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Explicit monomial expansions of the
generating series for connection coefficients

Ekaterina A. Vassilieva1

1Laboratoire d’Informatique de l’Ecole Polytechnique, 91128 Palaiseau Cedex, France

Abstract. This paper is devoted to the explicit computation of generating series for the connection coefficients of two
commutative subalgebras of the group algebra of the symmetric group, the class algebra and the double coset algebra.
As shown by Hanlon, Stanley and Stembridge (1992), these series gives the spectral distribution of some random
matrices that are of interest to statisticians. Morales and Vassilieva (2009, 2011) found explicit formulas for these
generating series in terms of monomial symmetric functions by introducing a bijection between partitioned hypermaps
on (locally) orientable surfaces and some decorated forests and trees. Thanks to purely algebraic means, we recover
the formula for the class algebra and provide a new simpler formula for the double coset algebra. As a salient
ingredient, we compute an explicit formulation for zonal polynomials indexed by partitions of type [a, b, 1n−a−b].

Résumé. Cet article est dédié au calcul explicite des séries génératrices des constantes de structure de deux sous-
algèbres commutatives de l’algèbre de groupe du groupe symétrique, l’algèbre de classes et l’algèbre de double
classe latérale. Tel que montré par Hanlon, Stanley and Stembridge (1992), ces séries déterminent la distribution
spectrale de certaines matrices aléatoires importantes en statistique. Morales et Vassilieva (2009, 2011) ont trouvé
des formules explicites pour ces séries génératrices en termes des monômes symétriques en introduisant une bijection
entre les hypercartes partitionées sur des surfaces (localement) orientables et certains arbres et forêts décorées. Grâce
à des moyens purement algébriques, nous retrouvons la formule pour l’algèbre de classe et déterminons une nouvelle
formule plus simple pour l’algèbre de double classe latérale. En tant que point saillant de notre démonstration nous
calculons une formulation explicite pour les polynômes zonaux indexés par des partitions de type [a, b, 1n−a−b].

Keywords: Connection coefficients, symmetric group, class algebra, double coset algelbra, zonal polynomials

1 Introduction
For integer n we note Sn the symmetric group on n elements and λ = (λ1, λ2, ..., λp) ` n an inte-
ger partition of `(λ) = p parts sorted in decreasing order. We define as well Autλ =

∏
imi(λ)! and

zλ =
∏
i i
mi(λ)mi(λ)! where mi(λ) is the number of parts in λ equal to i. Let mλ(x) be the monomial

symmetric function indexed by λ on indeterminate x, pλ(x) and sλ(x) the power sum and Schur sym-
metric function respectively. Let Cλ be the conjugacy class of Sn containing the permutations of cycle
type λ. The cardinality of the conjugacy classes is given by |Cλ| = n!/zλ. Additionally, Bn is the hype-
roctahedral group (i.e the centralizer of f? = (12)(34) . . . (2n− 1 2n) in S2n). We note Kλ the double
coset of Bn in S2n consisting in all the permutations ω of S2n such that f? ◦ ω ◦ f? ◦ ω−1 has cycle type
(λ1, λ1, λ2, λ2, ..., λp, λp). We have |Bn| = 2nn! and |Kλ| = |Bn|2/(2`(λ)zλ). By abuse of notation,
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let Cλ (resp. Kλ) also represent the formal sum of its elements in the group algebra CSn (resp. CS2n).
Then, {Cλ, λ ` n} (resp. {Kλ, λ ` n}) forms a basis of the class algebra (resp. double coset algebra, i.e.
the commutative subalgebra of CS2n identified as the Hecke algebra of the Gelfand pair (S2n, Bn)). For
λ, µ, ν ` n, we focus on the connection coefficients cνλµ and bνλµ than can be defined formally by:

cνλµ = [Cν ]CλCµ, bνλµ = [Kν ]KλKµ (1)

From a combinatorial point of view cνλµ is the number of ways to write a given permutation γν of Cν as
the ordered product of two permutations α ◦ β where α is in Cλ and β is in Cµ. Similarly, bνλµ counts the
number of ordered factorizations of a given element inKν into two permutations ofKλ andKµ. Although
very intractable in the general case, Morales and Vassilieva ([MV09]) found an explicit expression of the
generating series for the cνλµ for the special case ν = (n) in terms of monomial symmetric functions.

