
HAL Id: hal-01283140
https://hal.science/hal-01283140v1

Submitted on 5 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An explicit formula for ndinv, a new statistic for
two-shuffle parking functions

Angela Hicks, Yeonkyung Kim

To cite this version:
Angela Hicks, Yeonkyung Kim. An explicit formula for ndinv, a new statistic for two-shuffle park-
ing functions. 24th International Conference on Formal Power Series and Algebraic Combinatorics
(FPSAC 2012), 2012, Nagoya, Japan. pp.147-156, �10.46298/dmtcs.3027�. �hal-01283140�

https://hal.science/hal-01283140v1
https://hal.archives-ouvertes.fr

FPSAC 2012, Nagoya, Japan DMTCS proc. AR, 2012, 147–156

An explicit formula for ndinv, a new statistic for
two-shuffle parking functions

Angela Hicks and Yeonkyung Kim†

Mathematics Department, University of California San Diego, La Jolla, USA

Abstract. In a recent paper, Duane, Garsia, and Zabrocki introduced a new statistic, “ndinv”, on a family of parking
functions. The definition was guided by a recursion satisfied by the polynomial 〈∆hmCp1Cp2 . . . Cpk1, en〉, for
∆hm a Macdonald eigenoperator, Cpi a modified Hall-Littlewood operator and (p1, p2, . . . , pk) a composition of
n. Using their new statistics, they are able to give a new interpretation for the polynomial 〈∇en, hjhn−j〉 as a q,t
numerator of parking functions by area and ndinv. We recall that in the shuffle conjecture, parking functions are q,t
enumerated by area and diagonal inversion number (dinv). Since their definition is recursive, they pose the problem
of obtaining a non recursive definition. We solved this problem by giving an explicit formula for ndinv similar to the
classical definition of dinv. In this paper, we describe the work we did to construct this formula and to prove that the
resulting ndinv is the same as the one recursively defined by Duane, Garsia, and Zabrocki.

Résumé. Dans un travail récent Duane, Garsia et Zabrocki ont introduit une nouvelle statistique, “ndinv” pour une
famille de Fonctions Parking. Ce “ndinv” découle d’une récurrence satisfaite par le polynôme 〈∆hmCp1Cp2 · · ·Cpk 1 , en〉,
oú ∆hm est un opérateur linéaire avec fonctions propres les polynômes de Macdonald, les Cpi sont des opérateurs
de Hall-Littlewood modifiés et (p1, p2, . . . , pn) est un vecteur à composantes entières positives. Par moyen de
cette statistique, ils ont réussi à donner une nouvelle interpretation combinatoire au polynôme 〈∇en , hjhn−j〉 on
remplaçant “dinv” par “ndinv”. Rappelons nous que la conjecture “Shuffle” exprime ce même polynôme comme
somme pondérée de Fonctions Parking avec poids t à la “aire” est q au ‘dinv”. Puisque il donnent une definition
récursive du “ndinv”’ il posent le problème de l’obtenir d’une façon directe. On résout se problème en donnant une
formule explicite qui permet de calculer directement le “ndinv” à la manière de la formule classique du “dinv”. Dans
cet article on décrit le travail qu’on a fait pour construir cette formule et on démontre que nôtre formule donne le
même “ndinv” récursivement construit par Duane, Garsia et Zabrocki.

Keywords: parking functions, diagonal inversions, dinv, shuffle conjecture, Hall-Littlewood polynomials

1 Introduction
We start by introducing parking functions, fixing the notation and recalling some auxiliary results.

†Both authors’ work supported by NSF grant.

1365–8050 c© 2012 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/
http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/dmARind.html

148 Angela Hicks and Yeonkyung Kim

1.1 Parking Functions
Definition 1.1 (Parking Function). We call a two line array

PF =

[
c1 c2 . . . cn
d1 d2 . . . dn

]
a parking function if

• The first row is a permutation of {1, 2, . . . , n}.

