), F ) = seqk(P, F ).
Let R = R(a, b) be the smallest rectangular subboard of F that contains the k . . . 1-pattern on which

φ acted to produce φ(P ) and extends to the left and bottom edges of F . Let PR and φ(P )R be the
restrictions of P and φ(P ) to R(a, b). By the definition of GDAk, all we need to show is that

seqk(φ(P )R, R) = seqk(PR, R).

To show this, we will use the following two lemmas, which are proved in [3].

Lemma 2 The placement PR on R contains no k . . . 1-pattern that begins in a row below the top row of
R or ends in a column to the left of the rightmost column of R.

Lemma 3 The placement φ(P )R on R contains no k . . . 1-pattern.

By Lemma 3,
seqk(φ(P )R, R) = seq(φ(P )R, R).

By Lemma 2, seqk(PR, R) = seq(PR, R) except possibly at the northeast corner of square (a, b).

Notation Let cne, cnw, and cse denote the northeast, northwest, and southeast corners of square (a, b).

To conclude the proof, it will suffice to prove the next lemma.

Main Lemma We have seq(PR, R) = seq(φ(P )R, R) except possibly at cne, the northeast corner of R.

For once this lemma is established, we will have

seqk(φ(P )R, R) = seqk(PR, R)

except possibly at cne. To see that the two also agree at cne, let, by the Main Lemma, λ be the common
value of seq(PR, R) and seq(φ(P )R, R) at cnw. Since

seqk(φ(P )R, R) = seq(φ(P )R, R),
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the value of seqk(φ(P )R, R) at cne is obtained from λ by adding 1 to the first entry. (This follows from
the last statement in subsection 2.3 and the fact that φ(P )R has a marker in square (a, b).) To see that
seqk(PR, R) has the same value at cne, let µ, ν be the values of seq(PR, R) at cse, cne. Since, in the
placement PR on R, R(a − 1, b) and R(a, b − 1) contain no k . . . 1-patterns (by Lemma 2) but R(a, b)
contains such a pattern, it must be that ν has k entries and each of λ, µ has k − 1. Therefore, by the
definition of GDAk, the value of seqk(PR, R) at cne is obtained by adding 1 to the first entry of λ.

The proof of the Main Lemma will occupy Section 5. Before continuing let us establish some useful
notation for the sequel.

Notation For a square B = (i, j) in a Ferrers board F , we denote i and j by col(B) and row(B),
respectively.

4 Pivots
In this section we introduce the left and right pivots of rook placement on a rectangular Ferrers board,
and show how they relate to the Robinson-Schensted correspondence and to φ∗. While the right pivots
have nicer properties in connection with the RS correspondence, the left pivots have nicer properties with
respect to φ∗.

Definitions Let P be a placement on rectangular Ferrers board F . We define the set of left pivots of P
(respectively, right pivots of P ) to be the placement pivl P (respectively, pivr P ) defined by inductively
placing markers, row by row, from bottom to top, as follows.

First, there is no pivot in the bottom row. Now consider row r > 1. If there is no element of P in row
r then we do not place a pivot in row r. Now suppose X ∈ P is in row r. If there is a column to the left
(respectively, right) of X that contains an element of P below row r but does not contain a pivot then we
place a pivot in row r and in the rightmost (respectively, leftmost) such column.

Notation For a placement P on a rectangular Ferrers board F define rev(P ) to be the placement obtained
by reflecting F and P along a vertical line.

Below is an example of left and right pivots of a placement.
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×
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×

×

•

•
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•

×

×

×

×
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×

×

•

•

•

•

Fig. 2: On the left we have P and pivl(P ). On the right we have rev(P ) and pivr(P ). In both examples elements
of P are denoted by × and the pivots are denoted by •.

Looking at Figure 1 we see the following relationship between left and right pivots. Its proof is straight-
forward.



52 Jonathan Bloom and Dan Saracino

Lemma 4 For any placement P on a rectangular Ferrers board F we have

rev
(
pivl P

)
= pivr

(
rev P

)
.

The utility of pivots is due to their connection with the Robinson-Schensted (RS) algorithm. Specifi-
cally, we prove that the RS algorithm applied to pivr P gives the same insertion and recording tableaux,
minus the top row, as the RS algorithm applied to P . And the insertion tableau of pivl P is equal to ins P ,
minus its left column. This is the content of the next two theorems.

Notation If Y is a standard Young tableau then we will denote by Y − the tableau consisting of all but the
top row of Y and −Y the tableau consisting of all but the left column of Y .

Theorem 1 Let P be a placement on a rectangular Ferrers board. Then we have

ins(pivr P ) = (ins P )− and rec(pivr P ) = (rec P )−

For the proof see [3].

Remark 1 We thank Sergi Elizalde for suggesting to us that there might be a connection between our
right pivots and Viennot’s geometric construction. It turns out that the right pivots coincide with Viennot’s
“northeast corners”. This follows from the fact that Viennot establishes the analogue of Theorem 1 for the
northest corners.

To state our theorem relating left-pivots and the RS algorithm we first need the following.