Theorem 1 (Morales and Vassilieva, 2009)

1

n

∑
λ,µ`n

cnλµpλ(x)pµ(y) =
∑
λ,µ`n

(n− `(λ))!(n− `(µ))!

(n+ 1− `(λ)− `(µ))!
mλ(x)mµ(y) (2)

In [FV10], Féray and Vassilieva found an interesting expression when we set µ = (n) as well :

Theorem 2 (Féray and Vassilieva, 2010)

1

n!

∑
λ`n

cnλ,npλ(x) =
∑
λ`n

mλ(x)

n+ 1− `(λ)
(3)

Both of these works rely on purely bijective arguments involving the theory of hypermaps on orientable
surfaces. As shown in Section 2, these formulas can be recovered in a very simple way using some known
relations between the connection coefficients, the characters of the symmetric group and the classical
bases of the symmetric functions.

The evaluation of the generating series for the bνλµ is much more complicated. Morales and Vassilieva
(in [MV11]) found the first explicit formula in terms of monomial symmetric functions for the case ν =
(n) thanks to a bijection between partitioned hypermaps in locally orientable surfaces and some decorated
forests. Using an algebraic method analog to the class algebra case and an explicit formulation for zonal
polynomials on near hooks, Section 3, 4 and 5 prove a new simpler expression. To state it, we need to
introduce a few more notations. If x and y are non negative integers, we define:〈

x
y

〉
=

(
x
y

)2(
2x
2y

) , [
x
y

]
=

(
x
y

)2(
2x+1
2y

) (4)

if x ≥ y and 0 otherwise. We also define the rational functions:

R(x, y, z, t, w) =
(2x+ w)(2y + w)(2z + w − 1)(2t+ w − 1)

(2x+ w − 1)(2y + w + 1)(2z + w − 2)(2t+ w)
(5)

rn(x, y) = 2n
(n+ x− y + 1)(n+ y − x)(n− x− y)!(2x− 1)!!(2y − 2)!!

(−1)n+1−x−y(n+ x− y)(n+ y − x− 1)(2(x− y) + 1)
(y ≥ 1) (6)

with the additional definition rn(n, 0) = (2n− 1)!!. We have:
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Theorem 3 (Main result)

1

2nn!

∑
λ,µ`n

bnλ,µpλ(x)pµ(y) =
∑
λ,µ`n

mλ(x)mµ(y)×

∑
a,b

{a1i ,b
1
i ,c

1
i }∈C

λ
a,b

{a2i ,b
2
i ,c

2
i }∈C

µ
a,b

rn(a, b)
∏

1≤i≤n
1≤k≤2

〈
aki−1 − b

k

i−1
aki

〉[
aki−1 − b

k

i

bki

]
R(aki , a

k
i−1, b

k

i , b
k

i−1, c
k
i−1)

cki
(7)

where the sum runs over pairs of integers (a, b) such that (a, b, 1n−a−b) is a partition and Cρa,b is the set
of non negative integer sequences {ai, bi, ci}1≤i≤n with (assume ρi = 0 for i > `(ρ)) :∑

i

ai = a,
∑
i

bi = b, ai + bi

{
∈ {ρi, ρi − 1} for i < `(ρ)− 1

= ρi otherwise
, ci = ρi − ai − bi

Moreover,
∑j
i=1 bi < b if

∑j−1
i=1 ci < c = n− a− b and we noted xki = x−

∑i
j=1 x

k
i (x ∈ {a, b, c}).

The formula of Theorem 3 does not have some of the nice properties of the one in [MV11]. It is
not obvious that the coefficients are integers (the summands are rational numbers) and the rn(a, b) have
alternate signs. However, the summation runs over much less parameters and the computation of the
coefficients is more efficient especially (see Section 5) when λ or µ has a small number of parts.

