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Asymptotical behaviour of roots of infinite Coxeter groups I
(extended abstract)

Christophe Hohlweg1† Jean-Philippe Labbé2‡ Vivien Ripoll1§

1Laboratoire de Combinatoire et d’Informatique Mathématique, Université du Québec à Montréal, Canada
2Institut für Mathematik, Freie Universität Berlin, Germany

Abstract. Let W be an infinite Coxeter group, and Φ be the root system constructed from its geometric representation.
We study the set E of limit points of “normalized” roots (representing the directions of the roots). We show that E
is contained in the isotropic cone Q of the bilinear form associated to W , and illustrate this property with numerous
examples and pictures in rank 3 and 4. We also define a natural geometric action of W on E, for which E is stable.
Then we exhibit a countable subset E2 of E, formed by limit points for the dihedral reflection subgroups of W ; we
explain how E2 can be built from the intersection with Q of the lines passing through two roots, and we establish that
E2 is dense in E.

Résumé. Soit W un groupe de Coxeter infini, et Φ le système de racines construit à partir de sa représentation
géométrique. Nous étudions l’ensemble E des points d’accumulation des racines “normalisées” (représentant les
directions des racines). Nous montrons que E est inclus dans le cône isotrope Q de la forme bilinéaire associée à W ,
et nous illustrons cette propriété à l’aide de nombreux exemples et images en rang 3 et 4. Nous définissons une action
géométrique naturelle de W sur E, pour laquelle E est stable. Puis nous présentons un sous-ensemble dénombrable
E2 de E, constitué des points d’accumulation associés aux sous-groupes de réflexion diédraux de W ; nous expliquons
comment E peut être construit à partir des points d’intersection de Q avec les droites passant par deux racines, et nous
montrons que E2 est dense dans E.

Keywords: Coxeter group, root system, limit point, accumulation set.

Introduction
When dealing with Coxeter groups, one of the most powerful tools we have at our disposal is the notion
of root systems. In the case of a finite Coxeter group W—i.e., a finite reflection group—, roots are repre-
sentatives of normal vectors for the euclidean reflections in W . Thinking about finite Coxeter groups and
their associated finite root systems allows the use of arguments from Euclidean geometry and finite group
theory, which makes finite root systems well studied, see for instance [Hum90, Ch.1], and the references
therein.

To deal with infinite Coxeter groups, we usually distinguish two classes: affine reflection groups, and
the other infinite but not affine Coxeter groups. Information about root systems associated to affine Coxeter
groups are also well studied: an affine root system can be realized in an affine Euclidean space as a finite
root system up to translations, see for instance [Hum90, Ch.4]. For the other infinite (non affine) Coxeter
groups, in comparison, very little is known. A first observation is that even the term infinite root system
seems to designate different objects, depending on whether associated to Lie algebras (see [Kac90, LN04]),
Kac-Moody Lie algebras (see [MP89]) or a Coxeter group via its geometric representation (see [Hum90,
Ch.5]). While all definitions of root systems are related to a given bilinear form, the bilinear forms consid-
ered in the case of Kac-Moody algebras or Lie algebras are different from the one in the classical definition
of a root system for infinite Coxeter groups. In particular, this difference lies in the possibility to change the
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value of the bilinear form on a pair of reflections whose product has infinite order. In this vein, D. Krammer
([Kra09], see also [BD10]) described more general geometric representations of a Coxeter group and of
root systems (that we take up in Section 1), which has been followed by several studies about infinite root
systems of Coxeter groups (see for instance [BD10, Dye10, Dye11, Fu11]).

While investigating a conjecture on biclosed sets of positive roots (conjecture 2.5 in [Dye11]), we felt
that the main difficulty to explore this question was that we needed to know more about how the roots
of an infinite root system are geometrically distributed over the space. Using the mathematics software
system Sage, we obtain the following pictures (Figures 1(a) and 1(b)), which suggests that roots have a
very interesting asymptotical behaviour. It is the study of this behaviour we initiate in this article.

α β

γ

ρ̂

sα sβ5

sγ
sα sβ

sδ

4 4

sγ

4

(a) The first 100 normalized positive roots, around the
isotropic cone Q, for the rank 3 Coxeter group with
the depicted graph.

(b) The first 1665 normalized positive roots, around
the isotropic cone Q, for the rank 4 Coxeter group
with the depicted graph.

