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A new edge selection heuristic for computing
the Tutte polynomial of an undirected graph.

Michael Monagan1†

1Department of Mathematics, Simon Fraser University, Burnaby, B.C., V5A 1S6, CANADA.

Abstract. We present a new edge selection heuristic and vertex ordering heuristic that together enable one to compute
the Tutte polynomial of much larger sparse graphs than was previously doable. As a specific example, we are able
to compute the Tutte polynomial of the truncated icosahedron graph using our Maple implementation in under 4
minutes on a single CPU. This compares with a recent result of Haggard, Pearce and Royle whose special purpose
C++ software took one week on 150 computers.

Résumé. Nous présentons deux nouvelles heuristiques pour le calcul du polynôme de Tutte de graphes de faible
densité, basées sur les principes de sélection d’arêtes et d’arrangement linéaire de sommets, et qui permettent de traiter
des graphes de bien plus grande tailles que les méthodes existantes. Par exemple, en utilisant notre implémentation en
Maple, nous pouvons calculer le polynôme de Tutte de l’isocahédron tronqué en moins de 4 minutes sur un ordinateur
à processeur unique, alors qu’un programme ad-hoc récent de Haggard, Pearce et Royle, utilisant 150 ordinateurs, a
nécessité une semaine de calcul pour obtenir le même résultat.

Keywords: Tutte polynomials, edge deletion and contraction algorithms, NP-hard problems.

1 Introduction
Let G be an undirected graph. The Tutte polynomial of G is a bivariate polynomial T (G, x, y) which
contains information about how G is connected. We recall Tutte’s original definition for T (G, x, y). Let
e = (u, v) be an edge in G. Let G − e denote the graph obtained by deleting e and let G/e denote the
graph obtained by contracting e, that is, first deleting e then joining vertexes u and v. Figure 1 shows an
example of edge deletion and contraction.
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Fig. 1: Graph edge deletion and contraction.
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Definition 1 Let G be a connected undirected graph. The Tutte polynomial T (G, x, y) is the bivariate
polynomial defined by

T (G) =


1 if |E| = 0,
xT (G/e) if e is a cut-edge in G,
y T (G− e) if e is a loop in G
T (G− e) + T (G/e) if the edge e is neither a loop nor a cut-edge in G.

(1)

This definition immediately gives a recursive algorithm for computing T (G, x, y). In general, a naive
implementation of the algorithm will make an exponential number of recursive calls because of the last
case in (1). If G has n vertexes and m edges, the number of recursive calls C(n+m) is bounded by

C(n+m) ≤ C(n+m− 1) + C(n− 1 +m− 1).

This is the Fibonacci recurrence. Hence C(n + m) ∈ O(1.618n+m). If G is not biconnected one can
apply the following theorem to reduce C(n+m).

Theorem 1 (Tutte [10]) Let G be a graph with m biconnected components (blocks) B1, B2, . . . , Bm.
Then T (G, x, y) = Πm

i=1T (Bi, x, y).

Another way to reduce C(n+m) is to “remember” the Tutte polynomials computed in the computation
tree and use a graph isomorphism test to test whether a graph in the computation tree has been seen before.
In [6], Haggard, Pearce and Royle present timings for random cubic and quartic graphs, complete graphs,
and random graphs with varying edge densities 0 < p < 1 that shows that employing graph isomorphism
is very effective. For example, it roughly increases by 50% the size of random cubic graphs that can
be handled in a given time. A factor determining the effectiveness of the isomorphism test is the order
in which the edges are selected. In [9], Haggard, Pearce and Royle investigate various edge ordering
heuristics. Two heuristics, which they call MINDEG and VORDER, are found to perform consistently
better than random selection.

