
HAL Id: hal-01283114
https://hal.science/hal-01283114v1

Submitted on 5 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Product of Stanley symmetric functions
Nan Li

To cite this version:
Nan Li. Product of Stanley symmetric functions. 24th International Conference on Formal
Power Series and Algebraic Combinatorics (FPSAC 2012), 2012, Nagoya, Japan. pp.575-586,
�10.46298/dmtcs.3064�. �hal-01283114�

https://hal.science/hal-01283114v1
https://hal.archives-ouvertes.fr


FPSAC 2012, Nagoya, Japan DMTCS proc. AR, 2012, 575–586

A canonical expansion of the product of two
Stanley symmetric functions

Nan Li
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Abstract. We study the problem of expanding the product of two Stanley symmetric functions Fw · Fu into Stanley
symmetric functions in some natural way. Our approach is to consider a Stanley symmetric function as a stabilized
Schubert polynomial Fw = limn→∞S1n×w, and study the behavior of the expansion of S1n×w · S1n×u into
Schubert polynomials, as n increases. We prove that this expansion stabilizes and thus we get a natural expansion for
the product of two Stanley symmetric functions. In the case when one permutation is Grassmannian, we have a better
understanding of this stability.

Résumé. Nous étudions le problème de l’développement du produit de deux fonctions symétriques de Stanley Fw ·Fu

en fonctions symétriques de Stanley de façon naturelle. Notre méthode consiste à considerer une fonction symétrique
de Stanley comme un polynôme du Schubert stabilisé Fw = limn→∞S1n×w, et à étudier le comportement de
l’développement de S1n×W · S1n×u en polynômes de Schubert lorsque n augmente. Nous prouvons que cette
développement se stabilise et donc nous obtenons une développement naturelle pour le produit de deux fonctions
symétriques de Stanley. Dans le cas où l’une des permutations est Grassmannienne, nous avons une meilleure
compréhension de cette stabilité.

Keywords: Stanley symmetric functions, Schubert polynomials, Littlewood-Richardson rule

1 Introduction
In [19], Stanley defined a homogeneous power series Fw in infinitely many variables x1, x2, . . . , to com-
pute the number of reduced decompositions of a given permutation w. He also proved that Fw is sym-
metric, and Fw is now referred to as a Stanley symmetric function. Our convention is that Fw means the
usual Fw−1 as defined in [19]. It is shown in [6] that

Fw = sD(w),

where D(w) is the diagram of w and sD(w) is the generalized Schur function defined in terms of the
column-strict balanced labellings of D(w). We are interested in the problem of expanding the product
of two Stanley symmetric functions Fw · Fu into Stanley symmetric functions. The hope is that we can
explain the coefficients in terms of D(w) and D(u), as a generalized Littlewood-Richardson rule for
Schur functions.
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However, since the Stanley symmetric functions are not linearly independent, we want to expand them
in some natural way. For w ∈ Sm and u ∈ Sn, denote by w×u the permutation v ∈ Sm+n, with one line
notation: w(1) · · ·w(m)(u(1) +m) · · · (u(n) +m). Also, by 1n, we mean 1× 1× · · · × 1 = 123 · · ·n.
For example, 12 × 2134 = 124356. We consider a Stanley symmetric function as a stabilized Schubert
polynomial [14]:

Fw = lim
n→∞

S1n×w. (1)

Divided difference operators were first used by Bernstein-Gelfand-Gelfand [3] and Demazure [5] for
the study of the cohomology of flag manifolds. Later, Lascoux and Schuützenberger [10] developed the
theory of Schubert polynomials based on divided difference operators. The collection {Sw | w ∈ Sn} of
Schubert polynomials determines an integral basis for the cohomology ring of the flag manifold, and thus
there exist integer structure constants cvwu such that

Sw ·Su =
∑
v

cvwuSv.

It is a long standing question to find a combinatorial description of these constants. Some special cases
are known. The simplest but important case is Monk’s rule [16], which corresponds to the case when
one of the Schubert polynomials is indexed by a simple transposition. A generalized Pieri rule was
conjectured by Lascoux and Schuützenberger [10], where they also sketched an algebraic proof. This
Pieri rule was also conjectured by Bergeron and Billey [2] in another form, and was proved by Sottile [18]
using geometry, and by Winkel [20] via a combinatorial proof. There are also results about the case of a
Schubert polynomial times a Schur polynomial, for example see [9], [13] and [1].