Notation If Y is any standard Young tableau then denote by Y tr the transposed tableau, i.e., the tableau
obtained by reflecting Y across the NW-SE diagonal.

Likewise, if P is any placement on a rectangular Ferrers board F then denote by F tr and P tr the
resulting board and placement obtained by reflecting F and P across the NW-SE diagonal.

Remark 2 Recall the well known fact that for any placement P we have ins(rev P ) = (ins P )tr. For a
proof of this result see [8], page 97.

Theorem 2 Let P be a placement on a rectangular Ferrers board F . Then

ins(pivl P ) =
−
(ins P ).

Proof: By Lemma 4 we have rev(pivl P ) = pivr(rev P ). Taking the insertion tableau of both sides and
applying Theorem 1 to the right hand side we get

ins
(
rev (pivl P )

)
= [ins

(
rev P

)
]−.

Then by Remark 2 we have (ins (pivl P ))
tr = [(ins P )tr]−. By then transposing both sides we have

ins(pivl P ) = ([(ins P )tr]−)tr =
−
(ins P ).

2
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Convention Since we will only be working with left pivots for the remainder of this abstract, the term
pivot will mean left pivot from now on.

The following definitions and lemmas will be useful in Sections 5. Their statements are given here but
the proofs may be found in [3].

Definitions Let P be a placement on a rectangular Ferrers board. For any X ∈ P , if X is in the same
column as some V ∈ pivl P then define ρ(P,X) = row(V ) else define ρ(P,X) =∞.

Likewise, if X is in the same row as some V ∈ pivl P then define κ(P,X) = col(V ) else define
κ(P,X) = 0.

If the placement is understood we will just write ρ(X) or κ(X).

Lemma 5 If P is a placement on a rectangular Ferrers board F with n columns, then we have

(pivl P )
tr = pivl(P

tr)

Definition We say an increasing subsequence I of P is a pivot-path, if for all i < |I|, ρ(Ii) = row(Ii+1),
i.e., each consecutive pair creates a pivot.

Lemma 6 Let S be a decreasing sequence of length k in P . Assume there is some X ∈ P such that XS1

is a 12-pattern. If ρ(X) > row(S1) there exists a decreasing sequence D of length k + 1 with D1 = X ,
and if X and S1 are the first and last elements of a pivot-path then there exists a decreasing sequence D
of length k with D1 = X .

Note that the previous lemma and Lemma 5 directly imply the following result.

Lemma 7 Let S be a decreasing sequence of length k in P . Assume there is some X ∈ P such that
S1X is a 12-pattern. If κ(X) < col(S1) then there exists a decreasing sequence D of length k + 1 with
D1 = X .

5 The Proof of the Main Lemma
The purpose of this section is to prove the Main Lemma which is the crucial piece needed to show that our
growth diagram construction corresponds to the map φ∗. Note that up through Lemma 8, F will always
denote a rectangular Ferrers board and P a rook placement on F .

We begin with some notation and definitions.

Notation Define F |a,b to be the Ferrers board consisting of all columns of F between and including
columns a and b, and define P |a,b to be the restriction of P to F |a,b.

Definitions Fix a subplacement S, let k = |S|, and order S such that S = S1 . . . Sk where col(Si) <
col(Si+1). Further fix a column c and assume that P has no element in column c.

We first define a left-shift. Assume S lies entirely to the right of column c. Place markers in all the
squares of P , and then shift each marker in square Si for 1 < i ≤ k horizontally left to column col(Si−1)
and shift the marker in S1 horizontally left to column c. Define P (c ← S) to be the squares that now
contain markers. Likewise, define c← S to be P (S ← c) \P , the placement obtained from S by shifting
it left.
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Analogously, we define a right-shift. Assume S lies entirely to the left of column c. Place markers in
all the squares of P , and then shift each marker in square Si for 1 ≤ i < k horizontally right to column
col(Si+1) and shift the marker in Sk horizontally right to column c. Define P (S → c) to be the squares
that now contain markers. Likewise, define S → c to be P (S → c) \ P , the placement obtained from S
by shifting it right.

Definitions Let P be a placement on a rectangular Ferrers board F . Let a < b be columns of F .
Let k be the length of the longest decreasing sequence in P |a,b. Define da,b(P ) (respectively, Da,b(P ))

to be the smallest (respectively, largest) decreasing sequence, under the lexicographical ordering, in P |a,b
of length k.

Likewise, let m be the length of the longest increasing sequence in P |a,b. Define ia,b(P ) (respectively,
Ia,b(P )) to be the smallest (respectively, largest) increasing sequence, under the lexicographical ordering,
in P |a,b of length m.

We are now ready to state and prove Lemma 8. Although Lemma 8 is the key driver behind the Main
Lemma, its statement is more general then what is needed to prove the Main Lemma. The reason for this
is that the precise statement of Lemma 8 is exactly what is needed in Section 6.

Lemma 8 Let P be a placement on a rectangular Ferrers board F and assume P has no marker in
column a. Let S = da,b(P ) and P ∗ = P (a← S). Then we have

ins(P ) = ins(P ∗).