Our paper is organized as follows. In section 2 we describe the MINDEG and VORDER heuristics
and present a new edge selection heuristic. The VORDER heuristic, and our new heuristic, also depend
on the ordering of the vertexes in G. We present an ordering that we have found works particularly well
with our edge selection heuristic. In section 3 we describe our Maple implementation and explain how
we test for isomorphic graphs in the computation tree. In section 4 we present benchmarks comparing
the three heuristics with and without the new vertex ordering and with and without an explicit graph
isomorphism test. The data presented shows that our new heuristic again, roughly increases by 50% the
size of sparse cubic graphs that can be handled in a given time. An experimental finding in this paper
is that our new edge selection heuristic, when combined with our vertex ordering, does not require an
explicit isomorphism test; a simple test for identical graphs is sufficient.

We end the introduction with some further information about available software for computing Tutte
polynomials and related polynomials. Useful references include the very good Wikipedia webpage
http://en.wikipedia.org/wiki/Tutte polynomial and Bollobás’ text [1]. The graph theory packages in Math-
ematica and Maple include commands for computing Tutte polynomials. The Mathematica algorithm
does not look for identical or isomorphic graphs in the computation tree (see [6]). The TuttePolynomial
command in Maple 11 and more recent versions (see [4]) uses the VORDER heuristic and hashing to
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test for identical graphs in the computation tree. The fastest available software for computing Tutte poly-
nomials and related polynomials is that of Haggard, Pearce and Royle [9, 6]. It is available on David
Pearce’s website at http://homepages.ecs.vuw.ac.nz/˜djp/tutte/. It uses the canonical
graph ordering available in Brendan Mckay’s nauty package (see [7]) to identify isomorphic graphs.

We recall the definition for the reliability polynomial and chromatic polynomial.

Definition 2 Let G be an undirected graph. The reliability polynomial of G, denoted Rp(G), is the prob-
ability that G remains connected when each edge in G fails with probability p. The chromatic polynomial
of G, denoted Pλ(G), counts the number of ways the vertexes of G can be colored with λ colors.

For example, Rp( s s ) = 1−p and Pλ( s s ) = λ(λ−1). The reliability and chromatic polyno-
mials can also be computed by the edge deletion and contraction algorithm (see [5]). If G has n vertexes
and m edges, they are related to the Tutte polynomial as follows:

Rp(G) = (1− p)(n−1) p(m−n+1) T (G, 1, p−1), (2)

Pλ(G) = (−1)(n−1) λ T (G, 1− λ, 0). (3)

Since graph coloring is NP−complete, it follows that computing the the chromatic polynomial is NP−hard.
Thus (3) implies computing the Tutte polynomial is also NP−hard. It is also known that computingRp(G)
is NP-hard (see [8]). This does not mean, however, that computing the Tutte polynomial for a given graph
is not polynomial time. Our new edge selection heuristic is polynomial time for some structured sparse
graphs.

2 Edge selection heuristics.
In applying the identity T (G) = T (G − e) + T (G/e) we are free to choose any edge which is neither
a cut-edge nor a loop. [If G has a cut-edge or loop, then those edges should be processed first.] In [9],
Haggard, Pearce and Royle propose two heuristics, the minimum degree heuristic (MINDEG) and the
vertex order heuristic (VORDER). We describe the heuristics here and introduce our new heuristic which
is a variation on VORDER.

2.1 The minimum degree heuristic: MINDEG
Consider the graph G in Figure 2.
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Fig. 2: The minimum degree heuristic.
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The minimum degree heuristic picks the edge e = (u, v) where u is the first vertex of minimum degree
(u = 2 in the example) and v is the first vertex adjacent to u of minimum degree (v = 5 in the example).
Hence e = (2, 5) is chosen. Shown in the figure are the graphs G − e and G/e. The reader can see that
the next edge that will be selected in G − e is the edge (2, 4), which is a cut-edge. The algorithm will
then contract the edge (2, 4), then select the edge (1, 5), another cut-edge. After contracting (1, 5) what
is left is the triangle on vertexes 1, 3, 4. For the graph G/e, the MINDEG heuristic selects the edge (2,1).
After deleting (2,1), MINDEG will select and contract the edge (2,4) again yielding the triangle 1, 3, 4.
This example shows how identical graphs in the computation tree arise.

2.2 The vertex order heuristic: VORDER
Consider again the graph G shown in the Figure 3.
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Fig. 3: The VORDER-pull heuristic.