Figure 1: Root systems for two infinite Coxeter group computed via the computer algebra system Sage.

Let us explain what we see in these pictures. First, we fix a geometric action ofW on a finite dimensional
real vector space V , which implies the data of a symmetric bilinear form B, and a simple system ∆, which
is a basis for V (see Section 1). In Section 2, we first show that the norm of an (injective) sequence of
roots diverges to infinity. So in order to visualize limits of roots, we define V1 to be the affine hyperplane
spanned by the points corresponding to the simple roots: Figures 1(a) and (b) live in V1 and the triangle
(resp. tetrahedron) is the convex hull of the simple roots. The blue dots are the intersection of V1 with the
rays spanned by the roots, and we call them normalized roots.

Our first result (Theorem 2.7) is that the set E of accumulation points of these normalized roots is
contained in the isotropic cone Q = {v ∈ V |B(v, v) = 0} of the quadratic form associated to B (in red in
Figure 1). We have been made aware that M. Dyer discovered independently this property in his research
on the imaginary cone of Coxeter groups, see [Dye] and Remark 2.8. However, we state this result and its
proof in an affine context, which is slightly different from M. Dyer’s framework, and allows us to visualize
pictures until rank 4. Through them, we see new geometric properties emerging; in Sections 2.3 and 3 we
describe two of these properties of E which we feel should motivate further works on the subject:

1. The geometric action of W on V induces an action on E, for which E is stable (Proposition 2.11).
This is an action ofW simply given by the following process: for α ∈ ∆ and x ∈ E, the image sα ·x
of x is the intersection point (other than x, if possible) ofQwith the line passing through the points α
and x.

2. The set E is the closure of the set of accumulation points obtained from the dihedral reflection
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subgroups of W only (Theorem 3.2). In other words, E is the closure of the set of all the points you
obtain by intersecting Q with the lines in V1 passing through two normalized roots.

In a forthcoming article ([DHR]), the first and third authors, together with M. Dyer, will show that E is the
closure of the orbit of a finite set of accumulation points, and will make some connections with the notions
of root posets and of dominance order via M. Dyer’s imaginary cone (cf. [Dye]). In Section 4 we present
possible future works and open problems.

Note that the pictures we obtain could be reminiscent of the framework of quasicrystals constructed from
extensions of noncrystallographic Coxeter groups (see [PT02] for example), but as far as we know there is
no direct link.
Figures. The pictures were realized using the TEX-package TikZ, and computed by dint of the computer
algebra system Sage [S+11].
Note. This article is an extended abstract of the preprint [HLR11].

1 Geometric representations of a Coxeter group
We consider a Coxeter system (W,S). Recall that S ⊆ W is a set of generators for W , subject only to
relations of the form (st)ms,t = 1, where ms,t ∈ N∗ ∪ {∞} is attached to each pair of generators s, t ∈ S,
with ms,s = 1 and ms,t ≥ 2 for s 6= t. We write ms,t = ∞ if the product st has infinite order. In the
following we suppose S finite, and denote by n = |S| the rank of W . The theory of Coxeter groups is
a rich one, and we recall here only what is needed for the purpose of this article. For more details, see
[Hum90, BB05, Kan01, Bou68], and the references therein.

1.1 The classical geometric representation of a Coxeter group
Coxeter groups are modelled to be the abstract combinatorial counterpart of reflection groups, i.e., groups
generated by reflections. It is well known that any finite Coxeter group can be represented geometrically as
a (finite) reflection group. This property still holds for infinite Coxeter groups, for some adapted definition
of reflection that we first recall below. For B a symmetric bilinear form on a real vector space V (of finite
dimension), and α ∈ V such that B(α, α) 6= 0, we denote by sα the following map:

sα(v) = v − 2
B(α, v)

B(α, α)
α, for any v ∈ V. (1)

We denote by Hα := (Rα)⊥ the orthogonal of the line Rα for the form B. Since B(α, α) 6= 0, note that
we have Hα ⊕ Rα = V . It is straightforward to check that sα fixes Hα, that sα(α) = −α, and sα also
preserves the form B, so it lies in the associated orthogonal group OB(V ). We call sα the B-reflection
associated to α (or simply reflection whenever B is clear). When B is a scalar product, this is of course
the usual definition of a reflection.