2 Connection coefficients of the class algebra
Let χλ be the irreducible character of Sn indexed by λ and χλµ its value at any element of Cµ. Denote
by fλ the degree χλ1n of χλ. As Biane in [Bia04] we start with the expression:

cνλ,µ =
n!

zλzµ

∑
α`n

χαλχ
α
µχ

α
ν

fα
(8)

which becomes much simpler when ν = (n) as χα(n) = (−1)a if α = (n − a, 1a), for some a ≤ n − 1

and 0 otherwise. Furthermore f (n−a,1
a) =

(
n−1
a

)
. We have:

cnλ,µ =
n

zλzµ

n−1∑
a=0

(−1)a(n− 1− a)!a!χ
(n−a,1a)
λ χ(n−a,1a)

µ (9)

Then, following [Bia04], the generating series are equal to:

1

n

∑
λ,µ`n

cnλ,µpλ(x)pµ(y) =

n−1∑
a=0

(−1)a(n− 1− a)!a!
∑
λ,µ`n

z−1λ χ
(n−a,1a)
λ pλ(x)z−1µ χ(n−a,1a)

µ pµ(y) (10)

and simplify as sλ =
∑
µ z
−1
µ χλµpµ: (see e.g. [Mac99]):

1

n

∑
λ,µ`n

cnλ,µpλ(x)pµ(y) =

n−1∑
a=0

(−1)a(n− 1− a)!a!s(n−a,1a)(x)s(n−a,1a)(y) (11)
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In order to recover Theorem 1, we need to express the Schur functions in terms of monomials. The
transition between the two basis is performed thanks to the Kostka numbers Kλ,µ. We have sλ =∑
µ`nKλ,µmµ. But obviously (see [Mac99, I.6. ex 1]) K(n−a,1a)λ =

(
`(λ)−1
a

)
:

1

n

∑
λ,µ`n

cnλ,µpλ(x)pµ(y) =
∑
λ,µ`n

n−1∑
a=0

(−1)a(n− 1− a)!a!

(
`(λ)− 1

a

)(
`(µ)− 1

a

)
mλ(x)mµ(y) (12)

=
∑
λ,µ`n

(`(λ)− 1)!(n− `(λ))!

n−1∑
a=0

(−1)a
(

n− 1− a
`(λ)− 1− a

)(
`(µ)− 1

a

)
mλ(x)mµ(y) (13)

Finally, combining elementary manipulations of binomial coefficients (left to the reader), we obtain:

1

n

∑
λ,µ`n

cnλ,µpλ(x)pµ(y) =
∑
λ,µ`n

(`(λ)− 1)!(n− `(λ))!

(
n− `(µ)

`(λ)− 1

)
mλ(x)mµ(y) (14)

=
∑
λ,µ`n

(n− `(λ))!(n− `(µ))!

(n+ 1− `(λ)− `(µ))!
mλ(x)mµ(y) (15)

Remark 1 The coefficient of mλ(x)mn(y) in the series is n!. This can be shown directly as [mn]pµ = 1
and

∑
µ c

n
λµ = |Cλ| = n!/zλ:

[mn(y)]

 ∑
λ,µ`n

cnλ,µpλ(x)pµ(y)

 = n!
∑
λ`n

z−1λ pλ(x) = n!sn(x) = n!
∑
λ`n

mλ(x) (16)

We can recover the formula of Theorem 2 in a very similar fashion. Equation 9 becomes:

cnλ,n =
1

zλ

n−1∑
a=0

(n− 1− a)!a!χ
(n−a,1a)
λ (17)

Pursuing with an analog development gives:

∑
λ`n

cnλ,npλ(x) =
∑
λ`n

(`(λ)− 1)!(n− `(λ))!

n−1∑
a=0

(
n− 1− a
`(λ)− 1− a

)
mλ(x) (18)

=
∑
λ`n

(`(λ)− 1)!(n− `(λ))!

(
n

n− `(λ) + 1

)
mλ(x) (19)

=
∑
λ`n

n!

n− `(λ) + 1
mλ(x) (20)

3 Connection coefficients of the double coset algebra
Given a partition λ and a box s in the Young diagram of λ, let l′(s), l(s), a(s), a′(s) be the number of
boxes to the north, south, east, west of s respectively. These statistics are called co-leglength, leglength,
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armlength, co-armlength respectively. We note as well:

cλ =
∏
s∈λ

(2a(s) + l(s) + 1), c′λ =
∏
s∈λ

(2(1 + a(s)) + l(s)) (21)

Letϕλµ =
∑
w∈Kµ χ

2λ
w with 2λ = (2λ1, 2λ2, . . . , 2λp). Then |Kµ|−1ϕλµ is the value of the zonal spherical

function indexed by λ of the Gelfand pair (S2n, Bn) at the elements of the double coset Kµ. We define as
well, H2λ as the product of the hook lengths of the partition 2λ. We have H2λ = cλc

′
λ [Mac99, VII.2 eq.