The vertex order heuristic picks the edge e = (u, v) where u is simply the first vertex in the G and v is
the first vertex adjacent to u. In our example u = 1, v = 3, hence e = (1, 3) is chosen. Shown in Figure 3
are the graphs G− e and G/e where when we contracted the edge e = (1, 3) we “pulled” vertex 3 down
to vertex 1. The next edge selected in G/e will be one of the edges (1,4).

There is alternative choice here when constructing the graph G/e. Instead of “pulling” vertex v = 3
down to u = 1, if instead we “push” vertex u = 1 up to v = 3 we get the contracted graph shown in Figure
4. Observe that the two contracted graphs G/e in figures 3 and 4 are isomorphic. However, in the vertex
order heuristic, the next edge selected in G/e is different. In figure 3 the vertex order heuristic selects
edge (1,4). In figure 4 it selects edge (2,4). We will call the two vertex order heuristics VORDER-pull
and VORDER-push, respectively.
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Fig. 4: The VORDER-push heuristic.

To visualize the difference between VORDER-pull and VORDER-push, picture the computation tree
of graphs produced by the algorithm as it applies the identity

T (G) = T (G− e) + T (G/e).
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On the left of the computation tree we repeatedly delete edges. On the right of the tree we repeatedly
contract edges. The two vertex order heuristics differ when we contract. In the VORDER-pull heuristic,
we always select the same first vertex and contract (pull) other vertexes to it thus typically increasing the
degree of the first vertex. In the VORDER-push heuristic, we select the first vertex and push it away (into
the middle of the graph) and move on to the next vertex in the ordering. Thus one measurable difference
between VORDER-pull and VORDER-push is that the degree of the vertex u selected will generally be
greater in VORDER-pull than in VORDER-push. We will measure this explicitly in our benchmarks.

2.3 The vertex label ordering
The VORDER-pull and VORDER-push heuristics, and also to a lesser extent, the MINDEG heuristic,
also depend on the input permutation of the labels of the vertexes in G. All three heuristics are sensitive
to this ordering with a random ordering producing a bad behavior. In [9], Haggard, Pearce and Royle state
“using an ordering where vertexes with higher degree come lower in the ordering generally also gives
better performance”. Their idea is to increase the probability that more identical graphs appear higher in
the computation tree. To achieve this we propose to label the vertexes in the input graph in an order so that
the algorithm deletes and contracts edges locally. We found that the following vertex ordering heuristic
works best amongst the orderings we tried. To simplify the presentation we assume G is connected. We
describe it below with pseudo-code and an example.

Algorithm SHARC - short arc order.
Input: An undirected connected graph G on n > 0 vertexes V = {1, 2, ..., n}.

1 Initialize the ordered list S = [1]

2 while |S| < n do the following

Using breadth first search (BFS), starting from the vertexes in S find the first path
from S back to S which includes at least one new vertex, that is, find a path u →
v1 → v2 → ...→ vm → w where u ∈ S, w ∈ S, m > 0, vi ∈ V \S.
If such a path exists, append v1, v2, ..., vm to S. Otherwise (Gmay have a cutedge)
pick the least vertex v1 not in S but adjacent to a vertex in S and append v1 to S.

end while
3 output S.

We explain the algorithm with an example. Consider again the graph G below.
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Initially we have S = [1]. Using BFS we insert all vertexes adjacent to the vertexes in S not already in S
into a queue Q. In the example, we obtain Q = [3, 4, 5]. Hence we have paths 1 → 3, 1 → 4 and 1 → 5
which we maintain in an array P = [0, 0, 1, 1, 1], that is P3 = 1 stores the edge from 3 to 1 and P1 = 0
indicates the end of a path. We take the first vertex 3 from Q and consider the new edge (3, 4). Since P4

is not zero we know there is a path from 1 back to 4 stored in P . Since 3 came from Q we know there is
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a path from 1 to 3 stored in P . Thus we are done this iteration; we extract the path 1→ 3→ 4→ 1 from
P and append 3, 4 to S obtaining S = [1, 3, 4]. In the second iteration the algorithm will find the path
1→ 5→ 2→ 4 and set S = [1, 3, 4, 5, 2]. Since |S| = 5 the algorithm stops. The reader can see that the
algorithm finds a short cycle in the first iteration, then in the subsequent iterations, finds short arcs from S
back to S. We will call this ordering a short arc ordering (SHARC). By picking the first path found using
BFS, the short arc ordering maintains locality in S. Although it would be simpler to order the vertexes in
simple breadth first search order, that ordering did not prove to be as good as SHARC in our experiments.

