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A combinatorial formula for fusion coefficients
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Abstract. Using the expansion of the inverse of the Kostka matrix in terms of tabloids as presented by Eğecioğlu
and Remmel, we show that the fusion coefficients can be expressed as an alternating sum over cylindric tableaux.
Cylindric tableaux are skew tableaux with a certain cyclic symmetry. When the skew shape of the tableau has a
cutting point, meaning that the cylindric skew shape is not connected, or if its weight has at most two parts, we give
a positive combinatorial formula for the fusion coefficients. The proof uses a slight modification of a sign-reversing
involution introduced by Remmel and Shimozono. We discuss how this approach may work in general.

Résumé. En utilisant l’expansion de l’inverse de la matrice Kostka en termes de tabloı̈des introduite par Eğecioğlu
et Remmel, nous montrons que les coefficients de fusion peuvent être exprimés comme une somme alternée sur les
tableaux cylindriques. Les tableaux cylindriques sont des tableaux qui présentent une certaine symétrie cyclique.
Lorsque la forme du tableau a un point de coupure, ce qui signifie que la forme cylindrique n’est pas connecté, ou
lorsque son poids a au plus deux parts, nous donnons une formule combinatoire positive des coefficients de fusion. La
démonstration utilise une légère modification de l’involution qui change le signe introduite par Remmel et Shimozono.
Nous discutons comment cette approche pourrait fonctionner en général.

Keywords: fusion coefficients, Gromov–Witten invariants, Littlewood–Richardson coefficients, (inverse) Kostka ma-
trix, crystal graphs, cylindric tableaux, sign-reversing involution

1 Introduction
The famous Littlewood–Richardson rule [16] provides a combinatorial expression for the coefficients cνλµ
in the expansion of a product of Schur functions

sλsµ =
∑
ν

cνλµsν . (1)

It states that cνλµ is equal to the number of column-strict tableaux of skew shape ν/λ and content µ whose
column reading word is lattice. Here λ, µ, ν are partitions and a column-strict tableau of shape ν/λ is a
filling of the skew shape which is weakly increasing across rows and strictly increasing across columns.
The content of a tableau or word is µ = (µ1, µ2, . . .), where µi counts the number of i in the tableau or
word. Furthermore, a word is lattice if all right subwords have partition content.
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In this paper, we consider the analogous problem for fusion coefficients, which first appeared in the
literature as the structure constants of the Verlinde fusion algebra for the ŝln Wess–Zumino–Witten models
of level ` [25, 27]. Kac and Walton [10, 28, 29] provided an efficient algorithm for computing fusion
coefficients for any type. In type An−1 of level `, their formula is expressed as an alternating sum of the
Littlewood–Richardson coefficients

cν,`,nλµ =
∑
σ∈Ŝn

sign(σ) c
σ(ν+ρ)−ρ
λµ , (2)

where the sum is over the affine symmetric group Ŝn generated by 〈σ0, σ1, . . . , σn−1〉, ρ = (n − 1, n −
2, . . . , 1, 0), the symmetric group acts on compositions by permuting their entries, and σ0(λ) = (λn +
`+ n, λ2, . . . , λn−1, λ1 − `− n).

A notorious problem has been to find a direct positive or combinatorial formula for the fusion coef-
ficients as opposed to an alternating expression as in (2). Many attempts have been made along these
lines. Tudose [24] in her thesis gave a combinatorial interpretation when λ or µ has at most two columns.
For n = 2, 3, positive formulas are known [3] as well as when λ and µ are rectangles [23]. Knutson
formulated a conjecture for the quantum Littlewood–Richardson coefficients as presented in [4] in terms
of puzzles [14]. It is known that the quantum cohomology structure coefficients are related to fusion
coefficients [1, 2]. Coskun [5] gave a positive geometric rule to compute the structure constants of the
cohomology ring of two-step flag varieties in terms of Mondrian tableaux.

There are many other interpretations and appearances of fusion coefficients. For example, Goodman
and Wenzl [8] showed that the fusion coefficients are related to the structure coefficients of Hecke algebras
at roots of unity. This was used in [15] to show that they are special cases of the structure coefficients of
the k-Schur functions. As mentioned earlier, they are also related to the quantum cohomology structure
coefficients [1, 2] and intertwiners in vertex operator algebras [30]. Postnikov [19] formulated the quan-
tum cohomology ring in terms of the affine nilTemperley–Lieb algebra, and Korff and Stroppel [11, 13]
provided an analogous construction of the fusion ring in terms of the affine local plactic algebra.