(2.19)]. As shown in [HSS92], the connection coefficients of the double coset algebra verify the relation:

bνλ,µ =
1

|Kν |
∑
β`n

ϕβλϕ
β
µϕ

β
ν

H2β
. (22)

Getting back to the generating series yields:∑
λ,µ`n

bνλ,µpλ(x)pµ(y) =
|Bn|2

|Kν |
∑
β`n

ϕβν
H2β

Zβ(x)Zβ(y). (23)

where Zβ(x) = |Bn|−1
∑
λ ϕ

β
λpλ(x) are the zonal polynomials [Mac99, ch. VII]. As an alternative def-

inition, the Zβ(x) are special cases of the integral form of the Jack symmetric functions (or polynomials)
Jβ(x, α) with parameter α = 2. As described in [Mac99, VI. ch. 10], there exist two other classical
normalizations of the Jack polynomials. Using notations consistent to [Mac99], we define Qλ = Zλ/c

′
λ,

and Pλ = Zλ/cλ. The generating series simplifies in the case ν = (n) since [Mac99, VII.2 ex 2(c)]:

ϕλ(n) =
|K(n)|
|Bn−1|

∏
s∈λ

(2a′(s)− l′(s)) (24)

where the product omits the square (1, 1). As such, ϕλ(n) = 0 if λ ⊃ (23) i.e. if λ is not a near-hook of
the form (a, b, 1n−a−b). Finally, the generating series reduce to:

1

|Bn|
∑
λ,µ`n

bnλ,µpλ(x)pµ(y) =
|Bn|
|K(n)|

∑
a,b

ϕ
(a,b,1n−a−b)
(n) P(a,b,1n−a−b)(x)Q(a,b,1n−a−b)(y) (25)

The proof of Theorem 3 relies on the evaluation of the expansion in the monomial basis of the zonal
polynomials indexed by near hooks, which is done in the following section.

4 Zonal polynomials on near hooks
Zonal polynomials are special cases of Jack symmetric functions which in their turn are special cases
of the MacDonald polynomials [Mac99, VI]. While these latter symmetric functions have been heavily
studied over the past years (see e.g. [LS03]) no simple expansion in terms monomial functions is known
except for some special cases as the single part partition or partitions of type 2i1j (see Stanley [Sta89]).
We start with the general combinatorial formula (see e.g. [Mac99, VI. eq. (7.13) and (7.13’)]):

Qλ =
∑
µ

mµ

∑
shape(T )=λ,
type(T )=µ

φT , Pλ =
∑
µ

mµ

∑
shape(T )=λ,
type(T )=µ

ψT (26)
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where the internal sums run over all (column strict) tableaux T . As usual, a tableau of shape λ and type
µ with `(µ) = p can be seen as a sequence of partitions (λ(1), . . . , λ(p)) such that λ(1) ⊂ λ(2) ⊂ . . . ⊂
λ(p) = λ and each λ(i+1)/λ(i) (as well as λ(1)) is a horizontal strip with |λ(i+1)/λ(i)| = µp−i boxes filled
with integer i+ 1. Further we will assume λ(0) to be the empty partition to simplify notations.

Example 1 The following tableau has shape λ = (6, 3, 1, 1), type µ = (3, 2, 2, 2, 2) and a sequence
λ(5) = λ, λ(4) = (4, 3, 1), λ(3) = (3, 2, 1), λ(2) = (3, 1), λ(1) = (2).

1 1 2 4 5 5
2 3 4
3
5

Following (7.11) of [Mac99]:

φT =

p−1∏
i=0

φλ(i+1)/λ(i) , ψT =

p−1∏
i=0

ψλ(i+1)/λ(i) (27)

The analytic formulation of φλ/µ and ψλ/µ is given by [Mac99, VI. 7. ex 2.(a)] for the general case of
MacDonald polynomials. We use the formulation given by Okounkov and Olshanski in [OO97] (equation
(6.2)) specific to the Jack symmetric functions:

ψε/ρ =
∏

1≤k≤l≤`(ρ)

(ρk − εk+1 + θ(l − k) + 1)θ−1(εk − ρk + θ(l − k) + 1)θ−1
(εk − εl+1 + θ(l − k) + 1)θ−1(ρk − ρl + θ(l − k) + 1)θ−1