• d1 = 0 and di ≤ di−1 + 1 for i > 1,

• if di = di−1 + 1, then ci > ci−1

We consider the numbers in the first row of the array as cars and we say car ci is on the dth
i diagonal,

with the 0th diagonal being referred to as the main diagonal. We may represent parking functions in an n
by n lattice square using a Dyck path and labels in the lattice cells adjacent to its north steps. A Dyck path
can be defined using the elements in the second row, as di represents the number of full squares between
the Dyck path and the main diagonal on the ith row from the bottom. Then, car ci is placed directly to the
right of the ith north step of the Dyck path. (See Figure 1.)

In this paper, we will work with “Two-Shuffle Parking Functions”, which is a subset of parking func-
tions.

Definition 1.2. (Reading Word). The reading word of a parking function (word(PF)) is the permutation
of {1, 2, . . . , n}, reading cars from the highest diagonal to the main diagonal. When we read cars on the
same diagonal, we record cars from northeast to southwest.

Example 1.1. The reading word of the parking function in Figure 1 is (1, 3, 4, 5, 2).

Recall that a permutation σ is a shuffle of (1, . . . ,m) and (m+ 1, . . . ,m+ n) when if i1 < i2 ≤ m or
m < i1 < i2, then i1 occurs before i2 in σ.

Definition 1.3 (Two-Shuffle Parking Functions). A parking function PF is a two-shuffle parking func-
tion when, for two positive integers m,n, it satisfies following conditions:

1. word(PF) is a shuffle of (1, . . . ,m) and (m+ 1, . . . ,m+ n);

2. cn+m > m; and

3. dn+m = 0.

Example 1.2. The parking function in Figure 1 is a two-shuffle parking function for m = 2.

In this paper, we sometimes call a car c a “big car” if c > m and a “small car” if c ≤ m. We may denote
a small car as “cs” and a big car as “cb”.

Definition 1.4 (Composition). Define the sequence (f1, f2, · · · , fk) such that cfi is a big car and dfi = 0
for each i and f1 < f2 < · · · < fk. Then we say a car cj is in the first part if j ≤ f1 and otherwise in
the ith part if fi−1 < j ≤ fi. Then we can define the “composition of PF ” (comp(PF)) as the sequence
(p1, p2, . . . , pk), where pi counts the number of big cars in the ith part.

An explicit ndinv for two-shuffle parking functions 149

PF =

[
2 4 3 1 5
0 1 1 1 0

]
�

�
�

�
�
�

��

2
4

3
1

5

Fig. 1: PF as shown in the 5 x 5 lattice.

Example 1.3.

PF =

[
2 5 4 7 1 3 6
0 1 1 0 0 1 0

]
then for m = 2 we have

comp(PF) = (3, 2).

There are two parking function statistics that have been extensively studied in the literature.

area(PF) =
∑
i

di

and
dinv(PF) =

∑
i<j

χ(di = dj and ci < cj) + χ(di = dj + 1 and ci > cj),

where χ gives the truth function. These two statistics are of interest because they play an essential role
in a variety of results tying parking functions to the theory of Macdonald polynomials and the represen-
tation theory of the symmetric group; they are also core ingredients in the formulation of the “Shuffle
Conjecture”.

1.2 Some auxiliary facts and conjectures.
The shuffle conjecture as given in [Haglund et al.(2005)] states in particular that

∇en = ∆enen =
∑
PF

tarea(PF)qdinv(PF)Qides(PF),

where Q is the Gessel quasi-symmetric function, ides(PF) = des((word(PF))−1), and ∆f is the linear
operator defined by setting for H̃µ[X; q, t] the modified Macdonald basis [Garsia and Haiman(1996)]:

∆f H̃µ[X; q, t] = f

[∑
(i,j)∈µ

ti−1qj−1

]
H̃µ[X; q, t].

A number of authors have given related expressions in terms of the area and dinv of particular families of
parking functions. In [Haglund(2004)], Haglund proved the identity

〈∆hm
En,k, en〉 =

∑
F (n,k,m)

tarea(PF)qdinv(PF), (1)

150 Angela Hicks and Yeonkyung Kim

where F (n, k,m) denotes the family of parking functions that start with a big car, have m small cars
and n big cars, k of which are on the main diagonal and whose word is a shuffle of 1, 2, . . . ,m with
m+1,m+2, . . . ,m+n. Note that here En,k are the symmetric functions introduced by Garsia-Haglund
in [Garsia and Haglund(2002)] with the property that

En,1 + En,2 + · · ·+ En,n = en.