In order to study the expansion of Fw · Fu, we study the behavior, as n increases, of the expansion of
S1n×w · S1n×u into Schubert polynomials. Let us look at a toy example when u = tm,m+1, a simple
transposition.

By Monk’s rule [16], we have

Sw ·Stm,m+1
=

∑
j≤m<k

`(wtjk)=`(w)+1

Swtjk ,

where `(w) is the length of the permutationw andwtjk is the permutation obtained fromw by exchanging
w(j) and w(k). Notice that 1× tm,m+1 = tm+1,m+2. Then for S1×w ·S1×tm,m+1

, we will have a term
S1×wtjk corresponding to each term Swtjk in the expansion of Sw ·Stm,m+1

. Let the position of 1 in w
be s, i.e., w−1(1) = s. If s ≤ m, then there are no more permutations; otherwise, if s > m, we get one
more permutation (1× w)t1,s+1. This holds for all S1n×w ·S1n×tm,m+1 . More precisely, we have

S1n×w ·S1n×tm,m+1
=

∑
j≤m<k

`(wtjk)=`(w)+1

S1n×wtjk(+S1n−1×(1×w)t1,s+1
, if s > m).

Now taking the limit for n→∞, we get the following canonical expansion:

Fw · Ftm,m+1
=

∑
j≤m<k

`(wtjk)=`(w)+1

Fwtjk(+F(1×w)t1,s+1
, if s > m).
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Let us look at another example for w = 3241 and u = 4312. Consider S1n×3241 · S1n×4312 as n
increases. For n = 0, 1, 2, we have

S3241 ·S4312 =S642135

S1×3241 ·S1×4312 =S1×642135 +S265314 +S2743156 +S356214 +S364215 +S365124

+S462315 +S561324

S12×3241 ·S12×4312 =S12×642135 +S1×265314 +S1×2743156 +S1×356214 +S1×364215 +S1×365124

+S1×462315 +S1×561324 +S2375416 +S246531 +S256341.

Notice that as n increases, we keep all the permutations appearing in the previous case and add some new
permutations (the underlined terms). In this example, the expansion stabilizes after n = 2, i.e., we do not
add new permutations for n > 2, i.e.,

S1n×3241 ·S1n×4312 =S1n×642135 +S1n−1×265314 +S1n−1×2743156 +S1n−1×356214 +S1n−1×364215

+S1n−1×365124 +S1n−1×462315 +S1n−1×561324 +S1n−2×2375416 +S1n−2×246531

+S1n−2×256341.

Then taking n→∞, we have

F3241 · F4312 =F642135 + F265314 + F2743156 + F356214 + F364215 + F365124 + F462315 + F561324

+ F2375416 + F246531 + F256341.

The stability of the expansion S1n×w · S1n×u we observed in the previous two examples are true in
general. Here is the main result of this paper.

Theorem 1.1 Let w, u be two permutations.

1. Suppose Sw ·Su =
∑
v0∈V0

cv0w,uSv0 . Then

S1×w ·S1×u =
∑
v0∈V0

cv0w,uS1×v0 +
∑
v1∈V1

cv1w,uSv1 ,

where v1(1) 6= 1, for each v1 ∈ V1.

2. Let k = `(w) + `(u). Then for all n ≥ k, we have

S1n×w ·S1n×u =
∑
v0∈V0

cv0w,uS1n×v0 +
∑
v1∈V1

cv1w,uS1n−1×v1 + · · ·+
∑
vk∈Vk

cvkw,uS1n−k×vk ,

where Vi (possibly empty) is the set of new permutations appearing in S1i×w ·S1i×u compared to
S1i−1×w ·S1i−1×u. Taking n→∞, we have a canonical expansion:

Fw · Fu =
∑
v∈V

cvw,uFv, (2)

where V = V0 ∪ · · · ∪ Vk.
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For a permutation w ∈ Sn, define the code c(w) to be the sequence c(w) = (c1, c2, . . . ) of nonnegative
integers given by ci = #{j ∈ [n] | j > i, w(j) < w(i)}. Define the length of c(w) to be i0 = max{i |
ci 6= 0}, denoted by `(c(w)). We call a permutation Grassmannian if it has at most one descent. It is
known that if w is Grassmannian, then Sw is a Schur polynomial in `(c(w)) variables.

Theorem 1.2 Apply the above notations. If one of w, u is Grassmannian, then we also have:

1. If Vi = ∅ for some i, then Vj = ∅ for all j > i. We call the smallest i such that Vi = ∅ the stability
number for w, u.

