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Involutions on Baxter Objects

Kevin Dilks1†

1School of Mathematics, University of Minnesota, Minneapolis, MN 55455

Abstract. Baxter numbers are known to count several families of combinatorial objects, all of which come equipped
with natural involutions. In this paper, we add a combinatorial family to the list, and show that the known bijections
between these objects respect these involutions. We also give a formula for the number of objects fixed under this
involution, showing that it is an instance of Stembridge’s “q = −1 phenomenon”.

Résumé. Les nombres Baxter comptent plusieurs familles d’objets combinatoires, qui sont tous équipées avec des
involutions naturels. Dans ce papier, nous ajoutons une famille combinatoire à la liste, et nous montrons que les
bijections connus entre ces objets respectent ces involutions. En plus, nous donnons une formule pour le nombre
d’objets fixés par cette involution et nous montrons qu’elle est une instance du “phénomène q = −1” de Stembridge.
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1 Introduction
The Baxter numbers are given by B(n) :=

∑n−1
k=0 Θk,n−k−1 where

Θk,` =

(
n+1
k

)(
n+1
k+1

)(
n+1
k+2

)(
n+1
1

)(
n+1
2

) (1)

for n = k + ` + 1. The summand Θk,` counts many things, defined below, and illustrated in Tables 1
through 4:

(A) Baxter permutations in Sn with k ascents and ` descents. [2]

(B) Baxter permutations in Sn with k inverse ascents and ` inverse descents.

(C) Twisted Baxter permutations in Sn with k inverse ascents and ` inverse descents. [9]

(D) Non-intersecting lattice paths from A1 = (0, 2), A2 = (1, 1), and A3 = (2, 0) to B1 = (k, `+ 2),
B2 = (k + 1, `+ 1), B3 = (k + 2, `), which we will call (k,`)-Baxter paths. [5]

(E) Standard Young tableaux of shape 3× n with no consecutive entries in any row, and k instances of
(i, i+ 1) in the union of the first and third row, which we will call Baxter tableaux. [4]
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(F) Diagonal rectangulations of size n, where k is the number of times the interior of the diagonal is
intersected vertically, and ` is the number of times it is intersected horizontally. [9]

(G) Plane partitions in a k × l × 3 box, which we will call Baxter plane partitions.

Baxter permutations are those that avoid the patterns 3-14-2 and 2-41-3, where an occurrence of the
pattern 3-14-2 in a permutation w = w1 . . . wn means there exists a quadruple of indices {i, j, j + 1, k}
with i < j < j + 1 < k and wj < wk < wi < wj+1 (and similarly for 2-14-3). For example,
25314 contains an instance of the patten 2413, but not 2-41-3. For n = 4, there are B(4) = 22 Baxter
permutations in S4, with the only excluded ones being 2413 and 3142. Twisted Baxter permutation have
a syntactically similar definition, being those that avoid 2-41-3 and 3-41-2. Call these larger sets counted
by B(n) a set of Baxter objects of order n, and their subsets counted by Θk,` a set of Baxter objects of
order (k,`). Each of these subsets has a natural involution that preserves k and `:

• Conjugation by the longest permutation w0 for (A), (B), and (C).

• Rotation by 180◦ about a central point for (D) and (F)

• Schützenberger evacuation for (E), which in the special case of a rectangular tableaux withN boxes
corresponds to rotating the tableaux 180◦ and then replacing every label i with N + 1− i.

• Taking the complement of a plane partition in the k × l × 3 box for (G).

Since Baxter permutations are closed under taking inverses [9], the map w 7→ w−1 provides an obvious
bijection between Baxter objects (A) and (B). There are known bijections between the Baxter objects
(A), (D) and (E) (see [4][5]), between the objects (B), (C) and (F) (see [9]). We will also show show the
equivalence of objects (D) and (G). Section 2 is devoted to the following theorem:

Theorem 1. The given bijections between the above 7 classes of Baxter objects of order (k,`), commute
with their respective involutions.

Since the bijections commute with the respective involutions, this means the number of Baxter objects
of order (k,`) fixed under involution is the same for all 7 classes of Baxter objects. Denote this common
number Θ	

k,`. Also, we introduce the q-analogue of Θk,`,

Θk,`(q) :=

[
n+ 1
k

]
q

[
n+ 1
k + 1

]
q

[
n+ 1
k + 2

]
q[

n+ 1
1

]
q

[
n+ 1

2

]
q

(2)

where n = k+ `+ 1,
[
n
i

]
q

=
[n]!q

[k]!q [n−k]!q , [m]!q = [m]q[m− 1]q . . . [1]q , and [j]q = 1 + q + . . .+ qj−1.

