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Which Schubert varieties are local complete
intersections?

Henning Úlfarsson1† and Alexander Woo2

1School of Computer Science, Reykjavı́k University, Iceland
2Department of Mathematics, University of Idaho, Moscow, ID, USA

Abstract. We characterize by pattern avoidance the Schubert varieties for GLn which are local complete intersections
(lci). For those Schubert varieties which are local complete intersections, we give an explicit minimal set of equations
cutting out their neighborhoods at the identity. Although the statement of our characterization only requires ordinary
pattern avoidance, showing that the Schubert varieties not satisfying our conditions are not lci appears to require
working with more general notions of pattern avoidance. The Schubert varieties defined by inclusions, originally
introduced by Gasharov and Reiner, turn out to be an important subclass, and we further develop some of their
combinatorics. One application is a new formula for certain specializations of Schubert polynomials.

Résumé. Nous caractérisons par l’évitement des motifs les variétés de Schubert qui sont localement des intersections
complètes. Pour les variétés de Schubert qui sont localement des intersections completes, nous donnons des ensembles
explicites des polynômes qui définissent leurs voisinages à l’identité. Bien que notre caractérisation n’utilise que les
motifs ordinare, nous avons besoin des notions plus générales des motifs dans notre démonstration. Les variétés de
Schubert définies par des inclusions, introduites par Gasharov et Reiner, sont une sous-classe importante, et nous
développons davantage leurs combinatoire. Une application est une nouvelle formule pour une specialisation des
polynômes de Schubert.

Keywords: Schubert Varieties, Permutation Patterns

1 Introduction
This is an shortened version with details omitted of the paper [UW11], which has been submitted for
publication elsewhere. The main goal is to classify by pattern avoidance the permutations w for which the
Schubert variety Xw is a local complete intersection.

Let G = GLn(C) and B a Borel subgroup, which we take to be the upper triangular matrices. The
quotient G/B is a projective variety known as the flag variety; its points correspond to complete flags,
which are chains of subspaces F• = 〈0〉 ( F1 ( · · · ( Fn−1 ( Cn with dimFi = i for all i. The group
G, and hence its subgroup B, acts on G/B by left multiplication. Given a permutation w, the Schubert
variety Xw is the closure of the orbit BwB/B of the permutation matrix for w under the action of B.
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A local ring R is a local complete intersection (lci) if it is the quotient of some regular local ring by
an ideal generated by a regular sequence. A variety (or, more generally, a scheme) is lci if every local
ring is lci. Smooth varieties are automatically lci, and lci varieties are automatically Gorenstein and hence
Cohen–Macaulay. Thus, being lci can be viewed as saying that the singularities are in some sense mild.

Lakshmibai and Sandhya [LS90] found to some amazement at the time that smoothness of the Schubert
variety Xw can be characterized by the combinatorial notion of pattern avoidance. A permutation v ∈
Sm embeds in w ∈ Sn if there are some m entries of w, say at indices i1 < · · · < im, in the relative
order given by v, meaning that w(ij) < w(ik) if and only if v(j) < v(k). If v does not embed in w, then
w is said to avoid v. Lakshmibai and Sandhya showed that Xw is smooth if and only if w avoids both of
the permutations 3412 and 4231 (written in 1-line notation).

More recently, Yong and the second author characterized the permutations w for which Xw is Goren-
stein [WY06]. This characterization cannot be given purely in terms of pattern avoidance but requires
a more complicated generalization, either interval pattern avoidance (called Bruhat-restricted pattern
avoidance in the original) or alternatively bivincular patterns as explained in [Ú11]. However, the lci
Schubert varieties can be characterized by ordinary pattern avoidance. More precisely, we prove the
following theorem.

Theorem 1.1 The Schubert varietyXw is lci if and only ifw avoids the six patterns 53241, 52341, 52431,
35142, 42513, and 351624.

For convenience we work over C in this paper, but our results and proofs hold over Z and hence over
any field.