The main result of this paper is a simple proof of a combinatorial formula for the fusion coefficients for
a general class of partitions, which includes all previously known cases (that is, the two-column case of
Tudose [24], n = 2, 3 of [3], and cases considered by Postnikov [19]). The proof uses the fusion Pieri rule
to obtain an expression of the fusion coefficients in terms of cylindric tableaux (see Sections 2 and 3). We
then amend a sign-reversing involution of Remmel and Shimozono [20] to cancel all negative terms (see
Section 4). We finish with a discussion of how this method could lead to a formula for fusion coefficients
in general.

To state the main result, several definitions are needed. A partition λ is of rank n if it has at most n
parts. It is of level ` if λ1 − λn ≤ `. Let P`,n be the set of level ` and rank n partitions. In addition, let
R`,n be the set of partitions of rank n with first part not exceeding `, that is, the set of partitions contained
in a rectangle of width ` and height n.

Theorem 1.1 Let `, n be two positive integers, λ, µ ∈ R`,n and ν ∈ P`,n such that |λ|+ |µ| = |ν|.

1. If ν/λ+shift−`,n(ν/λ) is not connected (see Section 3 for the definition of shift), then the level ` fu-
sion coefficients cν,`,nλµ for typeAn−1 are given in terms of usual Littlewood–Richardson coefficients
for transformed partitions

cν,`,nλµ = cν̃
λ̃µ
, (3)



Fusion coefficients 737

with λ̃ and ν̃ as in Definition 4.2.

2. If µ has at most two parts, then (3) holds with λ̃ and ν̃ as in Definition 4.4.

The fusion coefficients enjoy many symmetries. For example:

• Columns of height n: If λ contains a column of height n, then cν,`,nλµ = cν̃,`,n
λ̃µ

where λ̃ (resp. ν̃) is
obtained from λ (resp. ν) by removing or adding a column of height n.

• Level-rank duality: Denoting by λt the transpose partition of λ, we have cν,`,nλµ = cν
t,n,`
λtµt . Here νt

should be identified with its cyclic analogue of attaching all parts νti for i > ` to νti−`.

• Strange duality: For λ ∈ R`,n denote by λ∨ the complement of λ in the rectangle of size ` × n.
Then the fusion coefficient labeled by the complement partitions is related to cν,`,nλµ . This is best
described using toric shapes, see [19].

• S3 symmetry: The fusion coefficients cν,`,nλµ are symmetric with respect to any permutation of the
partitions λ, µ, ν (up to certain transformations on ν to put all partitions on the same footing). For
more details see [19].

If under any of the above symmetries, one of the cases of Theorem 1.1 holds, a combinatorial formula for
the corresponding fusion coefficient follows. In particular, Theorem 1.1 (2) under the level-rank duality
is equivalent to the case when µ has at most two columns. This corresponds to the case studied by
Tudose [24]. We would like to point out that the proof given here (see Section 4.2) is much simpler than
the proof in [24] which involves many case checks.
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2 Tabloids
To derive a formula for the fusion coefficients, we will use the well-known relation between Schur func-
tions sµ and the homogeneous symmetric functions hα (see for example [17, §I.6, Table 1])

sµ =
∑
α

K−1αµ hα, (4)

where K−1αµ is the inverse of the Kostka matrix. Eğecioğlu and Remmel [6] gave an interpretation for
the entries in the inverse Kostka matrix using a combinatorial structure called tabloids. Note that these
tabloids are different from the ones used in the representation theory of the symmetric group.

The definition of a tabloid is a filling of a partition µ with certain shapes called ribbons. A ribbon is a
connected skew shape which does not contain any 2 × 2 squares. The height of a ribbon is one less than
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the number of occupied rows. A tabloid of shape µ is then a tiling of µ by ribbons such that each ribbon
contains a cell in the first column. The weight of a tabloid is β = (β1, β2, . . .), where βi is the length of
the ribbon starting in the i-th cell from the bottom in the first column of µ. Here we use French notation
for the shape µ placing the longest part of µ at the bottom. The sign of a tabloid T is (−1)height(T ), where
the height of T is the sum of the heights of all ribbons it contains. The type of a tabloid T with weight β
is the partition α obtained by rearranging β into non-increasing order.