Theorem 2. Θk,`(q) lies in N[q], has symmetric coefficients, and satisfies [Θk,`(q)]q=−1 = Θ	
k,`.

The proof of Theorem 2 is given in Section 3, using the theory of plane partitions.
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2 Proof of Theorem 1
2.1 Objects (D) and (G)
A plane partition is an array (πi,j)i,j≥1 of non-negative integers with finitely many non-zero entries that
weakly increases along rows and columns. The plane partitions inside an a × b × c box are those where
πi,j ≤ c, and πi,j = 0 if i > a or j > b. Its complement in the a× b× c box is the plane partition given
by π′i,j = c− πa−i,b−j for 1 ≤ i ≤ a and 1 ≤ j ≤ b and 0 elsewhere.

Theorem 3. There is a bijection between (k, `) Baxter paths and plane partitions in a k × ` × 3 box,
which equivariantly takes conjugation by w0 to taking the complement of a plane partition.(i)

Proof. Each individual lattice path from Ai to Bi naturally corresponds to a partition λi inside of a k × `
box, (our convention will be to take λi to be the part of the k × ` box with Ai and Bi as corners that lies
above the given lattice path). The non-intersecting condition is equivalent to requiring λ3 ⊆ λ2 ⊆ λ1,
which is precisely the condition necessary for a triple of partitions to be a plane partition when stacked.
Additionally, one can see the involution on lattice paths (which is 180◦ rotation) corresponds to taking
λ3 ⊆ λ2 ⊆ λ1 to λc1 ⊆ λc2 ⊆ λc3, where λc is the complement of λ in the k × ` box, which is the same as
taking the complement of the plane partition in the k × `× 3 box.

For the rest of this extended abstract, most of the proofs will be sketched or omitted.

2.2 Objects (A), (D), and (E)
Theorem 4 (Dulucq and Guibert [4]). There is a bijection between Baxter permutations with k ascents
and ` descents, and triples of non-intersecting lattice paths from the points A1 = (0, 2), A2 = (1, 1), and
A3 = (2, 0) toB1 = (k+2, `),B2 = (k+1, `+1), andB3 = (k, `+2) equivariantly taking conjugation
by w0 to rotation by 180◦.

Felsner, Fusy, Noy, and Orden [6] have additionally shown that this bijection (along with a number of
other Baxter objects) are equivariant. One interesting Baxter family not included is 3× n standard Young
tableaux with no consecutive entries in the same row.

Cori, Dulucq, and Viennot [3] begin by working with a larger set of objects, counted not byB(n), but by
c2n, where cn = 1

n+1

(
2n
n

)
is the Catalan number. These larger sets of objects are Shuffle2n (the shuffling

of two parenthesis languages), alternating Baxter permutations of length 2n (a Baxter permutation w =
w1w2 . . . w2n is alternating if w1 > w2 < w3 > w4 . . .), and pairs of complete binary trees with 2n + 1
nodes, and they showed that they were all in bijection. Later, Dulucq and Guibert [4] added a bijection
between Shuffle2n and stack words avoiding 22. A stack word is a word in the letters {1, 2, 3} such that
every letter occurs the same number of times, and for every prefix of the word, one has at least as many
2’s as 3’s, and at least as many 1’s as 2’s. A stack word of length 3n is equivalent to an encoding of a
3 × n Young tableaux known as a Yamanouchi word, where the ith letter of the word tells you which
row i appears in the tableaux. For example, the Yamanouchi word corresponding to the Baxter tableaux
appearing in Table 1 is 121321321323. Requiring that the stack word avoid 22 is equivalent to saying the
corresponding tableaux has no consecutive entries in the middle row.

It is not immediately clear that all of these maps are necessarily equivariant with respect to the nat-
ural involutions. We will show that the original bijections of Cori, Dulucq, and Viennot on the objects

(i) Thanks to Jang Soo Kim for helping make this connection
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counted by c2n are equivariant with respect to their involutions. Then an equivariant bijection from the
Baxter tableaux (or equivalently, stack words avoiding 11, 22, and 33) to a special subset of pairs of
complete binary trees called the twin trees is obtained by restricting the equivariant bijection from stack
words avoiding 22 to pairs of complete binary trees. Lastly, we show that the bijection between the twin
trees and Baxter permutations is equivariant, making the composite map from Baxter tableaux to Baxter
permutations equivariant.