A further related result is the characterization of Schubert varieties which are defined by inclusions,
due to Gasharov and Reiner [GR02]. They show thatXw is defined by inclusions ifw avoids 4231, 35142,
42513, and 351624. As one can tell from the patterns involved, our theorem implies that Schubert varieties
defined by inclusions are lci, which was previously unknown. Indeed, the Schubert varieties defined by
inclusions turn out to be an important special case in proving the sufficiency of our pattern avoidance
conditions. In particular, we use Fulton’s essential set [Ful92] to canonically associate a permutation
defined by inclusions to any permutation indexing an lci Schubert variety.

More recently, Hultman, Linusson, Shareshian, and Sjöstrand [HLSS09] showed that, given a permuta-
tion w, the number of chambers in the inversion arrangement for w is equal to the number of permutations
less than or equal to w in Bruhat order if and only if w avoids the same patterns 4231, 35142, 42513,
and 351624. The connection between this result and that of Gasharov and Reiner is at present a complete
mystery. We hope our work may help in finding a connection.

2 Schubert and Kazhdan–Lusztig varieties
We briefly define Schubert varieties. A (complete) flag F• in Cn is a sequence of subspaces 〈0〉 ( F1 (
F2 ( · · · ( Fn−1 ( Fn = Cn, with dimFi = i. As a set, the flag variety Fn has one point for every
flag in Cn. The flag variety Fn has an algebraic and geometric structure as G/B, where B is the group
of invertible upper triangular matrices, as follows. Given a matrix g ∈ G, we can associate to it the flag
F• with Fi being the span of the first i columns of g. Two matrices g and g′ represent the same flag if and
only if g′ = gb for some b ∈ B, so complete flags are in one-to-one correspondence with left B-cosets of
G.
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Fix an ordered basis e1, . . . , en for Cn, and let E• be the flag where Ei is the span of the first i basis
vectors. Given a permutation w ∈ Sn, let the Schubert point ew be the point associated to the B-coset of
the permutation matrix w; its flag E(w)

• is the one where E(w)
i = C{ew(1), . . . , ew(i)}. The rank function

rw is defined by
rw(p, q) = #{k ≤ q | w(k) ≥ p}.

The Schubert cell associated to w, denoted X◦w, is the subset of Fn corresponding to the set of flags

{F• | codim
Fq

(Ep ∩ Fq) = rw(p+ 1, q) ∀p, q}. (2.1)

Alternatively, the Schubert cell X◦w is also the orbit of ew under the left action of the group B. The
Schubert variety Xw is the closure of the Schubert cell X◦w; its points correspond to the flags

{F• | codim
Fq

(Ep ∩ Fq) ≤ rw(p+ 1, q) ∀p, q}. (2.2)

The opposite Schubert cell Ω◦w is the subset of Fn corresponding to the set of flags

{F• | dim(E(w0)
p ∩ Fq) = rw(p, q) ∀p, q}, (2.3)

or alternatively the orbit of ew under the action of the group B− of lower triangular matrices. A lemma of
Kazhdan and Lusztig asserts that ev has a neighborhood in Xw that is isomorphic toNv,w ×C`(v), where

Nv,w = Ω◦v ∩Xw

is known as a Kazhdan–Lusztig variety.

3 Rothe diagrams of lci permutations
Many of the rank conditions in Equation 2.2 are redundant, and Fulton [Ful92] showed that the minimal
set of conditions defining any Schubert variety are those from what he called the essential set. The Rothe
diagram of w is the set of boxes (which we can think of as being drawn over the permutation matrix)

D(w) = {(p, q) ∈ J1, nK× J1, nK | w(q) < p,w−1(p) > q}.

The diagram can be described visually as follows. For each q ∈ J1, nK, draw a dot • at (w(q), q). (Co-
ordinates are given in matrix notation.) For each dot draw the “hook” that extends north and east of that
dot. The boxes not in any hook are the boxes of the diagram. The essential set E(w) is the set of boxes
in D(w) which are northeast corners in some connected component of D(w). To be precise,

E(w) = {(p, q) ∈ D(w) | (p, q + 1) 6∈ D(w), (p− 1, q) 6∈ D(w)},

and a matrix g represents a point gB ∈ Xw if and only if the southwest (n + 1 − p) × q submatrices
of g have rank at most rw(p, q) for all (p, q) ∈ E(w). Furthermore, E(w) is the minimal subset of
J1, nK× J1, nK with this property; no subset of E(w) will correctly define Xw. (The reader is warned that
our conventions for the essential set are different from the original ones of Fulton. [Ful92])
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Fig. 1: Diagram and essential set for w = 819372564.