Recent work in [Haglund et al.(2011)] used modified Hall-Littlewood operators (represented here as Ca)
to give a refinement of the shuffle conjecture. The following identity, proved in [Haglund et al.(2011)]

En,k =
∑

(p1,p2,...,pk)|=n

Cp1Cp2 . . . Cpk1

suggested Duane, Garsia, and Zabrocki (in [Duane et al.(2012)]), that the polynomials

〈∆hm
Cp1

Cp2
. . . Cpk1, en〉,

might yield a refinement of (1). In particular they found that

〈∆hm
Cp1

. . . Cpk1, en〉|q=1 =
∑

PF ∈ F (n, k,m)
comp(PF) = (p1, p2, . . . , pk)

tarea(PF).

In an effort to obtain a combinatorial interpretation of the left hand side without the restriction “q = 1”,
they were led to introduce a new statistic, which they called “ndinv”. In [Duane et al.(2012)] they only ob-
tain an algorithmic construction of ndinv based on a recursion satisfied by the polynomial 〈∆hm

Cp1
. . . Cpk1, en〉,

and pose the problem of finding a non recursive definition. In this paper, we describe the work that we did
to solve this problem.

2 An explicit formula for ndinv.
Our point of departure is the modified two line representation of a parking function, obtained in “Stage 1”
of [Duane et al.(2012)]. We sometimes find it convenient to consider a parking function as a sequence of

“dominoes”
[
ci
di

]
.

Procedure 2.1. Beginning with a parking function PF :

1. Working from left to right, if ci is small, then shift
[
ci
di

]
to the left past di big cars.

2. For every big car cj , count the number of small cars which shifted past it in the previous step.
Increase dj by this number.

Use this modified parking function to define the first two lines of the following three line array.

Ψ(PF) =

cΨ1 cΨ2 . . . cΨn+m

dΨ
1 dΨ

2 . . . dΨ
n+m

rΨ
1 rΨ

2 . . . rΨ
n+m

 .

An explicit ndinv for two-shuffle parking functions 151

Next, in a departure from Duane, Garsia, and Zabrocki’s work we assign to each car cΨi an explicit statistic
rΨ
i by setting:

rΨ
i =

1 i = 1

rΨ
i−1 + 1 cΨi−1 ≤ m and i > 1

dΨ
i−1 + 1 cΨi−1 > m and i > 1

. (2)

Example 2.1. Again let m = 3 and

PF =

[
3 4 1 6 2 5
0 1 1 0 0 0

]
.

Then

Ψ(PF) =

3 1 4 6 2 5
0 1 2 0 0 0
1 2 3 3 1 2

 .
This three line array allows us to give an explicit construction for ndinv.

Definition 2.1. If m gives the number of small cars,

ndinv(PF) :=
∑
cΨb >m

∑
cΨs ≤m

(
χ(b < s)χ(dΨ

b ≤ rΨ
s < rΨ

b) + χ(b > s)χ(dΨ
b < rΨ

s ≤ rΨ
b)
)
−m (3)

Mirroring previous conventions for dinv, we will say that:

Definition 2.2 (Diagonal Inversion). A big car cb and a small car cs form a diagonal inversion in Ψ(PF)
exactly when they contribute to the sum in the above definition.

Example 2.2. As in Example 1.3, m = 3 and

PF =

[
3 4 1 6 2 5
0 1 1 0 0 0

]
and

Ψ(PF) =

3 1 4 6 2 5
0 1 2 0 0 0
1 2 3 3 1 2

Then there are six pairs of cars which form diagonal inversions, namely (cΨ1 , c

Ψ
4), (cΨ1 , c

Ψ
6), (cΨ2 , c

Ψ
4),

(cΨ2 , c
Ψ
6), (cΨ5 , c

Ψ
4), and (cΨ5 , c

Ψ
6).

Since there are 3 small cars, ndinv(PF) = 6− 3 = 3.