2. The stability number is bounded by max{`(c(w)), `(c(u))}. In particular, if w = u with w(1) 6= 1,
the stability number equals w−1(1)− 1.

Conjecture 1.3 Theorem 1.2 is true for general w, u.

In Section 2, we prove Theorem 1.1 using the combinatorial definition of Schubert polynomials given in
[4]. In Section 3, we study the case when one of the permutation is Grassmannian. We prove Theorem 1.1
and 1.2 by an algorithm described in [9] using maximal transitions [11]. In Section 4, we generalize this
stability to the product of double Schubert polynomials. We also give the definition of the weak and strong
stable expansions, and prove some other stable properties, which provide a second proof of Theorem 1.1.

2 Proof of Theorem 1.1
Let us recall the combinatorial definition of Schubert polynomials introduced in Theorem 1,1 [4]. Let
p = `(w) be the length of w, and R(w) be the set of all the reduced words of w. For a = (a1, . . . , ap), let
K(a) be the set of all a-compatible sequences, i.e., (i1, . . . , ip) such that: 1) i1 ≤ · · · ≤ ip; 2) ij ≤ aj ,
for j = 1, . . . , p; and 3) ij < ij+1, if aj < aj+1. Then we have

Sw =
∑

a∈R(w)

∑
(i1,...,ip)∈K(a)

xi1 · · ·xip . (3)

Definition 2.1 For two integer vectors b1 = (b11, . . . , b
1
p) and b2 = (b21, . . . , b

2
p), consider the following

conditions:

1. b1 and b2 are weakly increasing. Namely, b11 ≤ · · · ≤ b1p and b21 ≤ · · · ≤ b2p.

2. b1 is smaller than b2, denoted by b1 < b2, which means b1i ≤ b2i for each i = 1, . . . , p;

3. b1 is similar with b2, denoted by b1 ∼ b2, which means b1 and b2 increase at the same time, i.e.,
b1i < b1i+1 if and only if b2i < b2i+1;

4. b1 and b2 are bounded by n, i.e., b1i ≤ n and b2i ≤ n, for all i = 1, . . . , p.

We call (b1, b2) a good pair if it satisfies the first three conditions, call it a good-n pair, if all four
conditions are satisfied.

For example, (b1, b2), with b1 = (2, 4, 4, 5) and b2 = (2, 6, 6, 8), is a good-8 pair. Denote Xb =
xb1xb2 · · ·xbp . For example, Xb1 = x2x

2
4x5, for the previous b1. We use co(Xb) to denote the coef-

ficient of Xb.
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Lemma 2.2 1. In Sw, co(Xb1) ≥ co(Xb2), for any good pair (b1, b2).

2. In S1n×u, co(Xb1) = co(Xb2), for any good-n pair (b1, b2).

3. In S1n×u, co(Xb1 ·g) = co(Xb2 ·g), for any good-n pair (b1, b2) and any monomial g with variable
indices larger than n.

4. In S1n×w ·S1n×u, co(Xb1 · g) = co(Xb2 · g), for any good-n pair (b1, b2) any monomial g with
indices larger than n.

Proof: Parts 1-3 follow from the combinatorial definition (3) of Schubert polynomials and Definition 2.1.
Now we will prove part 4. In fact, any Xb1 · g it is the product of two monomials, one from S1n×w
and one from S1n×u, let us assume Xb1 = Xb11 · Xb12 , and the corresponding decomposition for Xb2

is Xb2 = Xb21 · Xb22 . For example, consider the previous good-8 pair (b1, b2). If Xb1 = x2x
2
4x5 =

(x2x4)(x4x5) with b11 = (2, 4) and b12 = (4, 5), then we decompose Xb2 = x2x
2
6x8 as (x2x6)(x6x8)

with b21 = (2, 6) and b22 = (6, 8). Since b1 ∼ b2, we have b11 ∼ b21 and b12 ∼ b22. Applying part 3 to
both pairs, we have co(Xb1 · g) = co(Xb2 · g). 2

Write the code of w as c(w) = (c1, c2, . . . , cp) and Xc(w) = xc11 x
c2
2 · · ·x

cp
p . Let b(c) be the weakly

increasing sequence such that Xb(c) = Xc. We use reverse lex-order in this section. It is known that the
top degree term of Sw is Xc(w), i.e.,

Sw = Xc(w) +
∑
b

Xb, (4)

where each b satisfies b < b(c(w)) termwisely, as defined in part 2 of Definition 2.1. Now we consider
the process of getting the expansion of Sw ·Su. By (3), the top degree term is Xc(w)+c(u). Let v1 be the
permutation such that c(v1) = c(w) + c(u). Then

Sw ·Su = Sv1 + · · · ,

so cv1wu = 1. Then consider the top degree term in Sw ·Su −Sv1 . Let it be c2Xc(v2) for some v2. Then

Sw ·Su −Sv1 = c2Sv2 + · · · .