Theorem 5. The bijection between alternating Baxter permutations of length 2n and 3 × n standard
Young tableaux with no consecutive entries in the middle row is equivariant with respect to conjugation
by w0 and evacuation.

We suppress the proof of this theorem, as it relies on technical and unenlightening case checking of the
bijection between the two objects given by Dulucq and Guibert [4].

Corollary 6. The number of alternating Baxter permutations of length 2n fixed under conjugation by w0

and the number of 3 × n standard Young tableaux with no consecutive entries in the middle row fixed
under evacuation are both equal to cn, the Catalan number.

The proof is omitted in this extended abstract.

Corollary 7. The bijection between Baxter permutations with k ascents and ` descents to 3× n standard
Young tableaux with no consecutive entries in the same row (where k entries in the top row have their
successive label in the bottom row, and `+ 1 entries in the top row do not) is equivariant with respect to
conjugation by w0 and evacuation.

(sketch). This comes from following a number of bijections of Dulucq and Guibert [4].
First, there is a bijection from Baxter permutations to a subset of the pairs of complete binary trees

called the twin trees. These are pairs of complete binary trees whose pattern of left leaves and right leaves
read left-to-right (excluding the left-most left leaf and right-most right leaf) are complementary. Reading
from left to right, we label left leaves and 0 and right leaves as 1 to produce the leaf code. An example is
shown in Figure 1.

There is a canonical bijection between complete binary trees and the truncated trees that are obtained
by removing all of the leaves from a complete binary tree. The bijection between Baxter permutations and
twin trees consists of taking the increasing and decreasing binary trees [10, §1.2] of a Baxter permutation
to get a pair of truncated trees, and then adding on leaves via the canonical bijection to get a pair of twin
trees. From this, one can see that a permutation with k ascents will correspond to a pair of twin trees
whose left tree has a leaf code with k 0’s.

The natural involution on pairs of trees is to do a mirror reflection of each tree, and then swap the left
and right trees. Since this map comes from decreasing and increasing trees, it is easy to check it will be
equivariant with respect to conjugation by w0 on permutations and the involution on pairs of trees.

Secondly, the bijection from the twin trees to 3 × n standard Young tableaux with no consectutive
entries in any row is obtained by just restricting the map from all pairs of complete binary trees to 3 × n
standard Young tableaux with no consectutive entries in the middle row. Since that map was equivariant
with respect to the involutions, so will the restricted map.
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2.3 Objects (B) and (C)
There is another class of Baxter objects introduced by Reading called twisted Baxter permutations. While
Baxter permutations avoid the patterns 3-14-2 and 2-41-3, twisted Baxter permutations avoid the patterns
3-41-2 and 2-41-3. Even though the two pairs of patterns look similar, it is not immediately obvious that
they should be so closely related. Section 8 of Law and Reading’s paper provides a bijection between the
two that relies on looking at fibers of the lattice congruence Θ3412 [9].

We suppress the details in this extended abstract, but one can easily check that this bijection will pre-
serve the number of inverse descents, and will also be equivariant with respect to conjugation by w0.

2.4 Objects (C) and (F)
A diagonal rectangulation of size n is a subdivision of an n × n square into n rectangles (with lattice
points for corners) such that the interior of every rectangle intersects a fixed diagonal of the square (see
the tables at the end for examples with n = 4).

It is a relatively straightforward check to see that the bijection between twisted Baxter permutations
and diagonal rectangulations given in Section 6 of Law and Reading [9] preserves the indicated statistic,
and will equivariantly take conjugation by w0 to 180◦ rotation. We again have the intermediate object of
pairs of twin trees.

For technical reasons, their map from twisted Baxter permutations to pairs of twin trees is equivalent to
taking the increasing and decreasing trees of the inverse of the permutation to get truncated twin trees, and
then adding leaves to get a pair of twin trees (they respectively call these the upper and lower planar binary
trees). Conjugation by w0 on twisted Baxter permutations will correspond to the same involution on pairs
of trees as before. And if a Baxter permutation has k inverse ascents, its inverse will have k ascents, and
the increasing tree will have k left leaves (excluding the left-most one), preserving the statistic.