3 Maple Implementation
We use a list of neighbors representation for a multi-graph in our Maple implementation. We illustrate
with an example in Figure 5.

t1 t2 t3 t4 [[2], [1,3,3], [2,2,4], [3]]

Fig. 5: Maple list of lists data structure for G

To identify identical graphs in the computation tree we make use of option remember. This is a
feature of the Maple programming language that enables our Maple procedure to automatically identify
identical graphs in the computation tree using hashing. For this to work we must canonically re-label
vertexes to be 1, 2, ..., n− 1 after edge contraction.

To identify non-equal isomorphic graphs we have implemented our own graph isomorphism test for
multi-graphs as the IsIsomorphic command in Maple’s GraphTheory package (see [4]) treats sim-
ple graphs only. Instead of searching all previous graphs, we first hash on the characteristic polynomial
of the Laplacian matrix of G, a known graph invariant. The Laplacian matrix is an n by n matrix D − A
where D is the degree matrix of G and A is the adjacency matrix of G. For increased efficiency, we
compute the characteristic polynomial of D − A modulo a machine prime p. This can be computed in
O(n3) arithmetic operations in Fp. See Algorithm 2.2.9 in Chapter 2 of [2].

Our Maple code may be downloaded from http://www.cecm.sfu.ca/˜mmonagan/tutte

4 Experiments
4.1 Random cubic graphs
In this experiment we generated ten random connected cubic graphs on n vertexes for 16 ≤ n ≤ 50. Note,
the probability that these graphs are biconnected is high so Theorem 1 is not applicable. Indeed all the
graphs generated are biconnected. We computed the average and median time it takes our Maple program
to compute the Tutte polynomial using the MINDEG, VORDER-pull and VORDER-push heuristics, on
a 2.66 Ghz Intel Core i7 980 desktop with 6 GB RAM. We do this for two permutations of the vertex
labels, random (see Table 1) and SHARC (the short arc ordering) (see Table 2). In all cases, we do not
use an explicit graph isomorphism test; rather, we use Maple’s option remember; facility so that
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Tutte polynomials for identical graphs that appear in the computation tree are not recomputed. The data
shows the SHARC ordering is much better than the input random ordering for both VORDER-pull and
VORDER-push. The data also shows that VORDER-push with SHARC is much better than VORDER-
pull with SHARC. We find similar results for random quartic graphs.

MINDEG heuristic VORDER pull VORDER push
n m ave med ave med ave med
16 24 0.41 0.36 0.18 0.11 0.22 0.14
18 27 1.21 1.02 0.53 0.33 0.57 0.45
20 30 3.90 3.38 1.27 1.02 1.86 1.46
22 33 14.40 12.07 4.65 3.36 7.22 6.88
24 36 56.24 32.19 13.84 9.23 25.05 22.46
26 39 193.34 118.98 41.03 20.07 58.94 24.57
28 39 199.70 116.32 210.69 75.24

Tab. 1: Timings in CPU seconds for random cubic graphs with n vertices using random vertex order.

MINDEG heuristic VORDER pull VORDER push
n m ave med ave med ave med
18 27 0.68 0.51 0.05 0.03 0.02 0.02
22 33 7.73 4.68 0.38 0.14 0.10 0.07
26 39 80.11 38.45 1.24 0.41 0.17 0.12
30 45 11.10 4.36 0.67 0.37
34 51 94.58 19.15 2.06 1.29
38 57 5.40 2.83
42 63 40.66 8.82
46 69 87.63 49.03
50 75 179.64 39.61

Tab. 2: Timings in CPU seconds for random cubic graphs with n vertices using SHARC vertex order.

