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Enumeration of Cylindric Plane Partitions

Robin Langer1†

1CNRS and LIAFA, Université Paris Diderot - Paris 7, Case 7014, 75205 Paris Cedex 13

Résumé. Cylindric plane partitions may be thought of as a natural generalization of reverse plane partitions. A
generating series for the enumeration of cylindric plane partitions was recently given by Borodin. As in the reverse
plane partition case, the right hand side of this identity admits a simple factorization form in terms of the “hook
lengths” of the individual boxes in the underlying shape. The first result of this paper is a new bijective proof of
Borodin’s identity which makes use of Fomin’s growth diagram framework for generalized RSK correspondences.
The second result of this paper is a (q, t)-analog of Borodin’s identity which extends previous work by Okada in the
reverse plane partition case. The third result of this paper is an explicit combinatorial interpreation of the Macdonald
weight occuring in the (q, t)-analog in terms of the non-intersecting lattice path model for cylindric plane partitions.

Résumé. Les partitions planes cylindriques sont une généralisation naturelle des partitions planes renversées. Une
série géneratrice pour l’énumeration des partitions planes cylindriques a été donnée récemment par Borodin. Comme
dans le cas des partitions planes renversées, la partie droite de cette identité peut être factoriser en terme de “longueur
d’équerres” des carrés dans la forme sous-jacente. Le premier résultat de cet article est une nouvelle preuve bijective
de l’identité de Borodin qui utilise le cadre de “diagramme de croissance” de Fomin pour la correspondence de RSK
géneralisée. Le deuxieme résultat de cette article est une (q, t)-déformation d’identité de Borodin qui géneralise un
résultat de Okada dans le cas des partitions planes renversées. Le troisième résultat de cet article est une formule com-
binatoire explicite pour le poids de Macdonald qui utilise le modèle des chemins non-intersectant pour les partitions
planes cylindriques.

Keywords: cylindric plane partitions, Macdonald polynomials, Pieri rule, vertex operators, non-intersecting lattice
paths, growth diagrams, local rules, generalized RSK correspondences.

1 Introduction
Cylindric plane partitions were first introduced by Gessel and Krattenthaler [GK97]. For any binary string
π of length T , a cylindric plane partition with profile π may be defined as a sequence of integer partitions:

(µ0, µ1, . . . µT ) µ0 = µT (1)

such that if πk = 1 then µk/µk−1 is a horizontal strip. Otherwise if πk = 0 then µk−1/µk is a horizontal
strip. The weight of a cylindric partition is given by |c| = |µ1|+ |µ2|+ · · · |µT |. In the special case where
µ0 = µT = ∅ we recover the usual definition of a reverse plane partition [Ada08]. If, in addition to this
there are no inversions in the profile, we have a regular plane partition.
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For those readers who are more familliar with the definition of a plane partition as an array of integers
which is weakly decreasing along both rows and columns, the bijection with the “interlacing sequence”
model is obtained by reading along the main diagonals. For example:

3 3 2
3 2 1
1 1 1

c = (∅, (1), (3, 1), (3, 2, 1), (3, 1), (2), ∅)

A regular plane partition may also be thought of as a pair of semi-standard young tableau of the same
shape. In the case of our example, the two tableaux are:

1 2 2
2 3
3

1 1 2
2 3
3

The theory of plane partitions is closely related to both the theory of symmetric functions and Fomin’s
theory of generalized RSK type correspondences [Fom86, Fom95]. The beginning of the subject is per-
haps the following famous identity of MacMahon:

∑
c∈PP

z|c| =

(
1

1− zn

)n
(2)

It was first pointed out by Okounkov [OR03] that enumerative results for plane partitions may be ob-
tained by considering commutation relations between vertex operators acting on fermionic fock space.
The underlying algebraic structure is that of the Heisenberg algebra. By the boson-fermion correspon-
dence these operators may be alternatively thought of as acting on symmetric functions. The Pieri rules
for Schur functions are key to this approach:

Sµ[X]hr[X] =
∑

λ∈Ur(µ)

Sλ[X] (3)

Sλ[X + z] =
∑

µ∈Dr(µ)

Sµ[X]zr (4)

Here Ur(µ) denotes the set of all partitions which can be obtained from µ by adding a horrizontal r-strip
and Dr(λ) denotes the set of all partitions which can be obtained from λ by removing a horizontal r-strip.