Next, consider the top degree term in Sw ·Su−Sv1−c2Sv2 , etc. Since there are finitely many monomials
in Sw ·Su, this process terminates, and we get an expansion Sw ·Su =

∑
v∈V0

cvwuSv .

Proof of Theorem 1.1:

1. By the combinatorial definition of Schubert polynomial (3) and the above process of expanding
Sw ·Su, we have c1×v1×w,1×u = cvw,u for all v ∈ V0. Further more, each term in

S1×w ·S1×u −
∑
v0∈V0

cv0w,uS1×v0

is divided by x1. So any Sv with c(v) = (c1, c2, . . . ) appear in the above difference has c1 6= 0,
which is equivalent to v(1) 6= 0. This proves part one.
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2. For a fixed n, suppose
S1n×w ·S1n×u =

∑
v∈V

cvwuSv.

We claim that the code c(v) = (c1, c2, . . . , cp) for v ∈ V has to satisfy the following property: let
c(v)n = (c1, c2, . . . , cn) be the first n elements in c(v). Let i(v) be the smallest number such that
ci 6= 0. Then the claim is that if i(v) ≤ n, then for all i(v) < j ≤ n, we have cj 6= 0. Suppose we
have proved this claim. Then since c1 + · · ·+ cn ≤ k, where k = `(w) + `(u), for each v ∈ V , we
have i(v) ≥ n − k. In other words, the code c(v) starts with at least n − k zeros, and thus v starts
with 12 · · · (n− k), which will finish the proof. Now let us prove the claim.

In fact, suppose we have some v0 ∈ V which does not satisfy the claim. Namely there exists some
j such that i(v) < j ≤ n and cj = 0. Let c′ = (0, c1, c2, . . . , cj−1, cj+1, . . . , cn). Consider the
pair b1 = b(c(v)n) and b2 = b(c′), i.e., Xb1 = Xc(v)n andXb2 = Xc′ . For example, let n = 7, and
c(v0)n = (0, 0, 0, 2, 3, 0, 2). Then Xb1 = X2

4X
3
5x

2
7, c′ = (0, 0, 0, 0, 2, 3, 2) and Xb2 = X2

5X
3
6x

2
7.

Then (b1, b2) is a good n-pair.

Now let g = X(cn+1,...,cp). Notice that Xb1 · g is the top degree term in Sv0 by (4). Since b2 > b1,
co(Xb2 · g) = 0 in Sv0 . Therefore, co(Xb1 · g) > co(Xb2 · g) in Sv0 . By Lemma 2.2, on
the right hand side, for each v ∈ V , we have co(Xb1 · g) ≥ co(Xb2 · g), therefore, on the right
hand side, we have co(Xb1 · g) > co(Xb2 · g). However, on the left hand side, we must have
co(Xb1 · g) = co(Xb2 · g), a contradiction.

2

3 Schubert polynomial times a Schur polynomial
In this section we will prove Theorem 1.1 and 1.2 for the case when one of the permutation w, u is Grass-
mannian. We will apply an algorithm for multiplying a Schubert polynomial by a Schur polynomial based
on the following result. This result was originally proved using Kohnert’s algorithm, which unfortunately,
has not been completely proved yet. However, using the very similar algorithm called ladder and chute
moves studied in [2], we can still show that the following theorem is true.

Theorem 3.1 (Theorem 3.1 in [9]) Let Su be a Schur polynomial with m variables, i.e., u is a Grass-
mannian permutation with `(c(v)) = m. Let Sw be a Schubert polynomial with m variables, i.e.,
`(c(w)) = m. Then

Sw ·Su = Sw×u ↓ Am,

where f ↓ Am = f(x1, . . . , xm, 0, . . . , 0).