Let us now recall this classical geometric representation (following [Hum90, §5.3-5.4]). Consider a real
vector space V of dimension n, with basis ∆ = {αs | s ∈ S}. We define a symmetric bilinear form B by:

B(αs, αt) =

{
− cos

(
π

ms,t

)
if ms,t <∞

−1 if ms,t =∞
.

Then any element s of S acts on V as the B-reflection associated to αs (as defined in Equation 1), i.e.,
s(v) = v − 2B(αs, v)αs for v ∈ V . It is known that this induces a faithful action of W on V , which
preserves the form B; thus we denote by the same letter an element of W and its associated element
of OB(V ).

1.2 Root system and reflection subgroups of a Coxeter group
The root system of W is a way to encode the reflections of the Coxeter group, i.e., the conjugates of
elements of S (called simple reflections). The elements of ∆ = {αs | s ∈ S} are called simple roots of W ,
and the root system Φ of W is defined as the orbit of ∆ under the action of W . By construction, any root
ρ ∈ Φ gives rise to the reflection sρ of W , which is conjugate to some sα ∈ S.
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A reflection subgroup of W is a subgroup of W generated by reflections; so it can be built from a subset
of Φ. It turns out that any such reflection subgroup is again a Coxeter group, with some canonical generators
([Dye90, Deo89]). A major drawback of the classical geometric representation we described above is that
it is not “functorial” with respect to the reflection subgroups: it can happen that the representation on some
reflection subgroups W ′ of W , induced by the geometric representation, is not the same as the geometric
representation of W ′ as a Coxeter group. A simple example is given below.

Example 1.1 (Reflection subgroups of rank 2). Consider the Coxeter group of rank 3 with S = {sα, sβ , sγ}
and msα,sβ = 5, msβ ,sγ = msα,sγ = 3 (whose Coxeter diagram is on Figure 1(a)). Take the root
ρ = sαsβ(α) = sβsα(β). We compute ρ = 1+

√
5

2 (α + β). Consider the reflection subgroup W ′ gener-
ated by sγ and sρ. The product sγsρ has infinite order, so W ′ is an infinite dihedral group, with Coxeter
generators sγ and sρ. But, if B denotes the bilinear form associated to the Coxeter group W , we get:
B(γ, ρ) = − 1+

√
5

2 6= −1. So, the restriction to W ′ of the representation of W does not correspond to
the usual geometric representation of W ′ as an infinite dihedral group. In Example 2.4 we will describe a
geometric interpretation of this fact, visible in Figure 1(a).

1.3 Other geometric representations
In order to solve this issue, we can relax the requirements on the bilinear form B used to represent the
group W . Actually, an even more general setting is adapted here: the notion of a based root system (used
for instance in [How96], [Kra09], [BD10, §3]).

Definition 1.2. Let V be a real vector space, equipped with a bilinear form B. Consider a subset ∆ of V
such that:

(i) ∆ is positively independent: if
∑
α∈∆ λαα = 0 with all λα ≥ 0, then all λα = 0;

(ii) for all α, β ∈ ∆, with α 6= β, B(α, β) ∈ ]−∞,−1] ∪ {− cos
(π
k

)
, k ∈ Z≥2};

(iii) for all α ∈ ∆, B(α, α) = 1.

Denote by S := {sα | α ∈ ∆} the set ofB-reflections associated to elements in ∆ (see Equation 1). LetW
be the subgroup of OB(V ) generated by S, and Φ be the orbit of ∆ under the action of W . Then (Φ,∆) is
called a based root system in (V,B) with associated Coxeter system (W,S).

Indeed, with the notations above, (W,S) is a Coxeter system, where the order of sαsβ is k whenever
mα,β = − cos(πk ), and∞ if mα,β ≤ −1.

Other classical properties of root systems hold here. Denote by cone(∆) the convex cone consisting
of all positive linear combinations of elements of ∆. If we define Φ+ := Φ ∩ cone(∆) (called the set of
positive roots), then we have: Φ = Φ+ t (−Φ+).

Note that both loosenings (i) and (ii) of the usual notion of a root system are necessary to get a nice func-
torial behaviour with respect to inclusion of reflection subgroups (see [BD10]). However, for simplification
purposes, we will here only use the generalization (ii), and still suppose that ∆ is a basis, although the re-
sults remain valid in full generality. Throughout this paper, we will thus call Coxeter root system (Φ,∆) a
based root system in the sense of Definition 1.2, with the additional requirement that ∆ must be a basis for
V . So the data of a Coxeter root system corresponds to the data of a Coxeter group together with one of its
geometric representation.