Example 2.1 The four tabloids T of shape µ = (3, 2, 1) are

with
sign(T )weight(T ) = (3, 2, 1),−(1, 4, 1),−(3, 0, 3), (1, 0, 5),

and
type(T ) = (3, 2, 1), (4, 1, 1), (3, 3), (5, 1),

respectively.

Eğecioğlu and Remmel [6] proved that

K−1αµ =
∑
T

sign(T ), (5)

where the sum is over all tabloids T of type α and shape µ.

3 Cyclic symmetry
To compute the fusion coefficients, it suffices to calculate sλsµ in the fusion ring. Using (4) we obtain

sλsµ =
∑
α

K−1αµ hαsλ . (6)

Note that hα is multiplicative with hα = hα1hα2 · · · . This enables us to compute the product hαsλ using
the fusion Pieri rule [8, Proposition 2.6]: for 1 ≤ r ≤ ` and λ ∈ P`,n

hrsλ =
∑
ν

sν , (7)

where the sum is over all ν ∈ P`,n such that ν/λ is a horizontal r-strip and ν1 − λn ≤ `.

3.1 Cylindric tableaux
This leads us to the definition of cylindric tableaux. See also [7, 12, 18, 19]. For the precise definition
we use a notion of shifting (skew) partitions. View a skew partition ν/λ as being placed at the origin so
that the bottom leftmost cells of ν and λ are placed at (0, 0). We then define shifta,b(ν/λ) to be the skew
partition where the bottom leftmost cells of ν and λ are placed at position (a, b) in the plane. We denote
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the superposition of a skew partition ν/λ and its shift by ν/λ+shifta,b(ν/λ). We can similarly shift skew
tableaux, which are just fillings of skew shapes.

Note that when ν, λ ∈ P`,n such that ν/λ is a skew shape, then ν/λ + shift−`,n(ν/λ) can be viewed
as a skew shape inside the quadrant x ≥ −` and y ≥ 0.

Definition 3.1 For two positive integers ` and n and λ ⊆ ν ∈ P`,n, a cylindric tableau t of shape ν/λ is
a column-strict filling of the shape ν/λ such that t+shift−`,n(t) is still column-strict.

We denote the set of all cylindric tableaux of shape ν/λ and content µ by T cyc
ν/λ,µ where, as usual, the

content µ of a tableau t is the tuple such that µi is the number of letters i in t.

Example 3.2 Let λ = (1, 1), µ = (2, 2, 2), ν = (4, 2, 2) and ` = n = 3. Then there are two cylindric
tableaux in T cyc

ν/λ,µ:

1 3
2
1 2 3 and

2 3
2
1 1 3 . Note that

3 3
2
1 1 2

is not cylindric since after shifting by (−3, 3) the rightmost 2 would sit above the leftmost 3, which is not
column-strict any longer.

3.2 Fusion coefficients
By iteration of (7), we derive that

hαsλ =
∑
ν

Kcyc
ν/λ,αsν , (8)

where Kcyc
ν/λ,α = |T cyc

ν/λ,α| is the cardinality of the set of cylindric tableaux of skew shape ν/λ and content
α. Combining this with (6) we obtain

sλsµ =
∑
α,ν

K−1αµ K
cyc
ν/λ,αsν , (9)

which shows that the fusion coefficient is given by the formula

cν,`,nλµ =
∑
α

Kcyc
ν/λ,α K

−1
αµ . (10)

As we can see from (5), the inverse of the Kostka matrix contains negative signs, so this formula is an
alternating sum. In the next section we will discuss a sign-reversing involution to cancel terms in certain
cases; the number of fixed points under this involution will precisely amount to the fusion coefficient.

Example 3.3 As in Example 3.2 consider λ = (1, 1), µ = (2, 2, 2), ν = (4, 2, 2) and ` = n = 3. The
tabloids of shape µ are
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with sign(T )weight(T ) = (2, 2, 2),−(2, 1, 3),−(1, 3, 2), (0, 3, 3),−(0, 2, 4), (1, 1, 4), respectively. There
are no cylindric tableaux of skew shape ν/λ and weight (0, 3, 3), (0, 2, 4) or (1, 1, 4). The cylindric
tableaux of skew shape ν/λ and weights (2, 2, 2), (2, 1, 3), and (1, 3, 2) are

1 3
2
1 2 3

2 3
2
1 1 3

1 3
2
1 3 3

2 3
2
1 2 3 .

Since two of them come with a positive sign and two with a negative sign, Equation (10) shows that the
fusion coefficient c(422),3,3(11),(222) = 0.