(28)

where (t)r = Γ(t+ r)/Γ(t) for any numbers t and r. This formula holds in the case of zonal polynomials
by setting θ = 1/2. Similarly,

φε/ρ =
∏

1≤k≤l≤`(ε)

(ρk − εk+1 + θ(l − k) + 1)θ−1(εk − ρk + θ(l − k) + 1)θ−1
(εk − εl + θ(l − k) + 1)θ−1(ρk − ρl+1 + θ(l − k) + 1)θ−1

(29)

Given a tableau of shape (a, b, 1c) of type µ = (µ1, µ2, . . . , µp) we note ai (resp. bi and ci) the number
of boxes of the first line (resp. second line and column) filled with integer p − i + 1. This notation is
illustrated by Figure 1 (please mind that the letters in the figure are numbers of boxes and not values of
the boxes’ content).
Obviously, using the notations of Section 1 we have :

λ(p−i) = (ai, bi, 1
ci), ai + bi + ci = µi

ai ≤ ai−1 − bi−1, bi ≤ bi−1 − 1 if ci > 0

bp = cp = cp−1 = 0, ci ∈ {0, 1}

Example 2 The tableau of example 1 is of shape (6, 3, 12) and check (a1, b1, c1) = (2, 0, 1), (a2, b2, c2) =
(1, 1, 0), (a3, b3, c3) = (0, 1, 1), (a4, b4, c4) = (1, 1, 0), (a5, b5, c5) = (2, 0, 0).

Given a tableau of shape (a, b, 1c) with filling described by (ai, bi, ci)1≤i≤p we apply formula 29 to
φλ(p−i+1)/λ(p−i) . The following are the non-1 contributions to the product:



Explicit generating series for connection coefficients 129

!

"

#$

!%$!&$!'(%$!'$ )$

"'(%$ "%$)$

#%$

#&$

#*$

)$

#'(&$

Fig. 1: Definition of the (ai, bi, ci) on a tableau of shape (a, b, 1c)

(i) for k = l = 1, the factor in equation 29 reads (ai+1)−1/2(ai−1−bi−1−ai+1)−1/2

(1)−1/2(ai−1−bi−1−ai+bi+1)−1/2

(ii) for k = 1, l = 2: (ai−1−bi−1+bi+3/2)−1/2

(ai−1−bi−1+3/2)−1/2
(iii) for k = l = 2: (bi+1)−1/2

(1)−1/2

Additionally, if ci = 1 we have:

(iv) k = 1, l = ci−1+1: (ai−1−ai+ci−1/2)−1/2

(ai−1−ai+ci−1/2+1)−1/2
(v) k = 1, l = ci−1+2: (ai−1+(ci−1+1)/2+1)−1/2

(ai−1+(ci−1+1)/2)−1/2

(vi) k = 2, l = ci−1 + 1: (bi−1−bi+(ci−1−1)/2)−1/2

(bi−1−bi+(ci−1−1)/2+1)−1/2
(vii) k = 2, l = ci−1 + 2: (bi−1+ci−1)/2+1)−1/2

(bi−1+ci−1/2)−1/2

(viii) k > 2, l = ci−1 + 1: (ci−1+1−k)/2+1)−1/2

(ci−1+1−k)/2+2)−1/2
(ix) k > 2, l = ci−1 + 2: (ci−1+2−k)/2+2)−1/2

(ci−1+2−k)/2+1)−1/2

As (t+ 1)−1/2 = (2t)!/(
√
πt!222t) and (t+ 3/2)−1/2 =

√
πt!222t+1/(2t+ 1)!, (i)×(ii)×(iii) gives:

1

22ai−2bi

〈
ai−1 − bi−1

ai

〉[
ai−1 − bi

bi

] (2ai−1−2bi−1

ai−1−bi−1

)(
2ai−2bi
ai−bi

) (30)

Then, as (t)−1/2/(t+ 1)−1/2 = 2t/(2t− 1), combining (iv), (v), (vi) and (vii) yields 1 if ci = 0 and

2ai + ci−1
2ai + ci−1 − 1

2ai−1 + ci−1
2ai−1 + ci−1 + 1

2bi + ci−1 − 1

2bi + ci−1 − 2

2bi−1 + ci−1 − 1

2bi−1 + ci−1
(31)

otherwise. For all k > 2 the combination of (viii) and (ix) can be written as

ci−1+1∏
k>2

ci−1 + 3− k
ci−1 + 3− (k + 1)

ci−1+2∏
k>2

ci−1 + 4− (k + 1)

ci−1 + 4− k
=

ci−1
ci−1 + 1

=
ci + 1

ci−1 + 1
(32)