A diagonal rectangulation is made by gluing the two trees together. In particular, one draws the trees so
that all the leaves are evenly spaced on the lowest level, and all intersections make right angles. Then the
twin tree condition guarantees that if we turn the left tree upside-down, it will match up with the right tree

43512
l

( 1

3

4 5

2
,

5

4

3

2

1

)
↓

(
1 0 1

0
,

0 1 0 1

)

35142
l

( 1

3

5

2

4
,

5

3 4

1 2

)
↓

(
0 1 0 1

,
1

0 1 0

)

Fig. 1: Map from Baxter permutations to twin trees, and the corresponding action under involution.
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to form a diagonal rectangulation (see Figure 2). It is then obvious that the involution on pairs of trees
corresponds to 180◦ rotation on diagonal rectangulations, and that k left leaves in the left tree (excluding
the left-most one) will correspond to the k vertical intersections with the interior of the diagonal.

w = 3124, w−1 = 2314
l

( 1

2

3

4

,

4

3

2 1

)
↓

(
,

)
l

Fig. 2: Map from twisted Baxter permutations to diagonal rectangulations

3 Proof of Theorem 2
By Theorem 1, we only have to find the number of objects fixed under involution for one family of Baxter
objects. The Baxter family for which this is easiest to do is Baxter plane partitions. MacMahon gave a
closed formula for the generating function of plane partitions inside a box weighted by number of boxes.

Theorem 8 ([11],Theorem 7.21.7). Fix a,b, and c. Then

∑
π

q|π| =

a∏
i=1

b∏
j=1

c∏
k=1

[i+ j + k − 1]q
[i+ j + k − 2]q

(3)

where π runs over all plane partitions that fit in a a× b× c box.

We will write the above sum as M(a, b, c; q). One can check that for Baxter plane partitions, this gives
the previously defined q-analogue of Θk,`.
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Corollary 9.

M(k, `, 3; q) =
∑
π

q|π| =

[
n+ 1
k

]
q

[
n+ 1
k + 1

]
q

[
n+ 1
k + 2

]
q[

n+ 1
1

]
q

[
n+ 1

2

]
q

= Θk,`(q) (4)

where π runs over all plane partitions that fit in a k × `× 3 box.

In particular, this tells us that Θk,`(q) is indeed a polynomial with symmetric, non-negative integer
coefficients, which is not immediately obvious from the definition.

Additionally, we have the following special case of a theorem of Stembridge.

Theorem 10 (Stembridge, Example 2.1, [12]). The number of self-complementary plane partitions that
fit inside an a× b× c box is M(a, b, c;−1), that is to say, the generating function for plane partitions in
the box weighted by size and then evaluated at q = −1.

By setting c = 3, we get the following result.

Theorem 11. Θ	
k,` = [Θk,`(q)]q=−1

Although Theorem 11 follows from Stembridge’s result without any further computation, it turns out
that it agrees with formulas for Θ	

k,` given previous by Felsner, Fusy, Orden, and Noy [6], after correcting
one of the cases of their formula, and applying a hypergeometric summation, as we explain next.

Theorem 12. 1. If k and ` are odd, then Θ	
k,` = 0

2. If k and ` are even, with k = 2κ and ` = 2λ, then for N = κ+ λ,

Θ	
2κ,2λ =

∑
r≥0

2r3

(N + 1)(N + 2)2

(
N + 2

κ+ 1

)(
N + 2

κ− r + 1

)(
N + 2

κ+ r + 1

)
=

(
N+1
κ

)(
N+1
κ+1

)(
N
κ

)
(N + 1)

3. If k is odd and ` is even, with k = 2κ+ 1 and ` = 2λ, then for N = κ+ λ, (ii)

Θ	
2κ+1,2λ = Θ	

2κ,2λ +
∑
r≥1

(λ− r + 1)r(r + 1)(2r + 1)

(κ+ 2 + r)(N + 1)(N + 2)2

(
N + 2

κ+ 1

)(
N + 2

κ− r + 1

)(
N + 2

κ+ r + 1

)

=

(
N+1
κ

)(
N+1
κ

)(
N+1
κ+1

)
(N + 1)

(5)

4. If k is even and ` is odd, then switch k and ` in Equation 5.

(sketch). For assertion 1, when k and ` are both odd, one can see Θ	
k,` = 0, since for example, looking

at the plane partition model, the k × ` × 3 box has an odd number of boxes, so the size of any plane
partition in that box must have opposite parity of its complement. Correspondingly, one can check that
[Θk,`(q)]q=−1 = 0. In this case, the denominator of Equation (2) only has one factor of 1 + q, coming

(ii) This corrects Proposition 7.4, part iii in Felsner, Fusy, Orden, and Noy
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from
[
n+ 1

1

]
q

, whereas the numerator will have two factors of (1 + q), coming from each of
[
n+ 1
k

]
q

and
[
n+ 1
k + 2

]
q

.