The next important result in the subject is the following hook-product formula for the enumeration of
reverse plane partitions with arbitrary profile π which is due to Stanley:∑

c∈RPP(π)

z|c| =
∏
i<j
πi>πj

1

1− zj−i
(5)

There is a natural bijection between the boxes of a partition and the inversions in its profile. The
expression j − i on the right hand side of Stanley’s identity may be understood as the hook length of the
corresponding box (see section 2).
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In fact, the right hand side of Stanley’s identity may be interpreted as a weighted sum over arbitrarily
labelled young diagrams. The weight of such a labelled diagram is equal to a sum over the boxes of the
diagram, of the label of the box, times the hook length of the box. The Hillman-Grassl algorithm provides
a bijective proof of Stanley’s identity.

More recently the following hook-product formula for the enumeration of cylindric plane partitions
of given profile was first given by Borodin [Bor07]. A very different proof involving the representation
theory of ŝl(n) was later given by Tingley [Tin08]:

∑
c∈CPP(π)

z|c| =
∏
n≥0

 1

1− znT
∏
i<j
πi>πj

1

1− zj−i+nT
∏
i>j
πi>πj

1

1− zj−i+(n+1)T

 (6)

Here T denotes the length of the profile. As in the reverse plane partition case, there is a natural bijection
between the “boxes” of the cylindric plane partition and “cylindric inversions” of the “underlying shape”.
The expression j−i+kT on the right hand side of Borodin’s identity may be understood as the “cylindric
hook length” of the box with “cylindric inversion coordinates” (i, j, k) (see section 2).

The right hand side of Borodin’s identity may be interpreted combinatorially as a sum over pairs (γ,A)
where γ is an integer partition and A is an arbitrarily labelled “cylindric diagram”. The weight of A is a
sum over the boxes of A of the label of the box times the cylindric hook length of the box. The weight of
the pair (γ,A) is T |γ|+ |A|.

The first result of this paper is a bijective proof of Borodin’s identity:

Theorem 1.1 . There exists a natural weight preserving bijection between cylindric plane partitions with
given profile π and pairs (γ,A) where γ is an integer partition and A is an arbitrarily labelled cylindric
diagram with profile π.

The proof uses the idea of local rules and growth diagrams first introduced by Fomin [Fom86, Fom95].
The reverse plane partition version of this proof has been previously given by Krattenthaler [Kra06].

Macdonald polynomials are a natural (q, t)-deformation of the classical Schur polynomials. The Pieri
rules for Macdonald polynomials are very similar to those for the Schur polynomials, only in the Mac-
donald case certain coefficients appear ([Mac95] page 341).

ϕλ/µ(q, t) =
∏

s∈Cλ/µ

1− qaλ(s)+1t`λ(s)

1− qaλ(s)t`λ(s)+1

∏
s∈Cλ/µ

1− qaµ(s)t`µ(s)+1

1− qaµ(s)+1t`µ(s)
(7)

ψλ/µ(q, t) =
∏

s 6∈Cλ/µ

1− qaλ(s)+1t`λ(s)

1− qaλ(s)t`λ(s)+1

∏
s6∈Cλ/µ

1− qaµ(s)t`µ(s)+1

1− qaµ(s)+1t`µ(s)
(8)

Here Cλ/µ denotes the set of columns of λ which are longer than the corresponding columns of µ. For
any box s define aλ(s) to be the “arm length” of s and `λ(s) to be the “leg length” of s (see section 2).