Proof: First let S∗ = a← S, i.e., the shifted sequence, and k = |S|. Define b′ to be the column containing
Sk and consider the truncated board and placements G = F |1,b′ , Q = P |1,b′ and Q∗ = P ∗|1,b′ . Now in
order to show ins(P ) = ins(P ∗), it will suffice to show

ins(Q) = ins(Q∗). (1)

To see this consider the GDA applied to P and P ∗ on the full board F . By [12], Theorem 7.13.5, knowing
(1) is the same as knowing that the partitions along the line x = b′ in the GDA of P and in the GDA of
P ∗ are identical. But the placements P and P ∗ are identical east of the line x = b′. Therefore if (1) holds
we know that the partitions along the right border of F in the GDA of P and in the GDA of P ∗ are also
identical. By [12], Theorem 7.13.5, this implies that ins(P ) = ins(P ∗).

In order to show (1) it is sufficient to prove

pivl Q = pivl Q
∗. (2)

To see why note that (2) along with Theorem 2 implies that −[ins(Q)] =
−
[ins(Q∗)], which forces

ins(Q) = ins(Q∗) as needed.
To establish (2) we will proceed inductively by assuming that the pivots (if any) below some row r are

unchanged and then showing that the pivot (if any) on row r is unchanged. To do so we consider two
cases.

Case 1: Row r contains an element Si of S.

Let R be the rectangular region of F containing all squares west of col Si and south of row Si. By the
nature of a left-shift, Q|R = Q∗|R. Further, by our induction hypothesis pivl(Q|R) = pivl(Q

∗|R). It
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then follows that the only way the pivot (if any) on row r could change is if pivl(Q) contains a pivot in
row r between columns a′ and col(Si), where a′ = a, if i = 1, and a′ = col(Si−1), if i > 1.

To show this is impossible assume, for a contradiction, that pivl(Q) does contain a pivot in row r
between columns a′ and col(Si). Then there must exist some X ∈ Q that is directly below this pivot.
Since XSi is a pivot-path, Lemma 6, applied to X and SiSi+1 . . ., implies the existence of a decreasing
sequence D of length k − i + 1 with first element X . But this is a contradiction since the decreasing
sequence S1 . . . Si−1D is smaller than S.

Case 2: Row r contains X ∈ Q \ S.

By the maximality of the length of S, Si−1XSi cannot be a 321-pattern for any i. Therefore it will
suffice to assume that SiX is a 12-pattern for some i and that i is chosen as small as possible. Then
col(Si) ≤ κ(X,Q). If not then Lemma 7 would give rise to sequence of length k + 1 contradicting the
maximality of the length of S. Therefore we must have an element Y ∈ Q with col(Si) ≤ col(Y ) =
κ(X,Q). Since col(Si) ≤ col(Y ) < b′ then column col(Y ) must contain an element of Q∗ below row
r. (Note that for the case where Y ∈ S, Y cannot be the last element of S.) This plus the induction
hypothesis implies that col(Y ) ≤ κ(X,Q∗). Assume now, for a contradiction, that col(Y ) < κ(X,Q∗)
and let Z ∈ Q∗ be such that col(Y ) < col(Z) = κ(X,Q∗). Now, by similar reasoning, col(Z) must
contain an element of Q below row r. But this plus the induction hypothesis implies that κ(X,Q) =
col(Y ) < col(Z) ≤ κ(X,Q), an obvious contradiction. 2

To prove the Main Lemma it suffices, by [12], Theorem 7.13.5, to prove the following.

Lemma 9 Let P be a placement on a not necessarily rectangular Ferrers board. Let S be the smallest
k . . . 1-pattern in P and let b = row(S1) and a = col(Sk). If R1 = R(a, b− 1) then

ins(P |R1
) = ins(φ(P )|R1

). (3)

Likewise, if R2 = R(a− 1, b) then

rec(P |R2
) = rec(φ(P )|R2

). (4)

Proof: Let Q = P |R1 and T = φ(P )|R1 . Observe that S2, . . . , Sk = dcol(S1),a(Q). Now Lemma 8
implies (3).

For (4) let R = R(a, b) and Q = P |R and T = φ(P )|R. Observe that T ′ = φ(Q′), where Q′ and
T ′ are the inverses of Q and T in the sense of Section 2 (see Figure 3). This follows from the fact that
S is the decreasing sequence of maximal length in R, which implies that S is also the position smallest
sequence of length k inR (i.e., S is the smallest if we order k . . . 1-patterns lexicographically according to
the positions of the entries, rather than the values of the entries), so that S′ is the value smallest decreasing
sequence of length k in R′.

Applying (3), we know that ins(Q′|R′
2
) = ins(T ′|R′

2
). So by the theorem of Schützenberger we have

rec(Q|R2
) = rec(T |R2

). This completes the proof. 2
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Fig. 3: On the left we have an example of Q and T . On the right we have Q′ and T ′. In both pictures the φ(S) is
marked by the red ×’s.
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