Note that if instead of the fusion Pieri rule as in (7) one uses the usual Pieri rule for hrsλ, one obtains
the following expression for the Littlewood–Richardson coefficients

cνλµ =
∑
α

Kν/λ,α K
−1
αµ , (11)

where Kν/λ,α is the skew Kostka matrix.

4 Sign-reversing involution
Remmel and Shimozono [20] proved the Littlewood–Richardson rule using a sign-reversing involution.
Let us explain their approach first as we will use a modification of it in Section 4.2 to prove Theorem 1.1.

4.1 The Littlewood–Richardson case
Note that each tabloid T as defined in Section 2 is in one-to-one correspondence with its weight. Clearly
a given T yields weight(T ). Conversely, given a weight (α1, α2, . . .), start with the bottommost cell in
the first column and draw a ribbon of length α1; there is a unique way of doing so. Then proceed to the
second cell in the first column and draw a ribbon of length α2 and so on. It is not hard to see that either
there is no way of doing so or there is a unique way of drawing the ribbons such that at each step the
resulting shape is a partition.

Under this correspondence between tabloids and weights, (11) can be rewritten as (see also [20, Eq.
(1.14)])

cνλµ =
∑
(σ,t)

sign(σ) , (12)

where the sum is over all pairs (σ, t) with σ ∈ Sn and t ∈ Tν/λ,α a column-strict skew tableau of shape
ν/λ and weight α = σ(µ + ρ) − ρ. Here ρ = (n − 1, n − 2, . . . , 1, 0) and σ acts on an n-tuple by
permuting its entries.

The set of column-strict skew tableaux of given shape ν/λ over the alphabet {1, 2, . . . , n}, denoted
Tν/λ, is endowed with crystal operators ẽi, f̃i, s̃i for 1 ≤ i < n. For t ∈ Tν/λ, let word(t) be the column
reading word of t. That is, read the columns of t top to bottom, left to right. On a word w, the crystal
operators ẽi, f̃i, and s̃i only act on the letters i and i + 1. In the subword of w consisting of the letters i
and i+ 1, successively bracket pairs (i+ 1) i. Then f̃i makes the rightmost unbracketed i into an i+ 1;
if no such i exists, f̃i annihilates the word. Similarly, ẽi changes the leftmost unbracketed i+ 1 into an i;
if no such i + 1 exists, ẽi annihilates the word. Finally, if the subword of w of unbracketed letters i and
i+ 1 is ia(i+ 1)b, then in s̃i(w) this subword is replaced by ib(i+ 1)a.
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Example 4.1 Let n = 4 and w = 4123322341214223. The bracketing for i = 2 yields

4 1 2 3 3 2 2 3 4 1 2 1 4 2 2 3
· ( ( ) ) ( ) · · ·

so that

ẽ2(w) = 4 1 2 3 3 2 2 3 4 1 2 1 4 2 2 2

f̃2(w) = 4 1 2 3 3 2 2 3 4 1 2 1 4 2 3 3

s̃2(w) = 4 1 2 3 3 2 2 3 4 1 2 1 4 3 3 3 .

The action of the crystal operators on column-strict skew tableaux is determined by the action on their
column-words. It is known that after the application of ẽi, f̃i, and s̃i, the resulting skew tableau is still
column-strict. A tableau t ∈ Tν/λ is called highest weight if ẽi(t) = 0 for all 1 ≤ i < n. Notice that t is
highest weight if and only if word(t) is lattice.

To prove the Littlewood–Richardson rule, Remmel and Shimozono [20] introduced the following sign-
reversing involution θ:

1. If t is highest weight, then θ(σ, t) = (σ, t).

2. Otherwise, let r + 1 be the rightmost letter in word(t) that violates the lattice condition. Define
θ(σ, t) = (σrσ, s̃r ẽr(t)).

Since the highest weight elements t ∈ Tν/λ yield the fixed-points of θ, their weight must be a partition. It
was shown in [20], that this implies that σ = id so that t ∈ Tν/λ,µ. Hence indeed cνλµ counts the tableaux
in Tν/λ,µ that are lattice (or equivalently highest weight).

4.2 Proof of Theorem 1.1
Before giving the proof of Theorem 1.1, we need to provide the definition of cutting points and ν̃ and λ̃
in the statement of the theorem.