We should mention that with this definition of ndinv we have

Theorem 2.1. For any (p1, p2, . . . , pk) |= n and our definition of ndinv we have

〈∆hm
Cp1

. . . Cpk1, en〉 =
∑

PF an m,n two-shuffle parking function
comp(PF) = (p1, . . . , pk)

tarea(PF)qndinv(PF). (4)

152 Angela Hicks and Yeonkyung Kim

3 A recursion satisfied by ndinv.
Since 〈∆h0

C11, e1〉 = 1, to be consistent we must set

ndinv

([
1
0

])
= 0.

In [Duane et al.(2012)], Duane, Garsia, and Zabrocki prove the following recursion:

〈∆hm
Cp1

. . . Cpk1, en〉 =
∑
p′|=p1

tp1−1qk−1〈∆hm−1
Cp2

. . . CpkCp′1, en〉

+ χ(p1 = 1)〈∆hm
Cp2

. . . Cpk1, en−1〉

where p′ |= p1 denotes that p′ = (p′1, · · · , p′l(p′)) is a composition of p1 and we useCp′ forCp′1 . . . Cp′l(p′) .
Guided by this symmetric function recursion, Duane, Garsia, and Zabrocki give a recursive map on two-
shuffle parking functions. We give a slightly modified version of their map below that we will use to show
that, with ndinv as defined above, the right hand side of (4) satisfies the same recursion as the left hand
side.

Procedure 3.1. We begin by modifying the first part:

PF =

[
c1 c2 . . . cf1 . . .
d1 d2 . . . df1

. . .

]

1. Remove its first domino
[
c1
d1

]
.

2. For each 1 < i < f1 such that ci > m, replace
[
ci
di

]
by
[

ci
di − 1

]
.

3. If adjacent dominoes in the result are of the form
[
. . . cb cs . . .
. . . d− 1 d . . .

]
, with cb > m and cs ≤ m,

then replace them by
[
. . . cs cb . . .
. . . d− 1 d . . .

]
.

4. Move the modified first part (all f1 − 1 dominoes) to the end of the sequence.

We will call the resulting two line array

Φ(PF) =

[
c̄1 c̄2 . . . c̄n+m−1

d̄1 d̄2 . . . d̄n+m−1

]
Example 3.1. As in Example 1.3, let m = 3 and

PF =

[
3 4 1 6 2 5
0 1 1 0 0 0

]
.

Then

Φ(PF) =

[
2 5 1 4 6
0 0 0 1 0

]
.

An explicit ndinv for two-shuffle parking functions 153

Remark 3.1 Notice that the resulting parking function may no longer be a proper shuffle as written.
While it is convenient to keep track of the original numbers of the cars in future proofs, it is easy to
slightly modify our result to again get a two-shuffle parking function. Thus the two line array Φ(PF)
should represent the two-shuffle parking function PF obtained by the following steps:

• Let m′ = m− 1 if the removed car is small and m′ = m if the removed car is big.

• Replace in Φ(PF) all ci ≤ m by a “1” and all ci > m by a “2”.

• Next, from the highest to the lowest di values and from right to left replace all the “1′s” by
1, 2, . . . ,m′ and all the “2′s” by m′ + 1,m′ + 2, . . . , n+m− 1.

For a proof that PF is always a two-shuffle parking function, we refer the reader to [Duane et al.(2012)].
Notice next that by calling a car ≤ m “small” and a car > m “big”, we can freely apply the operation
PF → Ψ(PF) to the two line array Φ(PF) and denote the result Ψ(Φ(PF)). Since the action of the
map Ψ on a car domino depends only on whether the car is big or small, it follows that the second and
third rows of Ψ(Φ(PF)) will be identical to those we would obtain by constructing Ψ(PF). Since the
contents of these two rows together with the relative size of the corresponding cars (i.e. whether they are
big or small) is the only information that will be used in the following, we will use Ψ(Φ(PF)) rather than
Ψ(PF). Using these notational conventions, the recursive step used by Duane, Garsia, and Zabrocki in
the algorithm giving their ndinv can be simply written in the form

Recursion 3.1. For a parking function PF with k parts,

ndinv(PF) =

{
0 if c1 is big, n = 1

ndinv(PF) + (k − 1)χ(c1 ≤ m) otherwise
(5)

Thus, if Ψ is applied to the two line array Φ(PF), the result is the three line array