By using Macdonald polynomials instead of Schur functions, Okada [Oka10] obtained the following
(q, t)-deformation of Stanley’s result:∑

c∈RPP(π)

Wc(q, t)z
|c| =

∏
i<j
πi>πj

(tzj−i; q)∞
(zj−i; q)∞

(9)
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Note that we are making use of the hypergoemetric notation: (a; q)∞ =
∏
n≥0(1 − aqn). If c =

(µ0, µ1, . . . µT ) then the weight function is given by:

Wc(q, t) =

T∏
k=1
πk=1

ϕµk/µk−1(q, t)

T∏
k=1
πk=0

ψµk−1/µk(q, t) (10)

Observe that when q = t, Okada’s formula reduces to that of Stanley. The regular plane partition case
of Okada’s identity had been previously given by Vuletic [Vul09]. The second result of this paper is an
analogous (q, t)-deformation of Borodin and Tingley’s formula for the enumeration of cylindric plane
partitions:

Theorem 1.2

∑
c∈CPP (π)

Wc(q, t)z
|c| =

∏
n≥0

 1

1− znT
∏
i<j
πi>πj

(tzj−i+nT ; q)∞
(zj−i+nT ; q)∞

∏
i>j
πi>πj

(tzj−i+(n+1)T ; q)∞
(zj−i+(n+1)T ; q)∞

 (11)

The weight function is exactly the same as that given by Okada (equation 10). When q = t one finds
that Theorem (1.2) reduces to equation (6). The proof of Theorem (1.2) uses commutation relations
for certain (q, t)-vertex operators acting on Macdonald polynomials which are essentially due to Garsia,
Haiman and Tesler [GHT99]. The Hall-Littlewood case (q = 0) of Theorem (1.2) has been previously
given in Corteel, Savelief and Vuletic [CSV11].

Recall that in the plethystic notation [GHT99], if a(q, t) =
∑
n,m an,m q

ntm with an,m ∈ Z and
a0,0 = 0, then we have:

Ω [a(q, t)] =
∏
n,m

1

(1− qntm)an,m
(12)

Making use of this notation, the cylindric weight function may be given an explicit combinatorial descrip-
tion which simplifies greatly that given by Okada [Oka10]:

Theorem 1.3
Wc(q, t) = Ω [(q − t)Dc(q, t)] (13)

where the alphabet Dc(q, t) is given by:

Dc(q, t) =
∑

s∈peak(c)

qac(s)t`c(s) −
∑

s∈valley(c)

qac(s)t`c(s) (14)

The precise definition of “valley” and “peak” cubes will be made clear in section 5. The outline of this
paper is as follows. In section 2 we clarify several definitions. In section 3 we discuss the main ideas in the
proof of theorem 1.1 In section 4 we recall some basic facts about Macdonald polynomials and then give
the key ideas of the proof of Theorem 1.2. Finally in section 5 we introduce the non-intersecting lattice
path model for cylindric plane partitions which is necessary in order to define properly the combinatorial
formula for the weight function in theorem 1.3.
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2 Definitions
An integer partition is simply a weakly decreasing list of non-negative integers. If the sum of the parts
of λ is equal to n, then we say that λ is a partition of n and write |λ| = n. The conjugate of the integer
partition λ = (λ1, λ2, . . . , λk) is defined to be λ′ = (λ′1, λ

′
2, . . . λ

′
r) where λ′j = #{i |λi ≥ j}.

It is often convenient to represent an integer partition visually as a young diagram, which is a collection
of boxes in the cartesian plane which are “stacked up” in the bottom right hand corner. Note that our
convention differs from both the standard french and english conventions. The reason for this will become
clear shortly. The minimum profile of an integer partition is the binary string which traces out the “jaggard
boundary” of the associated young diagram. Reading from the top right hand corner to the bottom left
hand corner, a zero is recorded for every vertical step and a one for every horizontal step. For example the
minimum profile of our example partition λ = (5, 3, 3, 2) is 110100110:

1 1
1 0
0

1 1 0
0

The minimum profile of an integer partition necessarily starts with a one and ends with a zero. An
integer partition is uniquely determined by its minimum profile. A generalized profile is an arbitrary
string of zeros and ones. Each generalized profile associated to a minimum profile, and hence an integer
partition, by removing the leading zeros and trailing ones.