4.2 Generalized Petersen graphs.
The generalized Petersen graph P (n, k) with 1 ≤ k < n/2 is a cubic graph on 2n vertexes. Figure 6
shows P (5, 1) and P (5, 2). P (5, 2) is the familiar Petersen graph. To construct P (n, k) the vertexes
are divided into two sets 1, 2, ..., n and n + 1, n + 2, ..., 2n, which are placed on two concentric circles
as shown in figure 6. The first set of vertexes are connected in a cycle 1, 2, ..., n, 1. The second set are
connected to the first with vertex i connected to n+ i for 1 ≤ i ≤ n. The second parameter governs how
the second set is connected. Connect n+ i to n+ (n+ i± k mod n) for 1 ≤ i ≤ n.

The SHARC vertex order for P (5, 1) and P (5, 2) is [1,2,7,6,10,5,4,3,8,9] and [1,5,4,3,2,8,6,9,10,7]
respectively. In Tables 3 and 4 we compare the time it takes to compute the Tutte polynomials of P (n, 3)
for increasing n using the VORDER-pull (Table 3 and VORDER-push (Table 4). For the first set of
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Fig. 6: Petersen graphs P (5, 1) and P (5, 2).

timings in each table we apply a full graph isomorphism test for |V | > 15. For the second set of timings
we identify identical graphs only in the computation tree only. Column #calls is the total number of
recursive calls made by the algorithm. Column #ident counts the number of recursive calls for which
the graph is identical to a graph previously computed in the computation tree. Column #isom counts
the number of recursive calls for which the graph is not identical but isomorphic to a graph previously
computed in the computation tree.

VORDER-pull with isomorphism test no isomorphism test
n |V | m #calls #ident #isom time #calls #ident time
8 16 24 28641 10419 0 1.21 28641 10419 1.19
9 18 27 30235 9818 3 1.40 32693 10681 1.41
10 20 30 90772 31049 22 4.53 240600 85017 12.16
11 22 33 434402 149286 244 26.63 736447 259390 44.82
12 24 36 471530 152284 978 34.72 1217966 406976 87.89
13 26 39 1668636 552034 7072 177.33 5905078 2049833 730.16
14 28 42 4035615 1346519 45340 798.37 17437880 6062683 2805.78
15 30 45 6330229 2016961 149699 2149.02

Tab. 3: Data for P (n, 3) for VORDER-pull with the SHARC ordering.

In comparing the data forP (n, 3), it’s clear that VORDER-push (Table 4) is much better than VORDER-
pull (Table 3). In fact, VORDER-push is polynomial time in n. The reader can see that the number of
graphs (column #calls) is increasing linearly with n. We find the same linear increase for VORDER-push
for P (n, 1), P (n, 2), P (n, 3) and P (n, 4). For P (n, 5) and P (n, 6) the data is not clear.

The data for P (n, 3) also shows that a high percentage of isomorphic graphs in the computation tree
are identical (compare columns #ident and #isom). The data shows that the explicit graph isomorphism
test helps VORDER-pull (Table 3) but hurts the performance of VORDER-push (Table 4).

In Table 5 we show data for P (n, 6). The irregularity of the data in Table 5 is partly explained by low
girth. In particular, P (18, 6) has 6 triangles. The girth of P (n, k) is a minimum when k divides n where
the girth is n/k. In Table 6 we fix n to be 14 and vary k to show the dependence on the girth.