The algorithm we will apply for multiplying a Schubert polynomial by a Schur polynomial was studied
in [9] and is a modification of the algorithm by Lascoux and Schützenberger [11] for decomposing the
product of two Schur functions into a sum of Schur functions.

3.1 Maximal transition tree
Recall that wtrs is the permutation obtained from w by switching w(r) and w(s). Let r be the largest
descent of the permutation w, and s be the largest integer such that w(s) < w(r). The following formula
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Fig. 1: MT-tree rooted at 321× 2413 for Example 3.2

follows from Monk’s rule [16]
Sw = xrSu +

∑
v∈S(w)

Sv, (5)

where u = wtrs and S(w) is the set of permutations of the formwtrstjr with j < r such that `(wtrstjr) =
`(w). So each v ∈ S(w) corresponds to a different j ∈ J(w). We call (5) a maximal transition (MT
for short) (see [11]). For example, for w = 321654, we have r(w) = 5, s(w) = 6, J(w) = {1, 2, 3} and
S(w) = {421635, 341625, 324615}. We call each v ∈ S(w) a descendent of w.

Notice that ci = 0, for all i > r(w) in the code c(w) = (c1, c2, . . . ), and Sw is a polynomial with r(w)
variables. So if r(w) ≤ m, then Sw = Sw ↓ Am. If r(w) > m, we have Sw ↓ Am =

∑
v∈S(w) Sv ↓

Am by (5), since we set xr = 0. Notice that for each permutation v ∈ S(w), r(v) < r(w). We call
a permutation v bad if v−1(1) > m + 1. If v is bad, then xm+1 divides each monomial of Sv , so
Sv ↓ Am = 0.

Apply MT successively to w× u, each v ∈ S(w× u) and their descendants as long as the permutation
is not bad, until their largest descents are smaller than m. This way we get a finite tree with two types of
leaves: 1) a permutation with largest descent ≤ m, we call it a good leaf; and 2) a bad permutation as
defined above. Then Sw×u ↓ Am is obtained by summing up all of the good leaves. We call this tree the
MT-tree rooted at w × u; we call the edge between a permutation w and one of its descendant v ∈ S(w)
an MT-move.

Example 3.2 Here is an example of the MT tree rooted at w×u, for w = 321, u = 2413 and m = 2 (see
Figure 1). The leaves we cross out are the bad leaves, i.e., permutations with 1 in position larger than
m+ 1 = 3. The remaining leaves are good leaves, i.e., they have largest descent ≤ m = 2. So summing
up all the good leaves, we have S321 ·S2413 = S321×2413 ↓ A2 = S53124 +S45123.

Remark 3.3 Notice that in Figure 1, the descendants of 341625 are bad leaves (35214 and 34512). It
will be nice if one could simplify the tree so that we can remove 341625 without applying further moves.
However, it seems that such a rule, if exists, will be related with some pattern avoidances, which is hard
to describe in general.

Now we want to study the difference between the MT-tree rooted at 1× w × 1× u and the one rooted
at w × u.

Example 3.4 Continue Example 3.2. We study S1×321 ·S1×2413 (see Figure 2). Notice that now m = 3
instead of 2 in Example 3.2. Summing up all good leaves, we have S1×321 ·S1×2413 = S1432×13524 ↓
A3 = S164235 +S156234 +S263145 +S25413 +S246135 +S34512.
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Fig. 2: MT-tree rooted at 1× 321× 1× 2413 for Example 3.4

Compare the leaves of the above tree and those in Example 3.2. We have the following observations.

1. The good leaves in Example 3.2 (53124 and 45123) stay good in Example 3.4, simply with a one
added in front ( 1× 53124 = 164235 and 1× 45123 = 156234, bolded in Figure 2).

2. The remaining good leaves in Example 3.4 are descendants of some bad leaves in Example 3.2. For
example, 263145 (underlined in Figure 2) is obtained from 52314 which used to be bad in Example
3.2.

3. For the new good leaves in Example 3.4, the position of 1 stays the same as their ancestor in
Example 3.2. For example, both 263145 and 52314 has 1 in the fourth position.

In general, the first and second observations above are true as a consequence of Lemma 3.5, and the third
observation is true by Lemma 3.6.

Lemma 3.5 For the MT tree rooted at 1×w×1×u, consider the subtree T with all permutations starting
with 1. Then the leaves of T are exactly the leaves of the MT tree rooted at w × u with 1 added in front.

Lemma 3.6 For any reduced permutation w (cannot make more MT-moves), if we add 1 in the beginning
and then apply the MT-moves to 1×w, the position of 1 in the leaves is the same as the position of 1 in w.