An inversion in a binary string π is a pair of indices (i, j) such that i < j and πi > πj . There is
a natural bijection between the “boxes” of an integer partition λ and the inversions in any generalized
profile of λ. The arm length of the box s of the partition λ with “cartesian coordinates” (i, j) is given
by aλ(s) = λi − j. If the box s has “inversion coordinates” (i, j) then the arm length is given by
aλ(s) = #{i < k < j |πk = 1}. The leg length of the box s of the partition λ with “cartesian
coordinates” (i, j) is given by `λ(s) = λ′j − i. If the box s has “inversion coordinates” (i, j) then the
arm length is given by `λ(s) = #{i < k < j |πk = 0}. The hook length of the box s is given by
hλ(s) = aλ(s) + bλ(s) + 1.

We say that µ ⊆ λ if and only if µi ≤ λi for all i. For any pair of partitions λ and µ satisfying µ ⊆ λ
we say that λ/µ is a horizontal strip and write µ � λ if and only if for each j we have λ′j − µ′j ∈ {0, 1}.
In terms of profiles, λ/µ is a horizontal strip if and only if the difference between the position of the j-th
one in the profile of λ and the position of the j-th one in the profile of µ is equal to zero or one.

The “interlacing sequence” definition of a cylindric plane partition has already been given in the intro-
duction. A cube of a cylindric partition c = (µ0, µ1, . . . µT ) is a box of any of the partitions µ1, µ2, . . . µT .
Note that to avoid double counting we do not include the boxes in the partition µ0.

Cylindric plane partitions are often represented as certain labelled “cylindric diagrams”. For example,
the cylindric plane partition c = ((3, 2, 2), (5, 3, 2), (6, 4, 3, 2), (4, 3, 2), (4, 3, 2, 1), (3, 2, 2)) with profile
10100 may be represented as:

4 3
6 4 3 2
5 4 3 2 2
3 3 3 2 1

2 2 2 0
2 0 0

The individual partitions in the interlacing sequence picture are read off the diagonals. One can imagine
“wrapping” this diagram around a cylinder by identifying the first and last diagonals. Equivalently one
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can think of a cylindric diagram as the “fundamental domain” of an infinite young diagram with periodic
profile.

1
1 0
0

1 0
1 0
0

1 0
1 0
0

1 0
1 0
0
0

It is natural to index the boxes of the cylindric diagram via “cylindric inversion coordinates” (i, j, k)
where πi = 1, πj = 0 and if j < i then k ≥ 1 otherwise k ≥ 0. Here are the cylindric inversion
coordinates of each box of our example cylindric diagram:

i j k

4 4
2 2 2 2
1 1 1 1 1
4 4 4 4 4

2 2 2 2
1 1 1

5 3
3 5 3 5
3 5 3 5 3
3 5 3 5 3

5 3 5 3
3 5 3

0 1
0 0 1 1
0 0 1 1 2
1 1 2 2 3

1 2 2 3
2 2 3

Two boxes lie in the same “cylindric row” if they have the same i-coordinate, and in the same “cylindric
column” if they have the same j-coordinate. The k-coordinate is a sort of “depth” or “winding number”.
The horizontal strip condition for the diagonals implies that the labels must be weakly decreasing along
both cylindric rows and cylindric columns. The following definition is crucial for understanding the
analogy between cylindric plane partitions and reverse plane partitions:

Definition 2.1 The cylindric hook length of a box with cylindric inversion coordinates (i, j, k) is given by
j − i+ kT .

3 Theorem 1.1
The well known RSK correspondence gives a bijection between pairs of semistandard young tableau with
the same shape and matrices with non-negative entries. The idea of a growth diagram was first introduced
by Fomin [Fom86, Fom95]. Krattenthaler [Kra06] made use of this framework to give a new bijective
proof of Stanley’s identity (equation 5).

To motivate the definition of a local rule, consider now the following inductive proof of Cauchy’s
identity.