Note that if all ms,t (called the labels of the group) are finite, then the only possible representation is
the classical one. In particular, when the form B is positive definite, then Φ is a finite Coxeter root system
and contains no more information than the associated finite Coxeter group. We say that (Φ,∆) is an affine
Coxeter root system when the form B is positive semidefinite, but not definite. Note that traditionally, the
Coxeter group itself is said to be affine if its classical geometric representation is affine.

Example 1.3 (Irreducible affine root systems). A dihedral infinite group W has not only an affine repre-
sentation. If Φ is an infinite root system of rank 2, with simple roots α, β, then B(α, β) ≤ −1, and Φ
is affine if and only if B(α, β) = −1 (i.e., when Φ corresponds to the classical geometric representation
of W ). We will see a geometric description of these two cases in Figure 2. However, note that if Φ is
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irreducible of rank ≥ 3, then Φ is affine if and only if W is an affine Coxeter group (because there is no
label∞ in an irreducible affine Coxeter graph of rank ≥ 3).

Using results of Bonnafé-Dyer, it is easy to prove that the following properties hold for any rank 2
reflection subgroup of a Coxeter group W . These properties will be essential in the next sections.

Proposition 1.4. Let (Φ,∆) be a Coxeter root system, with bilinear form B, and Coxeter group W . We
denote by Q the isotropic cone: Q := {v ∈ V | q(v) = 0}, where q(v) = B(v, v). Let ρ1 6= ρ2 be two
roots in Φ+. Denote by W ′ the subgroup of W generated by the two reflections sρ1 and sρ2 , and by Φ′ the
corresponding subset of Φ: Φ′ := {ρ ∈ Φ | sρ ∈W ′}. Then:

(i) Φ′ is a Coxeter root system of rank 2, with Coxeter group W ′; denote by α, β its simple roots.

(ii) Φ′ is infinite if and only if the plane span(ρ1, ρ2) intersects Q \ {0}, if and only if B(α, β) ≤ −1.

(iii) Φ′ is affine if and only if span(ρ1, ρ2) ∩Q is a line, if and only if B(α, β) = −1.

2 Limit points of roots
Let Φ be a Coxeter root system, with associated Coxeter group W (as defined in Section 1.3). When W is
finite, Φ is also finite and the distribution of the roots in the space V is well studied. However, when W is
infinite, the root system is infinite and we have, as far as we know, not many tools to study the distribution
of the roots over V . One way to go is to look at the asymptotical behaviour of the roots. This section deals
with a first step of this study. Note that, since Φ = Φ+t (−Φ+), it is enough to deal with the positive roots,
which are inside the simplicial cone cone(∆). In order to get a first grip of what could happen, we begin
with some enlightening examples.

2.1 Examples: roots and normalized roots in rank 2, 3, 4
Example 2.1 (Rank 2: affine and non-affine representation of infinite dihedral groups). Let Φ be a Coxeter
root system of rank 2, as defined in Section 1.3. We get a rank 2-Coxeter group W , geometrically repre-
sented in a 2-dimensional vector space V (together with a bilinear form B); V is generated by two simple
roots α, β. Consider the case where W is an infinite dihedral group, so B(α, β) ≤ −1.

Suppose first that B(α, β) = −1, i.e., that Φ is affine and that we use the classical geometric repre-
sentation. Then any positive root has the following form: ρn = (n+ 1)α+ nβ, or ρ′n = nα+ (n+ 1)β,
for n ∈ N. If we fix a (Euclidean) norm on V (e.g., such that {α, β} is an orthonormal basis), then the
norm of the roots tend to infinity, but their directions tend to the line generated by (α + β) (see Fig. 2a).
Note that this line is precisely the isotropic cone of the bilinear form B, i.e., the set

Q := {v ∈ V | q(v) = 0} , where q(v) = B(v, v) .

In the more general geometric representation of W , Φ can be non-affine, i.e., B(α, β) = k < −1 . The
isotropic cone Q is then constituted of two lines (generated by (−k ±

√
k2 − 1)α + β). If we draw the

roots, we note that, again, their norms diverge to infinity and their directions tend to the two directions of
the lines of Q (see Fig. 2 b).