For assertion 2, when k and ` are both even, the summation is (after factoring out the constant term) the
hypergeometric series

5F4

[
2 2 2 −κ, −λ

1 1 κ+ 3 λ+ 3

∣∣∣∣ 1] ,
where we recall that a hypergeometric series with parameters a1, . . . , ar, b1, . . . , bs is defined to be

rFs

[
a1 a2 . . . ar
b1 b2 . . . bs

∣∣∣∣ z] =

∞∑
n=1

(a1)n . . . (ar)n
(b1)n . . . (bs)n

zn,

for (x)n = x(x− 1) . . . (x− n+ 1).
This hypergeometric series can be evaluated using the formula for a well-poised 5F4 [1, (4.4.1) p.27],

5F4

[
a 1

2a+ 1 c d e
1
2a 1 + a− c 1 + a− d 1 + a− e

∣∣∣∣ 1] (6)

=
Γ(1 + a− c)Γ(1 + a− d)Γ(1 + a− e)Γ(1 + a− c− d− e)
Γ(1 + a)Γ(1 + a− d− e)Γ(1 + a− c− e)Γ(1 + a− c− d)

by choosing a = c = 2, d = −κ, and e = −λ.
For assertion 3, when k is odd and ` is even, the summation is (again, after factoring out the constant

term) the hypergeometric series

4F3

[
3, 5/2, 1− λ, −κ;

3/2, λ+ 3, κ+ 4

∣∣∣∣ 1]
which can also be evaluated using Equation (6), but with choice of parameters a = 3, c = 1−λ, d = −κ,
and e = 2 (note that as e = 1 + a− e, the 5F4 reduces to a 4F3).

Lastly, for assertion 4, we exploit natural symmetry that forces Θ	
k,` = Θ	

`,k.

4 A possible q-Baxter number
We have a q-analog for Θk,`, and we would like to extend it to a q-analog for Baxter numbers. A natural
way in which one can generalize is inspired by Hoggatt sums [7]. Let H(m, k, `) be the number of plane
partitions that fit in a k× `×m box, which we will call the MacMahon numbers. Via MacMahon’s plane
partition formula given in Equation (3), these can be simply expressed as

H(m, k, l) =

∏m−1
i=0

(
k+`
k+i

)∏m−1
j=1

(
k+`
j

) . (7)

We also consider a natural q-shift of MacMahon’s formula,

H(m, k, `; q) = qm(k+1
2 )
∑
π

q|π|, (8)
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where we sum over all plane partitions π in a k × `×m box. Note that H(m, k, `, 1) = H(m, k, `).
We will define the Hoggatt sum and q-Hoggatt sum to respectively be

H(n,m) =
∑
k+`=n

H(m, k, `)

H(n,m; q) =
∑
k+`=n

H(m, k, `; q)

Proposition 13. H(n,m; q) has symmetric coefficients as a polynomial in q.

This fact is elementary to prove, and the proof will be suppressed in this extended abstract.
For m = 1, the MacMahon numbers are H(1, k, `) =

(
k+`
k

)
, the binomial coefficients, with q-

analogue H(1, k, `; q) = q(
k+1
2 )
[
k + `
k

]
q

. The Hoggatt sum is H(n, 1) = 2n, and the q-Hoggatt sum

is H(n, 1; q) =
∑n
k=0 q

(k+1
2 )
[
n
k

]
q

= (−q; q)n+1 = (1 + q)(1 + q2) . . . (1 + qn).

For m = 2, the MacMahon numbers are H(2, k, `) = 1
k+`

(
k+`
k

)(
k+`
k+1

)
, the Narayana numbers, with

q-analogue H(k, `, 2; q) = qk
2+k

[k+`]q

[
k + `
k

]
q

[
k + `
k + 1

]
q

the q-Narayana numbers. The Hoggatt sum is

H(n, 2) = 1
n+1

(
2n
n

)
, the Catalan number, whereas the q-Hoggatt sum is H(n, 2; q) = 1

[n+1]q

[
2n
n

]
q

,

the q-Catalan number. [8]
For m = 3, the MacMahon numbers are H(3, k, `) = Θk,`, with q-analogue H(3, k, `; q) = Θk,`(q).