Ψ(Φ(PF)) =

cΨ1 cΨ2 . . . cΨn+m−1

d
Ψ

1 d
Ψ

2 . . . d
Ψ

n+m−1

rΨ
1 rΨ

2 . . . rΨ
n+m−1

 .
then to show that their ndinv and ours are one and the same we need only prove that (5) holds true with
ndinv(PF) replaced by (3) and ndinv(PF) replaced by∑

cΨb >m

∑
cΨs ≤m

(
χ(b < s)χ(d

Ψ

b ≤ rΨ
s < rΨ

b) + χ(b > s)χ(d
Ψ

b < rΨ
s ≤ rΨ

b)
)
−m′ (6)

with m′ as defined in Remark 3.1. Notice that to calculate ndinv using the recursion in (5), we need to
apply Procedure 3.1 repeatedly. Every time we apply the procedure once, we will remove the first domino
and move the resulting first part to the end. Suppose there are k parts in PF . If we apply Procedure 3.1
k times, the first car of each part will be removed. We call this the first round. Let k1 be the number of
parts after the first round. Again, applying Procedure 3.1 k1 times removes the first car of each of these
k1 parts. We call this the second round.

Definition 3.1 (Round). We define the ith round as applying Procedure 3.1 an additional ki−1 times,
where ki−1 is the number of parts after the (i− 1)st round.

154 Angela Hicks and Yeonkyung Kim

This notion of “round” beautifully enlightens the relation between our definition of ndinv with the
definition of Duane, Garsia and Zabrocki. In fact, it follows from our proofs that the dΨ

i gives the round at
which a big car cΨi first appears in the main diagonal and r̄Ψ

i gives the round at which car cΨi is removed.
Using this it is not difficult to derive that for any given small car cΨs the expression

−1 +
∑
cΨb >m

(
χ(b < s)χ(d

Ψ

b ≤ rΨ
s < rΨ

b) + χ(b > s)χ(d
Ψ

b < rΨ
s ≤ rΨ

b)
)

gives precisely the number of big cars that are to the right of cΨs at the round of its removal in the recursive
algorithm of Duane, Garsia and Zabrocki.

4 Our ndinv and Recursion 3.1.
To show that our ndinv satisfies Recursion 3.1 we need to further examine the combination of Φ and Ψ,
as it occurs in the following diagram:

PF
Ψ−−−−→ Ψ(PF)yΦ

Φ(PF)
Ψ−−−−→ Ψ(Φ(PF))

.

Let us say cΨi = cb and cΨj = cb then, using the symbol “ind” to denote an index, we will, simply write
“indΨ(cb) = i” and “indΨΦ(cb) = j”. It will also be convenient to have an alternate notation for the d, d
and r, r values. For instance, if we have i = indΨ(cb), dΨ

i = 3 and rΨ
i = 5, we will simply express this

by writing dΨ(cb) = 3 and rΨ(cb) = 5. On the other hand if j = indΨΦ(cb), d
Ψ

j = 3 and rΨ
j = 5 we

will write d
Ψ

(cb) = 3 and rΨ(cb) = 5. The entries of PF and Φ(PF) will be handled in an analogous
manner. Thus if ci = cb and di = 4 we may also write ind(cb) = i and d(cb) = 4. Similarly if ci = cb
and di = 4 we may write indΦ(cb) = i and d(cb) = 4 etc. Finally, it will also be convenient to write
c1 → c2 to state that car c1 is to the left of car c2 in a given expression. Using this notation, we can give
an overview of the path we follow to establish that our ndinv and the ndinv of Duane, Garsia and Zabrocki
satisfy the same recursion. To be precise, our proof is based on the following facts:

Theorem 4.1. With Ψ(PF) and Ψ(Φ(PF)) as defined above, we have for any cars c, c1, c2:

• Fact (1) If f1 < indΨ(c1), indΨ(c2), then c1 → c2 in Ψ(PF) if and only if c1 → c2 in Ψ(Φ(PF)).

• Fact (2) If 1 < indΨ(c1), indΨ(c2) ≤ f1, then c1 → c2 in Ψ(PF) if and only if c1 → c2 in
Ψ(Φ(PF)).