Example 3.1 Let w = 819372564. Then the diagram and essential set of w are as in Figure 1. In
particular, E(w) = {(2, 2), (4, 4), (4, 6), (6, 7), (9, 2)}. 2

Let w ∈ Sn be a permutation. We say that w is defined by inclusions if, for each box (p, q) ∈ E(w),
q − rw(p, q) = min{p − 1, q}. To explain the terminology, note that this condition on the essential set
is equivalent to the statement that the intersection conditions defining the Schubert variety are all of the
form Ep−1 ⊂ Fq or Fq ⊂ Ep−1. Gasharov and Reiner proved the following theorem [GR02, Thm. 4.2].

Theorem 3.2 The following are equivalent:

1. The Schubert variety Xw is defined by inclusions.

2. For every box (p, q) ∈ E(w), either

A: there are no 1’s in the permutation matrix w weakly SW of (p, q) (In other words, there is no
k such that k ≤ q and w(k) ≥ p.); or

B: there are no 1’s in the permutation matrix w strictly NE of (p, q) (In other words, there is no
k such that k > q and w(k) < p.)

3. The permutation w avoids 4231, 35142, 42513, and 351624.

We define certain specific technical conditions W, X, Y, and Z regarding the configuration of boxes in
the diagram of a permutation w. We then say a permutation w is almost defined by inclusions if, for all
(p, q) ∈ E(w), either

• (p, q) satisfies Condition A or Condition B, OR

• (p, q) satisfies both Condition W or X and Condition Y or Z.

Theorem 3.3 If a permutation is not almost defined by inclusions, then it contains one of the patterns
53241, 52341, 52431, 35142, 42513, and 351624.

Our proof for this theorem follows Gasharov and Reiner’s proof for Theorem 3.2 with significant addi-
tional complications required in our case.

We also show that by considering the essential set one can canonically associate a permutation defined
by inclusions to any permutation almost defined by inclusions. Let E′′(w) ⊆ E(w) be the subset of the
essential set of w consisting of boxes that satisfy neither condition A nor B.
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Theorem 3.4 Letw be a permutation almost defined by inclusions. Then there exists a permutation v such
that the essential set E(v) = E(w) \ E′′(w), and the ranks rv(p, q) = rw(p, q) for all (p, q) ∈ E(v).

These conditions define a unique permutation v which is defined by inclusions. Furthermore, `(v) −
`(w) is the number of boxes in E′′(w).

4 Local equations for lci Schubert varieties
To show Xw is lci whenever w is almost defined by inclusions, we consider explicit equations for Nid,w.
Let S = C[zp,q]1≤q<p≤n. Furthermore, let M be the matrix with 1’s on the diagonal, 0’s above the
diagonal, and zp,q at (p, q).

For any subsets A and B of J1, nK such that both A and B have the same number of elements, let dA,B

denote the minor of M which is the determinant of the square matrix whose rows are the rows of M
indexed by elements of A and whose columns are the columns of M indexed by elements of B. We will
refer to dA,B as a generalized Plücker coordinate.

Given p, q, r ∈ J1, nK, let I(v)(p,q,r) be the ideal of Sv generated by all d(v)A,B whereA ⊆ Jp, nK,B ⊆ J1, qK,
and #A = #B = r + 1; these are all the r + 1 size minors of the rectangular submatrix consisting of all
entries (weakly) SW of (p, q). Given a permutation w, let

Iw =
∑

(p,q)∈E(w)

I(p,q,rw(p,q)). (4.1)

The following follows from [WY08, Prop. 3.1], which was first stated in a less concise form in [Ful92].

Proposition 4.1 The Kazhdan–Lusztig variety

Nid,w ∼= SpecS/Iw.