Definition 4.2 Given two positive integers ` and n, consider λ ∈ R`,n and ν ∈ P`,n such that ν/λ is a
skew shape where ν/λ + shift−`,n(ν/λ) is not connected. A cutting point c is the index of the rightmost
column in ν/λ + shift−`,n(ν/λ) such that the columns with x-coordinate c and c + 1 do not share a
common edge. Note that such a c must exist since the skew shape is not connected. Let ν̃ and λ̃ denote the
partitions where ν̃/λ̃ is the skew shape in the window from column c− ` to column c.

Example 4.3 Let ` = 4, n = 3, λ = (3, 1), and ν = (5, 5, 1), so that

ν/λ = and ν/λ+ shift−4,3(ν/λ) = .
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Then c = 1 is a cutting point and

ν̃/λ̃ = .

Indeed with µ = (4, 2, 1) we have that c(551),4,3(31),(421) = c
(444)
(32),(421) = 1 verifying Theorem 1.1 (1).

For the proof of Theorem 1.1 (1), one may use the same arguments as in the derivation of (12) for the
Littlewood–Richardson coefficients to rewrite (10) for the fusion coefficients as

cν,`,nλµ =
∑
(σ,t)

sign(σ) , (13)

where now the sum is over all pairs (σ, t) with σ ∈ Sn and t ∈ T cyc
ν/λ,α a cylindric tableau of shape ν/λ

and weight α = σ(µ+ ρ)− ρ.
Due to the cylindric symmetry of the tableaux in T cyc

ν/λ,α, we have |T cyc
ν/λ,α| = |T

cyc

ν̃/λ̃,α
|, where recall

the definition of ν̃ and λ̃ from Definition 4.2. Since c (as in Definition 4.2) is a cutting point, that is,
the adjacent columns do not share an edge, there is no cylindric column-strict condition imposed on the
elements in T cyc

ν̃/λ̃,α
. Hence T cyc

ν̃/λ̃,α
= Tν̃/λ̃,α, so that the arguments from Section 4.1 apply. This proves

Theorem 1.1 (1).

Definition 4.4 Given two positive integers ` and n ≥ 2, let λ, µ ∈ R`,n and ν ∈ P`,n be such that µ has
at most two parts. Then either ν/λ has a cutting point or it contains at least one column of height two.
Let c be the rightmost such column. Then ν̃ and λ̃ denote the partitions such that ν̃/λ̃ is the skew shape
of ν/λ+ shift−`,n(ν/λ) in the window from column c− ` to column c.

By the same arguments as in the proof of part (1) of Theorem 1.1 we have |T cyc
ν/λ,α| = |T

cyc

ν̃/λ̃,α
| by

cyclic symmetry. Since µ has only two parts, the only crystal operators that apply in this case are s̃1ẽ1.
The column of height 2 (which after the cyclic shift is the rightmost column) contains the letters 21 by
column-strictness. The crystal operators cannot change this column due to the crystal bracketing rules.
Hence the cylindric column-strict conditions are always guaranteed which proves Theorem 1.1 (2). Note
that this case is related to the cyclic sl2 crystals introduced in [9].

5 Beyond the cutting point
The cylindric tableaux of Example 3.3 do not have a cutting point and hence Theorem 1.1 does not apply.
Under the Remmel–Shimozono involution we have

s̃2ẽ2

1 3
2
1 2 3

=

1 3
2
1 3 3 .

However, the action of the Remmel–Shimozono involution on the other two cylindric tableaux yields
non-cylindric tableaux:

s̃2ẽ2

2 3
2
1 1 3

=

3 3
2
1 1 3

and s̃2ẽ2

2 3
2
1 2 3

=

3 3
2
1 3 3
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and hence does not yield a cancelation within the set T cyc
ν/λ,·.

Note, however, that it is possible to amend the operators used by Remmel and Shimozono by conjugat-
ing the action of s̃iẽi by a cyclic shift. In the above example, moving the 2 in the leftmost column down
we obtain

3
2
1 1 3

2
and

3
2
1 2 3

2

which cancel under the action of s̃1ẽ1.
We conjecture that such cyclic cancelations are always possible. In fact, computer experiments using

Sage [21, 22] suggest that the resulting fusion lattice tableaux (that is, the skew tableaux that are fixed
points under the involution) correspond to the 2d puzzles conjectured by Knutson [4] to yield the quantum
Littlewood–Richardson coefficients or equivalently fusion coefficients by a bijection between puzzles and
tableaux similar to [26, Figure 11].
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