Proposition 3.1 . ∑
λ

Sλ[Xn]Sλ[Yn] =

n∏
i,j=1

1

1− xiyj

Proof: By the Pieri formula (equation 3), and the induction assumption, we have on the right hand side:
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RHS(n) =

(∑
r

hr[Xn−1]xrn

)(∑
s

hs[Yn−1]xsn

)(∑
µ

Sµ[Xn−1]Sµ[Yn−1]

)
1

1− xnyn

=
∑
α,β

Sα[Xn−1]Sβ [Yn−1]

 1

1− xnyn

∑
µ∈D(α)∩D(β)

x|α/µ|n y|β/µ|n


while by the dual Pieri formula (equation 4), we have on the left hand side:

LHS(n) =
∑
λ

Sλ[Xn−1 + xn]Sλ[Xn−1 + yn]

=
∑
α,β

Sα[Xn−1]Sβ [Yn−1]

 ∑
λ∈U(α)∩U(β)

x|λ/α|n y|λ/β|n


2

In order to complete this proof, we need, for any given α and β a bijection between the set of pairs (m,µ)
with µ ∈ D(α) ∩D(β) and m a non-negative integer and the set of partitions λ ∈ U(α) ∩ U(β) in such
a way that |λ| = |α|+ |β| − |µ|+m. A local rule is just such a bijection.

Lα,β : (Z≥0, D(α) ∩D(β))→ U(α) ∩ U(β) (15)

There are several possible choices of local rule, we shall not describe any of them explicitely here, but
rather refer the reader to [Ada08] or [Kra06]. When working with growth models [Fom86, Fom95] it
helps to think of the underlying shape of a reverse plane partition as a subset of the lattice Z2, with the
“vertices” inheriting a natural poset structure. In a similar spirit, the “underlying shape” of a cylindric
plane partition c = (µ0, µ1, . . . , µT ), which we shall henceforth refer to as a cylindric diagram, may be
interpreted as a subset of the lattice ZT modulo the equivalence relation:

(x, y) = (x+ n, y −m) (16)

where n is the number of zeros in the profile of c and m is the number of ones. The vertices of a cylindric
diagram thus inherit a poset structure.

Let us write v�w to indicate that the vertex v is connected to the edge of the vertex w with v below or
to the right of w. A cylindric growth diagram is a cylindric diagram whose vertices are labelled by integer
partitions and whose boxes are labelled by non-negative integers in such that the following conditions are
satisfied:

• If v�w, and if λ is the integer partition labelling the vertex v and µ is the integer partition labelling
the vertex w, then λ/µ is a horizontal strip.

• All the vertices along the lower boundary have the same label γ.
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• If u, v1, v2 and w are four vertices forming a box with label m, with u� v1 � w and u� v2 � w,
and if the labels of u, v1, v2 and w are µ, α, β and λ respectively then Lα,β(m,µ) = λ.

Here is an example (rotated 45 degrees):

(3, 2)

(3, 2)

(3, 2)

(3, 2)

(3, 2)

(3, 2)

(4, 3, 2)

(3, 2, 2)

(3, 2, 1)

(3, 2, 1)

(3, 2, 1)

(4, 3, 2)

(6, 4, 3, 2)

(4, 3, 2)

(3, 2, 2)

(3, 2, 2)

(5, 3, 2)

(6, 4, 3, 2)

(4, 3, 2, 1)

1

1

1

0

0

1

5

0

0

0

0

5

1

Observe that the sequence of partitions labelling the vertices along the upper boundary forms a cylindric
plane partition. Furthermore, once the labels on the upper boundary are fixed, the compatibility condi-
tion with the local rule ensures that there is a unique manner to label the remaining boxes and vertices.
Conversely, if the labels on the lower boundary are fixed, then the boxes may be labelled in an arbitrary
fashion. Once this has been done, there is a unique way to fill in the rest of the labels of the vertices.

Proposition 3.2 For any cylindric growth diagram, the sum of weights of the integer partitions labelling
the vertices of the lower boundary, plus the sum over the boxes of the label times the cylindric hook length
of the boxes, is equal to the sum of the weights of the integer partition labelling the vertices of the upper
boundary.