Let us go back to the general case of an infinite Coxeter root system of rank n. As we noted in the
simple example of dihedral groups, the roots themselves have no limit points, we are rather interested in
the asymptotical behaviour of their directions. In order to talk properly about limits of directions, we want
to “normalize” the roots and construct “unit vectors” representing each root. One simple way to do so is
to intersect the line generated by a root with the hyperplane V1 := {v ∈ V |

∑
α∈∆ vα = 1}, where the

vα’s are the coordinates of v in the basis ∆ of simple roots; so V1 is the affine hyperplane containing the n
simple roots (seen as points). Then, set V0 := {v ∈ V | |v|1 = 0} and V +

0 := {v ∈ V | |v|1 > 0}, where
|v|1 :=

∑
α∈∆ vα. Note that |..|1 is not a norm on V (but it is when restricted to conv(∆)). Since all the

positive roots are in the half-space V +
0 , the following normalization map can be applied to Φ+:

V +
0 → V1

v 7→ v̂ := v
|v|1 .
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α = ρ1β = ρ′1

ρ2ρ′2

ρ3ρ′3

ρ4ρ′4

Q

V1

Q−

α = ρ1β = ρ′1

ρ2ρ′2

ρ3ρ′3

ρ4ρ′4

V1

(a) B(α, β) = −1 (b) B(α, β) = −1.01 < −1

Figure 2: Picture of the isotropic cone Q and the first positive roots of an infinite Coxeter root system of rank 2.
(a): in the (classical) affine representation. (b): in a non-affine representation (the red part Q− denotes the set
{v ∈ V | q(v) < 0}).

For any subset A of V +
0 , we write Â for the set {â | a ∈ A}. Here we are particularly interested in the

set Φ̂+ of normalized roots.

Remark 2.2. Obviously we could have considered the roots in the projective space P1(V ) instead. The
principal advantage to consider explicitly V1 is to visualize positive roots in an affine subspace of dimen-
sion n − 1, inside an n-simplex. Indeed, the simple roots are in V1, so all the normalized roots lie in their
convex hull conv(∆), which is an n-simplex in V1. Note that as a convex polytope, conv(∆) is closed and
compact, which is practical when studying sequences of roots. From now on, in examples, we will only
draw the normalized roots, inside the n-simplex.

The aim of this work is to study the accumulation set of Φ̂+, i.e., the set of limit points of normalized
roots. We will first examine its relation with the isotropic cone Q.

Example 2.3 (Normalized roots in the dihedral case). In the infinite dihedral case, the “normalized” ver-
sion of Figure 2 is Figure 3: there is one or two limit points of normalized roots (depending on whether
B(α, β) = −1 or not), and the set of limit points is always equal to the intersection Q ∩ V1 = Q̂.

V1Q̂

α = ρ1β = ρ′1 ρ2ρ′2 · · ·

sα sβ
∞

V1

α = ρ1β = ρ′1 ρ2ρ′2 · · ·

Q̂−

sα sβ
∞(−1.01)

(a) B(α, β) = −1 (b) B(α, β) = −1.01 < −1

Figure 3: Picture of the isotropic cone Q̂ and the first normalized roots of an infinite Coxeter root system of rank 2.
(a): in the (classical) affine representation. (b): in a non-affine representation.

Notation. The graph we draw to characterize a Coxeter root system is the same as the classical Coxeter
graph, except that, when the label of the edge sα— sβ is∞, we specify in parenthesis the value of B(α, β)
if it is not −1 (i.e., when we do not consider the classical representation).
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We give now some examples and pictures in rank 3 and 4.

Example 2.4 (Rank 3). In Figures 1(a) (in Introduction) and 4 through 7, we draw the (normalized) iso-
tropic cone Q̂ (in red), the 3-simplex cone(∆) (in green), and the first normalized roots (in blue), for six
different Coxeter root systems of rank 3. Note that the notion of depth used in the captions is a measure of
the “complexity“ of a root, which will be defined in Section 2.2.

α β

γ

sα sβ

sγ

6

Figure 4: Picture of Q̂ and the first normalized roots
(with depth ≤ 12) for the Coxeter root system of type G̃2

(affine).

α β

γ

sα sβ

sγ

7

Figure 5: Picture of Q̂ and the first normalized roots
(with depth ≤ 10) for the Coxeter root system with labels
2, 3, 7.