• Fact (3) If 1 < indΨ(c1) ≤ f1 < indΨ(c2), then indΨΦ(c1) > indΨΦ(c2).

• Fact (4) For indΨ(c) > f1 we have d
Ψ

(c) = dΨ(c) and rΨ(c) = rΨ(c).

• Fact (5) For 1 < indΨ(c) < f1 we have d
Ψ

(c) = dΨ(c)−1 if c is a big car and rΨ(c) = rΨ(c)−1,
whether c is big or small.

An explicit ndinv for two-shuffle parking functions 155

It may be good before closing to show how these facts give all that is needed to establish our desired
goal.

Recall that, in the present notation, by definition, a big car cb and a small car cs form a diagonal
inversion in Ψ(PF) if either cb → cs and dΨ(cb) ≤ rΨ(cs) < rΨ(cb) or cs → cb and dΨ(cb) <
rΨ(cs) ≤ rΨ(cb).

Theorem 4.2. In Ψ(PF), if the first car is small, then it forms a diagonal inversion with a big car cb
only when the big car is on the main diagonal. (dΨ(cb) = 0.) If the first car is big, it forms no diagonal
inversions.
Proof: By definition rΨ

1 = 1. We look at the two cases separately.

• (cΨ1 = cs ≤ m.) Then we want all big cars (cb) such that dΨ(cb) < 1 ≤ rΨ(cb). Those are exactly
the big cars on the main diagonal.

• (cΨ1 = cb > m.) Then we want all small cars (cs) such that dΨ(cb) ≤ rΨ(cs) < 1. Since
rΨ(cs) ≥ 1, there are no such cars.

Keeping this in mind let us see how these diagonal inversions change after we apply Φ.

Theorem 4.3. For indΨ(cs) > 1 and indΨ(cb) > 1, a small car cs and a big car cb form a diagonal
inversion in Ψ(PF) if and only if they form a diagonal inversion in Ψ(Φ(PF)).

Proof: We split the argument into cases:

• (indΨ(cs), indΨ(cb) > f1.) Fact (1) and Fact (4) make this case trivial.

• (1 < indΨ(cs), indΨ(cb) ≤ f1.) Fact (2) gives cb → cs or cs → cb in both Ψ(PF), Ψ(Φ(PF))

and Fact (5) gives that d
Ψ

(cb) ≤ rΨ(cs) < rΨ(cb) is dΨ(cb)− 1 ≤ rΨ(cs)− 1 < rΨ(cb)− 1 in the
first case and d

Ψ
(cb) < rΨ(cs) ≤ rΨ(cb) is dΨ(cb)− 1 < rΨ(cs)− 1 ≤ rΨ(cb)− 1 in the second

case.

• (1 < indΨ(cs) ≤ f1 < indΨ(cb).) Then cs → cb in Ψ(PF) but Fact (3) gives cb → cs in
Ψ(Φ(PF)). Nevertheless, Facts (4) and (5) convert dΨ(cb) < rΨ(cs) ≤ rΨ(cb), or better dΨ(cb) ≤
rΨ(cs)− 1 < rΨ(cb) into d

Ψ
(cb) ≤ rΨ(cs) < rΨ(cb) as desired.

• (1 < indΨ(cb) ≤ f1 < indΨ(cs).) Then cb → cs in Ψ(PF) but Fact (3) gives cs → cb in
Ψ(Φ(PF)). Nevertheless, again Facts (4) and (5) convert dΨ(cb) ≤ rΨ(cs) < rΨ(cb), or better
dΨ(cb)− 1 < rΨ(cs) ≤ rΨ(cb)− 1 into d

Ψ
(cb) < rΨ(cs) ≤ rΨ(cb) as desired.

As we can clearly

see, Theorem 4.2 accounts for the second term in the second case of (5) and Theorem 4.3 accounts for the
first term second case of (5), when we replace ndinv(PF) by the expression in (6). Since our ndinv and
the ndinv of Duane, Garsia and Zabrocki are equal in the base case, Theorem 4.1 is all that is needed to
show that these two ndinvs satisfy the same recursion and that, consequently, they must be identical.