To show that Xw is lci whenever w is almost defined by inclusions, we find an explicit generating set
for Iw with

(
n
2

)
− `(w) polynomials (rather than the significantly larger number of polynomials a priori

required by 4.1).
First suppose w is defined by inclusions. Let k be the number of boxes in E(w). Fix a total ordering

of the essential set E(w) in which smaller rank boxes come before larger rank boxes, and label the boxes
of the essential set (p1, q1), . . . , (pk, qk) according to this ordering. Let rm = rw(pm, qm) for each
m ∈ J1, kK. By our ordering ri ≤ rj if i < j. Also let Rm ⊆ D(w) be the subset of the diagram
consisting of all boxes which are SW of (pm, qm) but not SW of pm′ , qm′ for any m′ < m. Each region
Rm turns out to be a rectangle consisting of boxes in the same connected component of the diagram.

For each box (x, y) ∈ D(w), we define a polynomial f(x,y) in S (which will be a generalized Plücker
coordinate) as follows. If rw(x, y) = 0, then let

A(x, y) = {x} and B(x, y) = {y}.

Otherwise, the box (x, y) is in some rectangle Rm. Let A(x, y) = Jpm, pm + rm − 1K ∪ {x + rm}, and
let B(x, y) = {y − rm} ∪ Jqm − rm + 1, qmK. Now let

f(x,y) = dA(x,y),B(x,y) and Jw = 〈f(x,y)〉(x,y)∈D(w).

We show the following, noting that codimXw = #D(w).
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Theorem 4.2 Suppose w is defined by inclusions. Then the ideals Iw and Jw are equal. Hence Iw defines
a local complete intersection.

Now we consider the general case where w is almost defined by inclusions. Given (p, q) ∈ E′′(w), let
A′(p, q) = Jp, p+ rw(p, q)K and B′(p, q) = Jq − rw(p, q), qK. Define

f(p,q) = dA′(p,q),B′(p,q).

We show the following.

Theorem 4.3 Let w be almost defined by inclusions, v the defined by inclusions permutation associated
to w by Theorem 3.4, and let (p, q) ∈ E′′(w). Then

Iw = Iv + 〈f(p,q)〉(p,q)∈E′′(w).

Theorems 4.2 and 4.3 are proven by explicit manipulation of determinants.
Combining the statements of this section and the previous shows the following.

Theorem 4.4 Suppose w avoids 52431, 52341, 53241, 35142, 42513, and 351624. Then Xw is a local
complete intersection.

5 Mesh patterns and non-lci Schubert varieties
To show the converse to Theorem 4.4, we need some additional generalizations of pattern avoidance.

Interval patterns were introduced by Yong and the second author in [WY08] and, we now recall their
definition. First recall that the Bruhat order on the symmetric group is the reflexive transitive closure
of the partial order defined by declaring u to be less than or equal to v if v = usij and `(v) > `(u).
Here sij is the transposition that switches the (not necessarily adjacent) positions i and j, and `(v) is the
number of inversions in the permutation v, or equivalently, the length of any reduced expression for v as
a product of simple reflections si(i+1), called the Coxeter length of v. We use the symbol “6” to denote
the Bruhat order. Now, if [u, v] and [x,w] are intervals in the Bruhat orders on Sm and Sn respectively, we
say that [u, v] (interval) pattern embeds in [x,w] if there is a common embedding consisting of indices
i1 < · · · < im of u in x and v in w, such that the entries of x and w outside of these indices agree, and
additionally, the intervals [u, v] and [x,w] are isomorphic posets. Since, given u, v, w, and the indices of
the embedding, the permutation x is automatically determined, we can omit x in the notation. Hence we
will abuse terminology to say that [u, v] embeds in w or that w avoids [u, v] as appropriate.

The motivation for these patterns is that they govern any “reasonable” local property, as shown by Yong
and the second author [WY08, Thm 2.6]. In particular, if the Kazhdan–Lusztig varietyNu,v is not lci and
[u, v] embeds in a permutation w, then Xw is not lci. We identify two infinite families and eleven isolated
intervals [u, v] such that the Kazhdan–Lusztig variety Nu,v is not lci. We show that, if w contains one of
the six given patterns, then w will interval contain either one of the eleven intervals or an interval from
one of the two infinite families.