4.3 The truncated icosahedron graph.
The Tutte polynomial of a planar graphG and its dualG∗ are related by T (G, x, y) = T (G∗, y, x). Shown
in Figure 7 is the truncated icosahedron graph TI and its dual TI∗.
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VORDER-push with isomorphism test no isomorphism test
n |V | m #calls #ident #isom time #calls #ident time
8 16 24 2776 703 0 0.10 2776 703 0.09
10 20 30 4680 1119 6 0.31 6490 1634 0.23
12 24 36 7449 1828 16 0.79 9552 2487 0.40
14 28 42 40142 10639 192 7.66 46924 12962 2.34
16 32 48 62306 16316 691 26.04 77896 22103 4.41
18 36 54 88244 23154 1299 55.82 112280 32545 7.30
20 40 60 115682 30503 1996 105.72 148412 43676 11.30
22 44 66 143035 37734 2754 181.40 184852 54925 15.68
24 48 72 170917 45204 3501 289.46 221107 66114 21.70
26 52 78 198675 52641 4278 445.24 257671 77437 29.50
28 56 84 226615 60085 5071 674.25 294126 88700 39.07
30 60 90 254629 67585 5855 975.65 330379 99888 50.28

Tab. 4: Data for P (n, 3) for VORDER-push with the SHARC ordering.

VORDER-pull VORDER-push
k girth time(s) #calls #ident time(s) #calls #ident
13 5 85.55 875232 270060 0.30 6884 1715
14 6 1262.37 5524084 1807371 4.16 85103 23822
15 5 6.62 124203 35033
16 7 43.69 606569 177341
17 6 23.35 384107 112730
18 3 3.98 65379 16181
19 6 24.55 315584 87375
20 7 482.93 3647975 1081545

Tab. 5: Data for P (n, 6) for VORDER-pull and VORDER-push.

In [6], Haggard, Pearce and Royle report that they computed the Tutte polynomial for TI∗ in one week
on 150 computers. They used the VORDER-pull heuristic. Using the VORDER-push heuristic, and the
vertex ordering as shown in the figure 7, we computed the Tutte polynomial for TI on a single core of a
2.66 Ghz Intel Core i7 desktop in under 4 minutes and 2.8 gigabytes, and for TI∗ in under 9 minutes and
8.8 gigabytes. Notice that the vertexes of TI (and also TI∗) are numbered in concentric cycles. This was
the ordering that we input the graph from a picture. Notice that the vertex ordering is a short arc ordering.
This is why we tried the short arc ordering on other graphs.

4.4 Dense graphs.
Up to this point, the data shows that VORDER-push is much better than VORDER-pull. This, however,
is not the case for dense graphs. In Table 7 we give data for the complete graphs Kn on n vertexes.
VORDER-pull is clearly better than VORDER-push.
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VORDER-pull VORDER-push
k girth time(s) #calls deg time(s) #calls deg
1 4 6.12 54040 6.48 0.16 693 2.10
2 5 209.33 1362412 5.19 0.65 4727 2.30
3 6 806.92 4035615 4.32 3.82 40142 2.47
4 7 2273.75 8430139 4.61 7.71 88579 2.49
5 6 1218.51 6208087 4.49 5.62 71717 2.50
6 6 979.73 5524084 4.44 6.43 71054 2.47

Tab. 6: Data for P (14, k). Column deg shows the average degree of the first vertex in the computation tree.

Fig. 7: The truncated icosahedron graph and its dual.

4.5 Monitoring execution for large graphs.
For large graphs, the user of software for computing Tutte polynomials will need some way to know how
far a large computation has progressed and how much memory has been consumed so that the user can
stop the computation when it becomes obvious that it not going to terminate in a reasonable time. When
the Tutte polynomial for a graph G of size n vertexes in the computation tree is computed for the first
time, we display the additional time it took to compute T (G) since the time it took to compute the Tutte
polynomial for a graph of size n− 1 for the first time, and the total space used after T (G) is computed. In
Table 8 and Table 9 we show the output of VORDER-push (VORDER-pull respectively) for the truncated
icosahedron TI (for n > 20). The reader can see that VORDER-pull will take a very long time.
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VORDER-pull VORDER-push
n m time(s) #calls #ident deg time #calls #ident deg
10 45 0.08 2519 1002 7.40 0.24 7448 2826 4.84
11 55 0.18 5075 2024 8.27 0.64 17178 6667 5.25
12 66 0.46 10191 4070 9.12 1.72 38940 15372 5.70
13 78 1.07 20427 8164 10.02 4.57 87070 34829 6.10
14 91 2.43 40903 16354 10.90 12.64 192544 77838 6.54
15 105 6.10 81859 32736 11.81 39.00 421922 172047 6.95
16 120 16.36 163775 65502 12.71 113.42 917540 376848 7.37
17 136 46.25 327611 131036 13.64 273.40 1982502 819217 7.78
18 153 113.39 655287 262106 14.54