Proof: To appear in a longer version of this paper. 2

By passing from a cylindric plane partition to its associated cylindric growth diagram, and then forget-
ting the labels on all the vertices except those along the bottom boundary, one may effectively construct a
weight preserving bijection between the left hand side and the right hand side of Borodin’s identity.

4 Theorem 1.2
We sketch only the main ideas of the proof. The details will appear in a longer version of this paper.

Let Λq,t denote the ring of symmetric functions over the field of rational functions in the indeterminants
q and t, and let 〈−,−〉q,t denote the Macdonald inner product ([Mac95] page 309). The Macdonald
polynomials {Pλ(X; q, t)} are an orthogonal, but not orthonormal, basis with respect to this inner product
([Mac95] page 322). The dual basis is denoted by {Qλ(X; q, t)}.
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The operator Ωq,t[Xz] is defined by:

Ωq,t[Xz] =
∏
i

(txiz; q)∞
(qxiz; q)∞

(17)

The adjoint of this operator is denoted by Ω∗q,t[Xz]. The Pieri formulae for the Macdonald polynomials
([Mac95] (page 340 – 341) may be expressed in the form:

Ω[Xz]q,t Pµ(X; q, t) =
∑

λ∈U(µ)

ϕλ/µ(q, t)Pλ(X; q, t)z|λ|−|µ| (18)

Ω∗[Xz]q,t Pλ(X; q, t) =
∑

µ∈D(λ)

ψλ/µ(q, t)Pµ(X; q, t)z|λ|−|µ| (19)

where U(µ) is the set of partitions which can be obtained from µ by adding a horizontal strip, D(λ) de-
notes the set of all partitions which can be obtained from µ by removing a horizontal strip, and ϕλ/µ(q, t)
and ψλ/µ(q, t) are defined in equations 7 and 8.

The following lemma is crucial for the proof of Theorem 1.2:

Lemma 4.1 (Garsia, Haiman, Tesler [GHT99])

Ω∗q,t[Xu] Ωq,t[Xv] =
∏
n≥0

(
1− tqnuv
1− qnuv

)
Ωq,t[Xv] Ω∗q,t[Xu]

Let Dz denote the “degree” operator:

DzPλ[X; q, t] = z|λ|Pλ[X; q, t] (20)

One can easily check that Dz Ωq,t[X] = Ωq,t[Xz]Dz as well as Dz Ω∗q,z[X] = Ω∗q,t[Xz
−1]Dz . Fix a

profile π. As a direct consequence of the Pieri formulae (equations 18 and 19), we have:

∑
c∈CPP (π)

Wc(q, t)z
|c| =

∑
λ

〈Qλ[X] |Dz G
π0 [X]Dz G

π1 [X] · · ·Dz G
πT−1 [X]Pλ[X]〉q,t (21)

where G0[X] = Ωq,t[X] and G1[X] = Ω∗q,t[X]. The “trick” now is to repeatedly apply Lemma 4.1,
pulling out terms in the product on the right hand side as we do so. The new feature in the cylindric case
is that we must make use of the fact that for any {ui}i∈I and {wj}j∈J we have:
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∑
µ

〈Qµ[X] |
∏
i∈I

Ωq,t[Xui]
∏
j∈J

Ω∗q,t[Xw
−1
j ]DT

z Pµ[X]〉q,t

=
∑
λ,µ

〈Qµ[X] |
∏
i∈I

Ωq,t[Xui]Pλ[X]〉q,t〈Qλ[X]|
∏
j∈J

Ω∗q,t[Xw
−1
j ]DT

z Pµ[X]〉q,t

=
∑
λ,µ

〈Qλ[X]|
∏
j∈J

Ω∗q,t[Xw
−1
j ]DT

z Pµ[X]〉q,t〈Qµ[X] |
∏
i∈I

Ωq,t[Xui]Pλ[X]〉q,t

=
∑
λ

〈Qλ[X]|
∏
j∈J

Ω∗q,t[Xw
−1
j ]DT

z

∏
i∈I

Ωq,t[Xui]Pλ[X]〉

=
∑
λ

〈Qλ[X]|
∏
j∈J

Ω∗q,t[Xw
−1
j ]
∏
i∈I

Ωq,t[Xuiz
T ]DT

z Pλ[X]〉

As well as the fact that:

lim
k→∞

∑
λ

〈Qλ[X]|
∏
j∈J

Ω∗q,t[Xw
−1
j ]
∏
i∈I

Ωq,t[Xuiz
kT ]DT

z Pλ[X]〉

=
∑
λ

〈Qλ[X]|DT
z Pλ[X]〉

=
∏
n

1

1− znT

It is perhaps worth remarking that the nature of the proof is such that the identity remains true if on the
left hand side we replace:

z|c| 7→ z
|µ0|
0 z

|µ1|
1 · · · z|µT−1|

T−1

while on the right hand side we replace:

znT 7→ zn0 z
n
1 · · · znT−1

zj−i+nT 7→ zn0 z
n
1 · · · zni zn+1

i+1 · · · z
n+1
j znj+1 · · · znT−1 when i < j

zj−i+(n+1)T 7→ zn+1
0 zn+1

1 · · · zn+1
j znj+1 + · · · zni zn+1

i+1 · · · z
n+1
T−1 when i > j

This provides a new refined version of Borodin’s identity even in the Schur case. It was previously
remarked in the reverse plane partition case by [Oka10].

5 Theorem 1.3
In this section we define a bijection between cylindric plane partitions and non-intersecting lattice paths
on the cylinder. The non-intersecting lattice path model is equivalent to a model of rhombus tilings on
a cylinder. We define what we mean by a “peak cube” and a “valley cube” in Theorem 1.3 and we also
show how our theorem reduces to the “border strip formula” of [CSV11] when q = 0.

Let us begin with an example:
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valley: q2t
peak: −qt

c = ((3, 2, 2), (5, 3, 2), (6, 4, 3, 2), (4, 3, 2), (4, 3, 2, 1), (3, 2, 2))

The correspondence between the path model and the tiling model is clear. The yellow tiles correspond
to white vertices. The red tiles correspond to up steps of a path. The blue tiles correspond to down steps
of a path. If c = (µ0, µ1, . . . , µk) then the parts of are given by the “heights” of the yellow tiles in the
rhombus tiling model. Equivalently a generalized profile for the partition µk may be read off the k-th
vertical of the non-intersecting path model. Reading from bottom to top, each white vertex corresponds
to a zero and each black vertex corresponds to a one (see section 2).

A cube in the non-intersecting lattice path model is a pair of vertices u = (x, y1) and v = (x, y2) with
u coloured black, v coloured white and y1 < y2. The arm length of the cube (u, v) is the number of black
vertices which appear on the same vertical, strictly between u and v. The leg length of the cube (u, v) is
the number of white vertices which appear on the same vertical, strictly between u and v (see section 2).

The path associated to the cube (u, v) is the path which passes through the black vertex v. A valley cube
is a cube (u, v) for which the associated path takes a down step just before passing through v, followed
immediately by an upstep. A peak cube is a cube (u, v) for which the associated path takes an step just
before passing through v, followed immediately by a downstep.

We have marked one peak cube and one value cube on the diagram, together with their contribution
to the alphabet Dc(q, t) in Theorem 1.3. Don’t forget that we are working on a cylinder, so that the first
vertical is identified with the last vertical in such a way that each path forms a closed loop.

Finally, let us define a surface cube to be a cube (u, v) such that if u = (x, y1) and v = (x, y2) then
for all w = (x, y′) with y1 < y′ < y2 the vertex w is coloured white. Surface cubes are naturally in
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bijection with yellow tiles in the rhombus tiling model. The level of a surface cube (u, v) is y2 − y1
where u = (x, y1) and v = (x, y2). That is to say, the level of a surface cube is its leg length. With
these definition one can see that our combinatorial formula for the cylindric weight function reduces to
the border strip formula of [CSV11] when q = 0.

The proof of Theorem 1.3 involves a careful cancellation of terms appearing in the various Pieri coeffi-
cients (equations 7 and 8) which make up the definition of the weight function (equation 10). The details
will appear in a longer version of this paper.
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