We see that the normalized roots seem again to tend quickly towards Q̂. In the affine cases (corre-
sponding to groups of type Ã2, B̃2, and G̃2 drawn in Figure 4), Q̂ contains only one point, which is the
intersection of the line V ⊥ (the radical ofB) with V1. Otherwise, Q̂ is always a conic, because the signature
of B is (2, 1).

α β

γ

sα sβ

sγ

∞(−1.1) ∞(−1.1)

Figure 6: Picture of Q̂ and the first normalized roots
(with depth ≤ 10) for the Coxeter root system with labels
2,∞(−1.1),∞(−1.1).

α β

γ

sα sβ∞

sγ

4 ∞(−1.5)

Figure 7: Picture of Q̂ and the first normalized roots
(with depth ≤ 8) for the Coxeter root system with labels
∞,∞(−1.5), 4. The meaning of the yellow points and
the dashed lines will be explained in Sections 2.3 and 4.

Note that we can see inside the pictures some rank 2 root subsystems, corresponding to dihedral reflec-
tion subgroups. The roots corresponding to such a reflection subgroup, generated by two reflections sρ1
and sρ2 , lie in the line containing the roots ρ1 and ρ2. And because of Proposition 1.4, the subgroup is
infinite if and only if Q̂ is intersected by this line. In Figure 1(a), we see that for the group with labels
5, 3, 3, the line joining γ and ρ̂ = α+β

2 intersects the ellipse in two points, as predicted by Example 1.1.
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In particular, the behaviour for standard parabolic dihedral subgroups is seen on the facets of the simplex,
where three situations can occur. The ellipse Q̂ can either cut a facet [α, β] in two points, or be tangent, or
not intersect it, whether B(α, β) < −1, = −1, or > −1 respectively; see in particular Figures 6 and 7.

Remark 2.5. Note also that when Q̂ is included in the simplex, it seems that the limit points of normalized
roots cover the whole ellipse, whereas in the other cases the behaviour looks more intricate. We will talk
more about this phenomenon in Section 4.1.

sα sβ

sδ

sγ

Figure 8: Picture of Q̂ and the first normalized roots (with
depth ≤ 8) for the Coxeter root system with diagram the
complete graph with labels 3.

sα
sβ

∞

sδ

∞ ∞

sγ

∞ ∞

∞

Figure 9: Picture of Q̂ and the first normalized roots (with
depth ≤ 8) for the Coxeter root system with diagram the
complete graph with labels∞.

Example 2.6 (Rank 4). In Figures 1(b) (in Introduction), and 8-9, we draw similar pictures for some
Coxeter root systems of rank 4, together with the tetrahedron conv(∆). Analogous properties seem to be
true: the limit points are in Q̂, and the way how Q̂ cuts a facet depend on whether the associated standard
parabolic subgroup of rank 3 is infinite non affine, affine, or finite. Moreover, Remark 2.5 still holds, and
Figures 1(b) and 9 makes appear a nice fractal behaviour that we will try to describe in Section 4.1.

2.2 The limit points of normalized roots lie in the isotropic cone
The following theorem summarizes our first observations.

Theorem 2.7. Consider an injective sequence of positive roots (ρn)n∈N, and suppose that (ρ̂n) converges
to a limit `. Then:

(i) the norm ||ρn|| tends to infinity (for any norm on V );

(ii) the limit ` lies in Q̂.

In other words, the accumulation set of the set Φ̂+ of normalized roots is contained in the isotropic cone.

Remark 2.8. M. Dyer proved independently this property in the context of his work on imaginary cone
[Dye](i), extending a study of V. Kac (in the framework of Weyl groups of Lie algebras), who states that
the convex hull of our limit points corresponds to the closure of the imaginary cone (see [Kac90], Lemma
5.8 and Exercise 5.12).

Note that this theorem has the following consequence (which can of course be proved more directly
using the fact that W is discrete in GL(V ) [Hum90, Prop. 6.2]):

Corollary 2.9. The set of roots of a Coxeter group is discrete.

(i) M. Dyer, personal communication, September 2011.
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Let us give a brief outline of the proof of the theorem. We first need to recall the notion of depth of a
root. The depth of a positive root is a natural way to measure the “complexity” of this root, as constructed
from the simple roots: for ρ ∈ Φ+,

dp(ρ) = 1 + min{k | ρ = sα1
sα2

. . . sαk(αk+1), for α1, . . . , αk, αk+1 ∈ ∆}

(see [BB05, §4.6] for details). By construction, the number of positive roots of bounded depth is finite.
Consider an injective sequence (ρn)n∈N of positive roots, as in Theorem 2.7. Then dp(ρn) diverges to
infinity as n → ∞. So, to prove the first item of the theorem, it is sufficient to show that when the depth
of a sequence of roots tends to infinity, so does the norm of the roots. This is done using the following
proposition, which clarifies the relation between norm and depth.