The last ratio holds in the general case (ci ∈ {0, 1}). Putting everything together and multiplying the
factors for i = 1 . . . p gives the formula:
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Theorem 4 (Zonal polynomials on near hooks)

Qa,b,1c =

(
2a−2b
a−b

)
4a−b(1 + c)

∑
µ`a+b+c
{ai,bi,ci}

mµ

∏
i

〈
ai−1 − bi−1

ai

〉[
ai−1 − bi

bi

]
R(ai, ai−1, bi, bi−1, ci−1)

ci

Similarly, we find:

Pa,b,1c = f(a, b, c)
∑

µ`a+b+c
{ai,bi,ci}

mµ

∏
i

〈
ai−1 − bi−1

ai

〉[
ai−1 − bi

bi

]
R(ai, ai−1, bi, bi−1, ci−1)

ci

where f(a, b, c) =

(2a+ c+ 1)(2b+ c)/

(
(2a+ c)(2b+ c− 1)

[
a− 1

b− 1

])
if b 6= 0

1 otherwise

Example 3 When b = c = 0, we get Pn =
∑
λ`n

〈
n
λ

〉
mλ and Qn = 1

4n

(
2n
n

)∑
λ`n

〈
n
λ

〉
mλ,

which is equivalent to the formula of Stanley in [Sta89] (the extension of
〈

x
y

〉
to multinomial coefficients

is straightforward) .
Example 4 Only the following tableau of shape (a, b, 1c) yields a non zero contribution to the coefficient
in ma,b,1c of Pa,b,1c :

1 p−1 . . . p−1p−1 p . . . p p

2 p . . . p p

3

:

p−2
p−1
p

where we have (a− b) cases filled with p on the first line, (b− 1) on the second and 1 at the bottom of the
column. Then (b − 1) cases filled with p − 1 on the first line and 1 in the column. Finally the column is
labeled from bottom to top with p− 2, p− 3, . . . , 1. When all the ci’s are equal to 1 expression 31 reads:

2ai + ci + 1

2ai + ci

2ai−1 + ci−1
2ai−1 + ci−1 + 1

2bi + ci

2bi + ci − 1

2bi−1 + ci−1 − 1

2bi−1 + ci−1
(33)

and we have ∏
i

R(ai, ai−1, bi, bi−1, ci−1)
ci

=
3

2
× 2a+ c

2a+ c+ 1
× 2

1
× 2b+ c− 1

2b+ c
(34)

The other contributing factors read〈
a− b
a− b

〉[
a− 1
b− 1

]〈
b− 1
b− 1

〉[
b− 1

0

]〈
0
0

〉[
1
1

]〈
1
1

〉[
1
0

]
=

1

3

[
a− 1
b− 1

]
(35)

where we use the fact that
[

1
1

]
= 1/3. Putting everything together, yields the classical property:

[ma,b,1c ]Pa,b,1c = 1 (36)
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5 Proof of main theorem, examples and further results
The proof of Theorem 3 follows immediately from equation 25, Theorem 4 and the final remark:

∏
s∈(a,b,1c)

(2a′(s)− l′(s)) =

{
(−1)c+1(c+ 1)!(2a− 2)!!(2b− 3)!! if b > 0

(2a− 2)!! otherwise
(37)

Theorem 3 is an alternative formulation of the main result of [MV11]. While the equivalence of the two
formulas is not proved in the general case in this extended abstract, the two following subsections address
this very natural question for some particular coefficients of the generating series.

5.1 Coefficient of mλ(x)mn(y)

As a first example, we notice that only the near hooks (a, b, 1c) that have less parts than min(`(λ), `(µ))
contribute to the coefficient of mλ(x)mµ(y) in Theorem 3. If either λ or µ is the single part partition (n),
then only the one row tableau of length n contributes to the coefficient. Theorem 3 gives directly:

[mn(x)mn(y)]

 1

2nn!