Tab. 7: Data for Kn for VORDER-pull and VORDER-push

n time(s) space n time space n time space n time(s) space
21 0.06 0.067gb 31 0.84 0.100gb 41 4.60 0.258gb 51 25.32 1.167gb
22 0.09 0.090gb 32 0.00 0.100gb 42 5.61 0.340gb 52 22.60 1.443gb
23 0.17 0.095gb 33 1.32 0.120gb 43 0.00 0.340gb 53 0.01 1.443gb
24 0.00 0.095gb 34 0.00 0.120gb 44 1.36 0.360gb 54 0.20 1.451gb
25 0.10 0.095gb 35 0.18 0.120gb 45 5.52 0.443gb 55 25.12 1.786gb
26 0.00 0.095gb 36 0.00 0.120gb 46 10.98 0.619gb 56 12.77 1.950gb
27 0.34 0.095gb 37 1.93 0.150gb 47 0.00 0.619gb 57 0.00 1.950gb
28 0.00 0.095gb 38 0.00 0.150gb 48 12.69 0.757gb 58 6.82 2.058gb
29 0.55 0.095gb 39 3.15 0.193gb 49 10.52 0.880gb 59 43.38 2.679gb
30 0.00 0.095gb 40 0.00 0.193gb 50 0.01 0.880gb 60 8.13 2.761gb

Tab. 8: Trace of time and space for the truncated icosahedron using VORDER-push. Total time 204.58 seconds.

5 Conclusion
We have presented a new edge selection heuristic that we call VORDER-push for computing the Tutte
polynomial of a graph using the edge deletion and contraction algorithm. We find that for sparse graphs,
VORDER-push outperforms VORDER-pull and the other heuristics considered by Haggard, Pearce and
Royle in [9] by several orders of magnitude and which significantly increases the range of graphs that can
be computed for what is an NP-hard problem. For some graphs, including grid graphs and the Petersen
graphs P (n, k) for 1 ≤ k ≤ 4, our new heuristic automatically finds polynomial time constructions for
the Tutte polynomial. At this point we only have a partial understanding of why and when VORDER-push
is so effective. Graphs with large girth appear to be more difficult.

We are integrating our new heuristic into the TuttePolynomial command in Maple’s GraphThe-
ory package. This should become available in Maple 17. The overall improvement is huge. For example,
for the dodecahedron graph, a cubic graph with 20 vertices and 30 edges, the time to compute the Tutte
polynomial improves from 162.093 seconds in Maple 16 to 0.219 seconds. The GraphTheory package
[4, 3] has been under development since 2004. We have also installed a command for computing the
reliablity polynomial Rp(G) in the package. Our improvement for computing T (G, x, y) will automat-
ically improve Maple’s performance for computing the chromatic polynomial Pλ(G) and other related
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n time(s) space n time space n time space n time(s) space
21 0.08s 0.085gb 27 1.04s 0.099gb 33 7.44s 0.241gb 39 205.00s 1.532gb
22 0.00s 0.085gb 28 0.00s 0.099gb 34 0.00s 0.241gb 40 0.10s 1.532gb
23 0.36s 0.095gb 29 1.88s 0.115gb 35 14.77s 0.340gb 41 399.84s 3.115gb
24 0.00s 0.095gb 30 0.00s 0.115gb 36 0.20s 0.341gb 42 0.01s 3.115gb
25 0.73s 0.095gb 31 5.22s 0.160gb 37 0.00s 0.341gb 43 758.37s 6.205gb
26 0.00s 0.095gb 32 0.00s 0.160gb 38 59.27s 0.661gb 44 >1500s >14gb

Tab. 9: Trace of time (in seconds) and space for the truncated icosahedron using VORDER-pull.

polynomials.
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