Proposition 2.10. Let (Φ,∆) be a Coxeter root system, as defined in Section 1.3. We take for the norm
|| · || the Euclidean norm for which ∆ is an orthonormal basis for V . Then, with the above notations, we
have the following properties:

(i) ∃κ > 0, ∀α ∈ ∆, ∀ρ ∈ Φ+, B(α, ρ) 6= 0 ⇒ |B(α, ρ)| ≥ κ.

(ii) ∃λ > 0, ∀ρ ∈ Φ+, ||ρ||2 ≥ 1 + λ(dp(ρ)− 1).

The first point is an adaptation of a classical result, see e.g.[BB05, Prop. 4.5.5]. Item (ii) can be proved
by induction on dp(ρ), using (i) and some well known properties of the depth.

Then, Theorem 2.7(ii) is a direct consequence of the fact that ||ρn|| tends to infinity: we have
q(`) = lim

n→+∞
q(ρ̂n) = lim

n→+∞
1
|ρn|21

= 0, since | · |1 coincides on cone(∆) with a norm (L1-norm).

We denote by E(Φ) (or simply E when there is no possible confusion) the set of accumulation points
(or limit points) of Φ̂+, i.e., the set constituted by the possible limits of injective sequences of normalized
roots. As Φ̂+ is included in the simplex conv(∆) (which is closed), the theorem implies that:

E(Φ) ⊆ Q ∩ conv(∆) = Q̂ ∩ cone(∆) .

The reverse inclusion is not always true : we saw some examples of this fact in Section 2.1, for rk(W ) = 4,
or even for rk(W ) = 3 whenever some B(α, β) < −1. We will address the question of a more precise
description of E(Φ) in Section 4.1.

2.3 Geometric action of W on E

The geometric action of the groupW on V induces a natural action on a part of V1, using the normalization
map. For the action to be well-defined, the elements on which W acts have to stay in V +

0 after action of
any w ∈W . So we define :

D =
⋂
w∈W

w(V +
0 ) ∩ V1 , and, for x ∈ D and w ∈W, w · x := ŵ(x) .

It is straightforward to check that this is a well-defined action of W on D. The following statement is the
motivation for defining this action:

Proposition 2.11. Let E and D as defined above. Then E is contained in D, and E is stable by the action
of W .

The aim behind studying the set E ⊆ V1 is to be able to represent “limit points of roots” in an affine
space. Now we can also study an action of W on the affine space V1. It turns out that this action of W
on E is geometric in essence:

Proposition 2.12. Let α ∈ ∆, and x ∈ Q̂. Denote by L(α, x) the line containing α and x. Then sα · x is
the unique intersect point of the line L(α, x) with Q, other than x (if it exists; otherwise sα · x = x).

In Figure 7, consider the two yellow points on the side [β, γ]: we drew their images by the action of sα
and sβsα.

Remark 2.13. Obviously, this action is not faithful when Φ is an affine root system (sinceE is a singleton).
We do not know whether this action is faithful for infinite non affine root systems.
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3 Construction of a dense subset of E from dihedral reflection
subgroups

As in the previous sections, we fix an infinite Coxeter root system (Φ,∆), and denote E = E(Φ) the
accumulation set of its normalized roots. In this section we construct a nice countable subset of E, easy to
describe, and we give a skeleton of the proof that it is dense in E.

This set is constructed from the limit points of roots of rank 2-subgroups of W . Consider two positive
roots ρ1 6= ρ2, and define the rank 2 dihedral subgroup W ′ := 〈sρ1 , sρ2〉 and Φ′ := {ρ ∈ Φ | sρ ∈ W ′}.
From Proposition 1.4, we know that Φ′ is a Coxeter root system of rank 2, associated to the dihedral
group W ′. Denote by α, β its simple roots, and suppose that B(α, β) ≤ −1, i.e., that W ′ is infinite and
the line L(ρ1, ρ2) intersects Q (see Prop. 1.4(ii)). Inside V1, similarly, L(ρ̂1, ρ̂2) intersects Q̂. We write
L(ρ̂1, ρ̂2) ∩ Q̂ = {u, v} (where u = v if and only if B(α, β) = −1).