The two infinite families and eleven isolated intervals are as follows:
Family A consists of intervals of the form [(a + 1)a · · · 1(a + b + 2) · · · (a + 2), (a + b + 2)(a +

1)a · · · 2(a + b + 1) · · · (a + 2)1], where a, b > 0 and a > 1 or b > 1. We list the first few members of
the family in Figure 2.
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Fig. 2: The first few members of the family A.

Fig. 3: The first few members of the family B.

Family B consists of intervals of the form [(a + 1) · · · 1(a + 3)(a + 2)(a + b + 4) · · · (a + 4), (a +
3)(a+ 1) · · · 2(a+ b+ 4)1(a+ b+ 3) · · · (a+ 4)(a+ 2)], where a, b ≥ 0 and a+ b ≥ 1. We list the first
few members of the family in Figure 3.

We list the exceptional intervals in Figure 4.
The varieties Nu,v for the infinite families A and B define portions of the singular locus (as shown

independently by Billey–Warrington [BW03], Cortez [Cor03], Kassel–Lascoux–Reutenauer [KLR03],
and Manivel [Man01b]), and their equations were determined independently by Cortez [Cor03] and
Manivel [Man01a]. For the eleven isolated intervals, minimal defining equations for Nu,v can be cal-
culated explicitly by hand, showing they are not lci.

Hence to prove the converse to Theorem 4.4, it suffices to show the following.

Theorem 5.1 If the permutation w contains one of the patterns 53241, 52341, 52431, 35142, 42513,
and 351624, then w contains an interval from Family A, an interval from Family B, or one of the eleven
intervals in Figure 4.

Interval patterns are difficult to work with directly, so we translate them using [Ú11, Lemma 22] into
mesh patterns, as implied by the figures above. A mesh pattern is a pair (v,R) where v is a permutation
(classical pattern) from Sm and R is a subset of the square J0,mK × J0,mK. An embedding of (v,R) in
a permutation w is first of all an embedding of v in w in the usual sense, meaning indices i1 < · · · < im
such that the relative order of w(i1), . . . , w(im) is given by v. Equivalently, we have order-preserving
bijections α, β : J1,mK→ J1, nK such that

{(α(i), β(j)) | (i, j) ∈ G(v)} ⊆ G(w),

where for any permutation u, G(u) is defined to be the graph

G(u) = {(i, u(i)) : i ∈ J1, nK}
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C = D = E = Ei =

F = F i = F rc = F irc =

G = Grc = H =

Fig. 4: The exceptional intervals.

of u. In addition, to be an embedding of (v,R), we further require the following:

If (i, j) ∈ R then Rij ∩G(u) = ∅.

Here Rij is defined as the rectangle Jα(i) + 1, α(i+ 1)− 1K × Jβ(j) + 1, β(j + 1)− 1K, where, as a
convention, we set α(0) = 0 = β(0) and α(m+ 1) = n+ 1 = β(m+ 1).

To further simplify the proof, we also use the notion of marked mesh pattern, originally given by the
first author [Ú11, Subsec. 4.1]. Marked mesh patterns extend the definition of mesh patterns by allowing
another kind of designated regions where a certain number of elements is required to be present. We only
review their definition via an example:

Example 5.2 To show that the marked mesh pattern 1 occurs in the permutation 526413, we first

need to find an occurrence of the underlying classical pattern 132. There are three such occurrences, as
shown below.

However, only the middle occurrence of 132 is an occurrence of the marked mesh pattern since it is the
only occurrence having at least one dot in the box marked with “1” in the pattern, as well as having no
dots in the shaded vertical strip. 2

6 Singularity implications from patterns
Various properties of Schubert varieties have been characterized by patterns. Figure 5 shows how these
various properties imply each other. These implications are known on general geometric principles, but
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smooth

factorial

def. by incl.
1

1

1

local compl. inters.
1

1

1

1

Gorenstein
1

two inf. families of patterns

Fig. 5: Properties of Schubert varieties described with pattern avoidance. An arrow between two patterns means that
avoidance of the first pattern implies avoidance of the second.

they can also be proven combinatorially. Notice that this diagram shows that the two classical patterns
3421 and 4231 characterizing smooth varieties each lead to distinct groups of patterns for less restrictive
criteria.