∑
λ,µ`n

bnλ,µpλ(x)pµ(y)

 = rn(n, 0) = (2n− 1)!! (38)

From the perspective of the combinatorial interpretation in [MV11] this is an obvious result as the coef-
ficient of mn(x)mn(y) is the number of pairings on a set of size 2n. More interestingly, noticing that〈
n
λ

〉
=

(
n
λ

)
(2λ− 1)!!/(2n− 1)!! (where (2λ− 1)!! =

∏
i(2λi − 1)!!), we get:

[mλ(x)mn(y)]

 1

2nn!

∑
λ,µ`n

bnλ,µpλ(x)pµ(y)

 =

(
n

λ

)
(2λ− 1)!! (39)

This result is not obvious to derive directly from the main formula in [MV11], but it can be proved with
the combinatorial interpretation of the LHS of eq. 39 in terms of some decorated bicolored forests with
a single white vertex. The exact definition of these forests is given in [MV11, Def. 2.10]. We briefly
remind that they are composed of white and black (internal or root) vertices. The descendants of a given
vertex are composed of edges (linking a white vertex and a black one), thorns and loops. Additionally,
there is a bijection between thorns connected to white vertices and thorns connected to black vertices and
a mapping of the loops on white (resp. black) vertices to the set of black (resp. white) vertices. The
vertex degree distribution is the integer partition defined by the sequence of the numbers of descendants
of black vertices (loops are counted twice). In this paper, the authors show that (2n − 1)!! = Fn is the
number of two-vertex (one white and one black) forests of vertex degree distribution (n) (see Figure 3 for
examples). But a forest with one white (root) vertex and `(λ) black vertices of degree distribution λ (Fλ
denotes the number of such forests) can be seen as a `(λ)-tuple of forests with one white and one black
vertex of degree {λi}1≤i≤`(λ). The i-th forest is composed of the i-th black vertex with its descendants
and one white vertex with a subset of descendants of the original one’s containing (i) the edge linking the
white vertex and the i-th black vertex (if any), (ii) the thorns in bijection with the thorns of the i-th black
vertex, (iii) the loops mapped to the i-th black vertex. The construction is bijective if we distinguish in



132 Ekaterina A. Vassilieva

a 

b 
c 

b 

c a 

a 
b 

a 

b 

Fig. 2: Two examples of two-vertex forests for n = 7 (left) and 8 (right). Letters depict the bijection between thorns.

the initial forest the black vertices with the same degree (Autλ ways to do it) and we keep track in the
tuple of forests the initial positions of the descendants of the white vertices within the initial forest (

(
n
λ

)
possible choices). We get:

AutλFλ =

(
n

λ

)∏
i

Fλi =

(
n

λ

)
(2λ− 1)!! (40)

Finally, according to [MV11], AutλFλ is equal to the desired coefficient in (39).

a 

b 
c 

b 

c 
a 

d 

d 

α 

β 
γ 

δ β 

γ 
δ 

δ 

a 

d 

a 

d 

b 
c 

b 

c 

Fig. 3: Splitting a forest of black degree distribution λ into a `(λ)-tuple of two vertex forests for λ = (43, 1). Greek
letters depict the mapping on the sets of loops connected to the white vertex.

Remark 2 Using the main formula of [MV11] we have shown:

∑
Q,Q′

∏
i,j

2Q
′
ij−2j(Qij+Q

′
ij)

Qij !Q′ij !

(
i− 1

j, j

)Qij( i− 1

j, j − 1

)Q′ij
=

(2λ− 1)!!

λ!Autλ
(41)

where the sum runs over matrices Q and Q′ with mi(λ) =
∑
j≥0Qij +Q′ij .

Remark 3 If we admit the expansion of Zn in terms of monomials, we can directly show (39) as:

|Bn|−1
∑
λ`n

∑
µ`n

bnλ,µ

 pλ(x) = |Bn|−1
∑
λ`n

|Kλ|pλ(x) = Zn(x) =
∑
λ`n

(
n

λ

)
(2λ− 1)!!mλ(x) (42)

5.2 Coefficient of mn−p,1p(x)mn−p,1p(y)

The number F(n−p,1p),(n−p,1p) of forests with p + 1 white and p + 1 black vertices, both of degree
distribution (n−p, 1p), can be easily obtained from the number of two-vertex forests Fn−2p. We consider
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2p ≤ n − 1, it is easy to show that the coefficient is equal to 0 otherwise. Two cases occur: either the
white vertex with degree n − p is the root and there are

(
n−p
p

)
×
(
n−p−1

p

)
ways to add the black and the

white descendants of degree 1, or the root is a white vertex of degree 1 and there are
(
n−p−1
p−1

)
×
(
n−p−1

p

)
ways to add the remaining white vertices and the p black vertices of degree 1. We have:

F(n−p,1p),(n−p,1p) = Fn−2p

(
n− p− 1

p

)[(
n− p
p

)
+

(
n− p− 1

p− 1

)]
(43)

As a result, we obtain :

[mn−p,1p(x)mn−p,1p(y)]

 1

2nn!