Then, because of the rank 2 picture (see Section 2.1), we know that the set E(Φ′) of limit points of
normalized roots of W ′ is equal to {u, v}. This leads to the following natural definition.

Definition 3.1. We denote by E2 the subset of E formed by the union of the sets E(Φ′), for Φ′ any root
subsystem of rank 2. Equivalently:

E2 :=
⋃

ρ1,ρ2∈Φ+

L(ρ̂1, ρ̂2) ∩ Q̂ ,

where L(ρ̂1, ρ̂2) denotes the line containing ρ̂1 and ρ̂2.

α β

γ

sα sβ4

sγ

4 4

Figure 10: Geometric construction of E2, for the Coxeter
root system with labels 4, 4, 4 (the first roots in blue, some
elements of E2 in yellow diamonds).

Q

α

un
xn

`

Figure 11: Construction of a sequence of elements
of E2 (xn, in yellow diamonds) from a sequence
of elements of Φ̂+ (un, in blue), both converging
to ` ∈ E.

Note thatE2 is countable, and geometrically much more easy to describe than the whole setE. Figure 10
gives an example of construction of some points of E2. Surprisingly, E2 still carries all the information of
E, as implied by the following theorem.

Theorem 3.2. Let Φ be an (infinite) Coxeter root system, and E its set of limit points of normalized roots.
Then the reunion E2 of all limit points arising from dihedral reflection subgroups is dense in E.

The basic idea of the proof is sketched in Figure 11. For ` ∈ E, there exists a sequence (un)n∈N in Φ̂+

converging to `. We construct a sequence of elements of E2 converging to ` as well, using intersection
points of the lines L(α, un) with Q̂, for an α ∈ ∆ well chosen. The core of the proof is to show that it is
always possible to find such a simple root that makes the construction work (see details in [HLR11]).

4 Further works and open questions
We already pointed out (Remark 2.13) the question of the faithfulness of the action defined in 2.3. Let us
describe roughly two other interesting problems.
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4.1 Fractal description of E
We know that E is contained in Q̂, but we could obtain a more precise inclusion. First of all, E is also
included in conv(∆). Now consider for example Figure 7, and suppose that we can act by W on the whole
of Q̂, with the action of Section 2.3, i.e., that Q̂ ⊆ D (we do not know if this is true in general). Thus, as
there are no limit points in the red arc which is outside of the triangle conv(∆), there is also no limit points
on its image by sα, which is the smaller red arc on the bottom left (cut out by the two first dashed lines);
and not either in the subsequent image by sβ , as evidenced in the picture. So E seems to be contained
in a self-similar fractal subset F of Q̂, obtained by removing from Q̂ all these iterated arcs. The rank 4
pictures are even more convincing of this property; see in particular Figures 1(b) and 9, where the fractal F
obtained (an ellipsoid cut out by an infinite number of planes) is an Appolonian gasket drawn on Q̂.

We conjecture that E is actually equal to F . In the particular case where Q̂ is contained in conv(∆)
—e.g., Figure 8, and all the cases of a rank 3 Coxeter group with classical representation, as Figures 1(a)
and 5—, this means that E fills the whole of Q̂.

4.2 Limit points for parabolic subgroups
Let I be a subset of ∆, ΦI its orbit under W (i.e., a parabolic root subsystem), and VI the span of I . The
setE(ΦI) of accumulation points of Φ̂+

I is of course included inE(Φ)∩VI , and it is natural to ask whether
the reverse inclusion is true. The answer is no in general, as shown by the following counterexample.

Example 4.1. Take the rank 5 root system Φ with ∆ = {α, β, γ, δ, ε} and the labels mα,β = mδ,ε = ∞,
mβ,γ = mγ,δ = 3, and the others equal to 2. Take I = ∆ \ {γ}, so that WI is the product of two infinite
dihedral groups. Then we have E(ΦI) = {α+β

2 , δ+ε2 }. But if we consider ρn = (sαsβsεsδ)
n(γ), it is easy

to check that ρ̂n tends to α+β+δ+ε
4 , so lies in E(Φ) ∩ VI .

In a subsequent paper [DHR], we will describe a subset of E for which the restriction of this parabolic
property holds.
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