156 Angela Hicks and Yeonkyung Kim

5 Conclusion.
We have seen that Theorems 4.1, 4.2 and 4.3 prove that our ndinv satisfies the Recursion 3.1. In particular,
this combinatorial result combined with the the symmetric function results of Duane, Garsia and Zabrocki
in [Duane et al.(2012)]. proves that

Theorem 5.1. With the ndinv defined in (6) and (p1, p2, . . . pk) ` n for any integer m ≥ 0 we have

〈∆hm
Cp1

. . . Cpk1, en〉 =
∑

PF an m,n two-shuffle parking function
comp(PF) = (p1, · · · , pk)

tarea(PF)qndinv(PF).

It would be interesting to consider if the ndinv statistic could be extended to give a statistic on all
parking functions.

We end now with the proof of a prior statement about the sequence rΨ
i .

Theorem 5.2. For each car c, r̄Ψ(c) gives the number of the round in which car c is removed when we
apply Procedure 3.1 repeatedly.

Proof: Suppose r̄Ψ(c) = 1 for some car c. This happens if and only if for the car c′b preceding c is a big
car and d(c′b) = 0, in other words c′b is a big car on the main diagonal of PF . This is true exactly when c
is the first car in some part of PF and will be removed in the first round. Moreover, by Fact (5), the rΨ

j

value of any car will decreased by 1 in any round where it is not removed. This completes the proof by
induction.

References
[Duane et al.(2012)] A. Duane, A. M. Garsia, and M. Zabrocki. A new ‘dinv’ arising from the two part case

of the Shuffle Conjecture. ArXiv e-prints., May 2012. URL http://adsabs.harvard.edu/abs/
2012arXiv1205.6128D.

[Garsia and Haglund(2002)] A. M. Garsia and J. Haglund. A proof of the q, t-Catalan positivity conjecture. Discrete
Math., 256(3):677–717, 2002. ISSN 0012-365X. doi: 10.1016/S0012-365X(02)00343-6. URL http://dx.
doi.org/10.1016/S0012-365X(02)00343-6. LaCIM 2000 Conference on Combinatorics, Computer
Science and Applications (Montreal, QC).

[Garsia and Haiman(1996)] A. M. Garsia and M. Haiman. Some natural bigraded Sn-modules and q, t-Kostka
coefficients. Electron. J. Combin., 3(2):Research Paper 24, approx. 60 pp. (electronic), 1996. ISSN 1077-
8926. URL http://www.combinatorics.org/Volume_3/Abstracts/v3i2r24.html. The
Foata Festschrift.

[Haglund(2004)] J. Haglund. A proof of the q, t-Schröder conjecture. Int. Math. Res. Not., (11):525–560,
2004. ISSN 1073-7928. doi: 10.1155/S1073792804132509. URL http://dx.doi.org/10.1155/
S1073792804132509.

[Haglund et al.(2005)] J. Haglund, M. Haiman, N. Loehr, J. B. Remmel, and A. Ulyanov. A combinatorial formula
for the character of the diagonal coinvariants. Duke Math. J., 126(2):195–232, 2005. ISSN 0012-7094. doi: 10.
1215/S0012-7094-04-12621-1. URL http://dx.doi.org/10.1215/S0012-7094-04-12621-1.

[Haglund et al.(2011)] J. Haglund, J. Morse, and M. Zabrocki. A compositional shuffle conjecture specifying touch
points of the dyck path. Canadian Journal of Mathematics, 2011. (to appear), (arXiv:1008:0828).

http://adsabs.harvard.edu/abs/2012arXiv1205.6128D
http://adsabs.harvard.edu/abs/2012arXiv1205.6128D
http://dx.doi.org/10.1016/S0012-365X(02)00343-6
http://dx.doi.org/10.1016/S0012-365X(02)00343-6
http://www.combinatorics.org/Volume_3/Abstracts/v3i2r24.html
http://dx.doi.org/10.1155/S1073792804132509
http://dx.doi.org/10.1155/S1073792804132509
http://dx.doi.org/10.1215/S0012-7094-04-12621-1

	Introduction
	Parking Functions
	Some auxiliary facts and conjectures.

	 An explicit formula for ndinv.
	A recursion satisfied by ndinv.
	Our ndinv and Recursion 3.1.
	Conclusion.