∑
λ,µ`n

bnλ,µpλ(x)pµ(y)

 = Aut2n−p,1pF(n−p,1p),(n−p,1p)

= n(n− 2p)

(
(n− p− 1)!

(n− 2p)!

)2

(2n− 4p− 1)!! (44)

We check this result with the formula of Theorem 3 for the special cases p ∈ {1, 2}. For p = 1, two
tableaux

n︷ ︸︸ ︷
1 2 ... 2 2 and

n−1︷ ︸︸ ︷
1 2 ... 2 2
2

(45)

contribute to the coefficient with respective contributions n2(2n− 5)!!(2n− 3)/(2n− 1) and −2n(2n−
5)!!(n − 1)/(2n − 1). Adding them gives the desired result n(n − 2)(2n − 5)!!. In the case p = 2, the
following tableaux are contributing:

n︷ ︸︸ ︷
1 2 3 ... 3 3 ,

n−1︷ ︸︸ ︷
1 2 3 ... 3
3

,

n−1︷ ︸︸ ︷
1 3 3 ... 3
2

,

n−2︷ ︸︸ ︷
1 2 3 ... 3
3 3

and

n−2︷ ︸︸ ︷
1 3 3 ... 3
2
3

(46)

The second and third tableaux are the two possible fillings for the shape a = n−1 and b = 1 and we have
to consider the cross contributions (one filling for λ and the other for µ). Combining the contributions for
tableaux 2 and 3, the sum writes:

n2(n− 1)2(2n− 9)!!(2n− 7)(2n− 5)

(2n− 1)(2n− 3)
−

2n(2n2 − 6n+ 3)2(2n− 9)!!(2n− 7)

(n− 1)(2n− 1)(2n− 5)

−
8n(n− 2)2(n− 3)2(2n− 9)!!

3(2n− 5)(2n− 3)
+

2n(2n− 7)(2n− 3)(2n− 9)!!

3(n− 1)

Finally, we have the desired result: n(n− 4)(n− 3)2(2n− 9)!!.

5.3 Generating series for bnλn
As a final application we compute the generating series for bnλn in a similar fashion as in Section 3 and 4:

Πn =
1

|Bn|
∑
λ`n

bnλnpλ =
1

|K(n)|
∑
a,b

(
ϕ
(a,b,1n−a−b)
(n)

)2
c′
a,b,1n−a−b

P(a,b,1n−a−b) (47)

Using the same notations as in Theorem 3, we find:
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Theorem 5 (Generating series for bnλn)

Πn =
∑
λ`n
a,b

ai,bi,ci

r′n(a, b)
∏

1≤i≤n

〈
ai−1 − bi−1

ai

〉[
ai−1 − bi

bi

]
R(ai, ai−1, bi, bi−1, ci−1)

ci
mλ (48)

with r′n(n, 0) = (2n− 2)!! and r′n(x, y) = 2n (n+1−x−y)!(2x−2)!!(2y−3)!!
(n+x−y)(n+y−x−1) (y > 0)

Contrary to rn, r′n is not of alternate sign. This leaves possibilities for asymptotic evaluations.
Example 5 The following table gives the value of some coefficients in the monomial expansion of Πn.

λ (n) (n− 1, 1) (n− 2, 1, 1) (n− 3, 1, 1, 1)
[mλ]Πn (2n− 2)!! n(2n− 4)!! n(n− 1)(2n− 6)!! n(n− 1)(n− 2)(2n− 8)!!

λ (1n) (n− 2, 2) (n− 3, 3) (n− 4, 4)
[mλ]Πn n! n(2n− 6)!!(3n− 5)/2 n(2n− 8)!!(5n2 − 21n+ 20)/2 n(2n− 10)!!(35n3 − 270n2 + 649n− 486)/8
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