Lemma 3.6 can be proved using the definition of an MT-move. For Lemma 3.5, we need to have a closer
look at the MT-move in terms of diagrams, which will be studied in the next subsection.

Now notice that in Example 3.4, there is still one bad leaf 243615 (see Figure 2). So in the next
step S12×321 · S12×2413, there will be some more good leaves with 243615 as ancestor. After that, the
expansion S1n×321 ·S1n×2413, for n ≥ 2 should have no more new permutations. And in fact, this is the
case: S1n×321 ·S1n×2413 = S1n×53124+S1n×45123+S1n−1×263145+S1n−1×25413+S1n−1×246135+
S1n−1×34512 +S1n−2×236415, for all n ≥ 2. So we have

F321 · F2413 = F53124 + F45123 + F263145 + F25413 + F246135 + F34512 + F236415. (6)

So the stability number for S321 ·S2413 is 2, as predicted by Theorem 1.2 part 2 that it should be bounded
by `(c(321)) = `(c(2413)) = 2. Now look at the positions of 1 in each permutation appearing on the
right hand side of (6): I = {3, 4, 5}, which is an interval without any gaps. In general, we have
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Lemma 3.7 Let Fw · Fu =
∑
v∈V Fv be the expansion we get by Theorem 1.1. Let I{v−1(1) | v ∈ V }.

Then I = [a, b] an interval without any gaps.

Lemma 3.7 together with Theorem 1.1 will imply Theorem 1.2. For a proof of Lemma 3.7, we also want
to use the diagrams interpretation of the MT-move studied in the next subsection.

3.2 MT-move in terms of diagrams
In order to prove Lemma 3.5 and 3.7, we want to describe the MT-move in terms of diagrams. Let v
be a descendant of w via an MT-move. Then D(v) is obtained from D(w) by moving some part of the
diagram up and left. For example, as shown in the first step of Example 3.2, applying an MT-move to
w = 3215746, we get v = 3216547, and the diagram of v is obtained from D(w) by moving the box
with a bullet up and left by one row and one column (see Figure 3). Notice that this diagram move is very
similar to the move described in [8].

3
2
1
5
7
4
6

◦
◦
◦

◦
◦

◦
◦
•

(a) w

3
2
1
6
5
4
7

◦
◦
◦

◦
◦
◦

◦

•

(b) v

Fig. 3: MT-move

In the diagram of w, consider the right-down corner box B(w), i.e., the box in the rightmost column
of the lowest row. By the definition of r(w) = r and s(w) = s, we have B(w) = Br,w(s). For each
j ∈ J(w), denote the box Bj,w(j) by T (w, j). Then the above changes of inversions can be seen as
moving some blocks with B(w) as its right-down corner up and left so that T (w, j) becomes its up-left
corner. For example, consider w = 321654 in the branching part of Example 3.2, with J(w) = {1, 2, 3}.
See Figure 4(a) forD(w), whereB(w) is marked with a bullet and all three possible T (w, j)’s are marked
with ×. Now applying MT-moves to D(w), all three D(v), for v ∈ S(w) are shown in Figure 4(b), 4(c)
and 4(d). Using this diagram interpretation of the MT-move, we can prove Lemma 3.5 by comparing the
MT-moves of D(w × u) and D(1× w × 1× u).

Now consider Lemma 3.7. Notice that v−1(1) − 1 is the number of boxes in the first column of
D(v). Consider again w and S(w) shown in Figure 4. Notice that applying different j ∈ J(w) may
result in different numbers b(j) of potential boxes to be added to the first column. For example, for
j = 2, there is one box left, and for j = 3, there are two boxes left (and are already added). The set
b = {b(j) | j ∈ J(w)} = [1, 2] is an interval without any gaps. Using the diagram interpretation of the
MT-move we can show that this holds in general, which implies Lemma 3.7.

Corollary 3.8 Let w, u be two permutations both with `(c(w)) = `(c(u)) = m (for the case when
`(c(w)) 6= `(c(u)), add enough ones to the front of one permutation). Assume u is Grassmannian. Apply
MT-moves successively to D(1m × w × u). Stop applying MT-moves to a diagram D as soon as all the
boxes in its diagram are in the first 2m rows. Denote the multiset of the diagrams obtained this way by A.
Then in the canonical expansion (2) Fw · Fu =

∑
v∈V c

v
wuFv , we have

cvwu = #{D ∈ A | D = D(v)}.