The Hoggatt sums are H(n, 3) = B(n + 1), the Baxter number, and so one might consider the third
q-Hoggatt sum

H(n, 3; q) =
∑
k+`=n

q3(
k+1
2 )Θk,`(q) (9)

as a q-Baxter number. However, we do not know if it has any nice combinatorial interpretations like the
cases m = 1, 2. Also, it is not known whether H(4, k, `; q) or H(n, 4; q) has any nice combinatorial
interpretation outside of plane partitions, as for m ≤ 3.

Tab. 1: Baxter objects of order (k, `) = (3, 0)

Θk,`(q) = 1
Θk,`(1) = 1

Θk,`(−1) = 1

Baxter Twisted Baxter Baxter Baxter Diagonal Baxter Plane
Permutations Permutations Paths Tableaux Rectangulations Partitions

1234
	

1234
	

	

1 3 6 9
2 5 8 11
4 7 1012

	 	

∅
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Tab. 2: Baxter objects of order (k, `) = (2, 1)

Θk,`(q) = 1 + q + 2q2 + 2q3 + 2q4 + q5 + q6

Θk,`(1) = 10
Θk,`(−1) = 2

Baxter Twisted Baxter Baxter Baxter Diagonal Baxter Plane
Permutations Permutations Paths Tableaux Rectangulations Partitions

1243
l

2134

1243
l

2134
l

1 3 6 9
2 5 7 11
4 8 1012

l
1 3 5 9
2 6 8 11
4 7 1012

l
3 3
l

0 0

1342
l

3124

1342
l

3124
l

1 3 6 9
2 4 8 11
5 7 1012

l
1 3 6 8
2 5 9 11
4 7 1012

l
3 2
l

1 0

l l l l l l

1423
l

2314

1423
l

2314
l

1 3 5 7
2 6 9 11
4 8 1012

l
1 3 5 9
2 4 7 11
6 8 1012

l
3 1
l

2 0

2341
l

4123

2341
l

4123
l

1 4 6 9
2 5 8 11
3 7 1012

l
1 3 6 10
2 5 8 11
4 7 9 12

l
2 2
l

1 1

1324
	

1324
	

	

1 3 5 7
2 4 9 11
6 8 1012

	 	

3 0
	

3412
	

3142
	

	

1 3 7 9
2 5 8 11
4 6 1012

	 	

2 1
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Tab. 3: Baxter objects of order (k, `) = (1, 2)

Θk,`(q) = 1 + q + 2q2 + 2q3 + 2q4 + q5 + q6

Θk,`(1) = 10
Θk,`(−1) = 2

Baxter Twisted Baxter Baxter Baxter Diagonal Baxter Plane
Permutations Permutations Paths Tableaux Rectangulations Partitions

1432
l

3214

1432
l

3214
l

1 3 6 9
2 4 7 11
5 8 1012

l
1 3 5 8
2 6 9 11
4 7 1012

l

2
2
l
1
1

2431
l

4213

2431
l

4213
l

1 4 6 9
2 5 7 11
3 8 1012

l
1 3 5 10
2 6 8 11
4 7 9 12

l

3
2
l
1
0

3241
l

4132

3241
l

4132
l

1 4 6 8
2 5 9 11
3 7 1012

l
1 3 6 10
2 4 8 11
5 7 9 12

l

3
1
l
2
0

3421
l

4312

3421
l

4312
l

1 4 7 9
2 5 8 11
3 6 1012

l
1 3 7 10
2 5 8 11
4 6 9 12

l

3
3
l
0
0

2143
	

2143
	

	

1 3 6 8
2 4 9 11
5 7 1012

	 	

2
1
	

4231
	

4231
	

	

1 4 6 10
2 5 8 11
3 7 9 12

	 	

3
0
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Tab. 4: Baxter objects of order (k, `) = (0, 3)

Θk,`(q) = 1
Θk,`(1) = 1

Θk,`(−1) = 1

Baxter Twisted Baxter Baxter Baxter Diagonal Baxter Plane
Permutations Permutations Paths Tableaux Rectangulations Partitions

4321
	

4321
	

	

1 4 7 10
2 5 8 11
3 6 9 12

	 	

∅
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