7 Kostant polynomials at the identity
From our explicit equations for the lci Schubert varieties in a neighborhood of the identity, we obtain
the following formulas for particular specializations of the double Schubert polynomials of Lascoux and
Schützenberger [LS82a, LS82b], as these represent local cohomology classes at the identity.

Corollary 7.1 Suppose Xv is defined by inclusions. Then

Sw0v(t1, . . . , tn; tn, . . . , t1) =
∏

(x,y)∈D(v)

(ty−rv(x,y) − tx+rv(x,y)).

Corollary 7.2 Suppose Xw is lci, and let v be the permutation defined by inclusions associated to w by
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Theorem 3.4. Then

Sw0w(t1, . . . , tn; tn, . . . , t1) = Sw0v(t1, . . . , tn; tn, . . . , t1)
∏

(p,q)∈E′′(w)

rw(p,q)∑
i=0

tq−i − tp+i

 .

For j and i with 1 ≤ j < i ≤ n, let sji ∈ Sn be the transposition switching j and i. For the case
where Xv is smooth, the following is a theorem of Kumar [Kum96], restated in our language. (The
equivalence of our statement with the original is unfortunately folklore; parts of the connection can be
found in [BL00, Gol01].)

Theorem 7.3 The Schubert variety Xv is smooth if and only if

Sw0v(t1, . . . , tn; tn, . . . , t1) =
∏

(i,j):sji 6≤v

(tj − ti)

Similar statements hold in all three cases for analogous specializations of double Grothendieck poly-
nomials.

Comparing Theorem 7.3 and Corollary 7.1 tells us (because Q[t1, . . . , tn] is a unique factorization
domain) that, in the case where Xv is smooth, the map

φ : D(v)→ {(i, j) | sji 6≤ v} (x, y) 7→ (x+ rv(x, y), y − rv(x, y))

is a bijection. Indeed, D(v) always has
(
n
2

)
− `(v) elements, and a theorem of Carrell [Car94] states that

{(i, j) | sji 6≤ v} has
(
n
2

)
− `(v) elements whenever Xv is smooth. We believe a purely combinatorial

proof can be given that φ is a bijection whenever v avoids 4231 and 3412.
In addition, the map φ can be defined for any v if we allow the codomain to include all transpositions

(or equivalently all positive roots). We conjecture the image of φ always contains {(i, j) | sji 6≤ v} and
equals this set precisely when v is defined by inclusions.

These considerations may help in finding a connection between the results of Gasharov and Reiner and
those of Hultman, Linusson, Shareshian, and Sjöstrand.

8 Questions
We conclude with a list of questions for future research. The first two are purely combinatorial problems.

Question 8.1 Enumerate the permutations w ∈ Sn for which Xw is lci. An ideal answer would provide
an explicit generating function.

For the smooth case, the analogous question was answered in unpublished work of Haiman [Hai92].
(A proof of this formula appears in [BMB07].) Bousquet-Mélou and Butler [BMB07] gave a generating
function for the number of factorial Schubert varieties. On the other hand, the analogous question for
Schubert varieties defined by inclusions and for Gorenstein Schubert varieties are still open.

We expect that a generating function for the Schubert varieties defined by inclusions could possibly be
obtained by an argument similar to the one for smooth Schubert varieties. Answering the following more
specific combinatorial question may help in deriving the generating function enumerating lci Schubert
varieties from a (currently unknown) generating function for Schubert varieties defined by inclusions.
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Question 8.2 Determine if the converse to Theorem 3.4 is true. More precisely, suppose w is a permu-
tation with essential set E(w), and suppose E′′(w) ⊂ E(w) is the set of essential set boxes that are not
defined by inclusions. If E(w) \ E′′(w) is the essential set for some permutation v (necessarily defined
by inclusions) such that rv(p, q) = rw(p, q) for all (p, q) ∈ E(w) \E′′(w) and `(v)− `(w) = #E′′(w),
then is w necessarily almost defined by inclusions (or equivalently lci)?

Another question is the following.

Question 8.3 Determine if Xw being lci depends solely on the Bruhat graph of w. If so, find reasonable
properties of the Bruhat graph that characterize when Xw is lci.

Note that it is a theorem of Carrell [Car94] that Xw is smooth (for simply-laced types) if and only if
the Bruhat graph is regular.
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