584 Nan Li

×
×
×

◦
◦
◦

◦
•

(a) D(w)

◦
◦
◦

◦
◦
◦
◦

×

•

(b) v1(j = 1)

◦
◦

◦
◦

◦
◦
◦

×
•

(c) v2(j = 2)

◦
◦
◦
◦

◦
◦
◦

×
•

(d) v3(j = 3)

Fig. 4: MT-moves using different j′s

4 Other Stable Expansions
In this section, we will study some other stable expansions related with Schubert polynomials. Given
some expansion, we can study the behavior of that expansion when we keep adding ones in front of the
indices, as we did for Theorem 1.1 and Theorem 1.2. We call the eventually stabilized behavior, described
in Theorem 1.1 the weak stable property; and if the expansion further satisfies the property that once there
are no new terms, there will be no new terms ever, as described in Theorem 1.2, we say that it satisfies the
strong stable property.

First note that by Theorem 1.1, we have the weak stable property for the expansion of the product of
finitely many Schubert polynomials into Schubert polynomials. Now, let us consider the double Schubert
polynomials. Corollary 4.1 follows from the following identity (see for example [15, Proposition 2.4.7]):

Sw(x, y) =
∑

w=v−1u
`(w)=`(u)+`(v)

Su(x)Sv(−y).

Corollary 4.1 For the unique expansion of the product of finitely many double Schubert polynomials into
Schubert polynomials, we have the weak stable property.

Now we consider the stable property for some other related expansions. It is well known (see [10],
[12, (2.6)-(2.7)], [7, (4.13)]) that the following are Z-linear bases for Z[x1, . . . , xn]/In, and each of them
spans the same vector space which is complementary to In:

1. the monomials xa11 · · ·x
an−1

n−1 such that 0 ≤ ak ≤ n− k;

2. the standard elementary monomials eI = ei1i2...in−1
= e1i1e

2
i2
· · · en−1in−1

, where eki = ei(x1, . . . , xk)
is the k’th elementary symmetric polynomial with k variables;

3. the Schubert polynomials Sw for w ∈ Sn.

In the rest of this section, we will prove the stable property for the unique expansions of eI into the Sw’s
and Sw into the eI ’s.

Proposition 4.2 For eI =
∑
w∈W βIwSw, we have the strong stable property, i.e., there exists some r

such that for all k ≥ r, we have

e(0k,i1,i2,...,in−1) =
∑
w∈W

βIwS1k×w +
∑

w1∈W1

βIw1
S1k−1×w + · · ·++

∑
wk∈Wr

βIwr
S1k−r×w,
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where for i = 1, . . . , r, we have Wi 6= ∅; and for 1 ≤ k < r, Wk is the set of new permutations added in
the expansion of e(0k,i1,i2,...,in−1) from e(0k−1,i1,i2,...,in−1). Moreover, we have r = i1 + i2 + · · ·+ in −
(n− 1) and Wr is the single permutation 23 · · · (r + n)1.

We prove Proposition 4.2 by the following lemma, which is implied by the Pieri rule.

Lemma 4.3 We have the strong stable property for the unique expansion of ejiSw into Schubert polyno-
mials.

For the expansion of Sw into the eI ’s, we have the following stable property:

Proposition 4.4 For the unique expansion Sw =
∑
I∈N∞ a

w
I eI , we have the weak stable property.

To prove Proposition 4.4, we use the following two identities from [17]: for any w, u ∈ Sn and a ∈ N∞,
we have

Sww0
=

∑
b∈N∞

K−1b,wew0(ρn−b), K−1a,u =
∑
w∈Sn

(−1)`(w)Kw0u,w(ρn)−a,

where w0 = n(n − 1) · · · 1, ρn = (n − 1, n − 2, · · · , 1, 0), and K−1 = (K−1a,w) is the inverse of the
Schubert-Kostka matrixK = (Kw,a), defined as the coefficients of the expansion Sw =

∑
a∈N∞ Kw,aX

a.

Remark 4.5 Consider the expansion of two Schubert polynomials SwSu into Schubert polynomials as
we studied in Theorem 1.1. By Proposition 4.4, we get a stabilized expansion of Sw into the eI ’s. Then,
by Lemma 4.3, the expansion of each term eISu into Schubert polynomials stabilizes. This way, we have
a second proof of Theorem 1.1.
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