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Extremal Statistics on Non-Crossing Configurations†

Anna de Mier and Marc Noy

Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, Barcelona, Spain.

Abstract. We obtain several properties of extremal statistics in non-crossing configurations with n vertices. We prove
that the maximum degree and the largest component are of logarithmic order, and the diameter is of order

√
n. The

proofs are based on singularity analysis, an application of the first and second moment method and on the analysis of
iterated functions.

Résumé. On obtient des propriétés de paramètres extrémales dans les configurations sans croisement avec n som-
mets. On démontre que le degré maximal et la composante plus large sont d’ordre logarithmique, et le diamètre
est d’ordre

√
n. Les preuves utilisent l’analyse de singularités, une application de la méthode du premier et second

moment, et l’analyse de fonctions itérées.

Keywords: Non-crossing configuration; Extremal parameters; Maximum degree; Diameter.

1 Introduction and preliminaries
Let p1, . . . , pn be the vertices of a convex polygon in the plane, labelled counterclockwise. A non-crossing
graph (or configuration) is a graph on these vertices such that when the edges are drawn as straight lines
the only intersections occur at vertices. The root of a graph is vertex p1. We call the edge {p1, p2} (if
present) the root edge. The root region is the internal region adjacent to the root edge.

From now on, all graphs are assumed to be non-crossing graphs. A triangulation is a graph with the
maximum number of edges and is characterized by the fact that all internal faces are triangles. A dissection
is a graph containing all the boundary edges p1p2, p2p3, . . . , pnp1; a single edge p1p2 ia also considered
a dissection. From a graph theoretical point of view, dissections are the same as 2-connected graphs.

The enumerative theory of non-crossing configurations is an old subject, going back to Euler; see, for
instance, Comtet’s book [3] for an account of classical results. Flajolet and Noy [9] reexamined these
problems using the tools from analytic combinatorics [11] in a unified way. They showed that for all
natural classes under consideration the number of non-crossing graphs with n vertices is asymptotically
of the form

cn−3/2γn,

for some positive constants c and γ. In addition, many basic parameters obey a Gaussian limit law
with linear expectation and variance. These include: number of edges, number of components, number
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Fig. 1: From left to right: a triangulation, a 2-connected graph (dissection), a connected graph, and an arbitrary graph.

of leaves in trees and number of blocks in partitions. The proofs in [9] are based on perturbation of
singularities and extensions of the Central Limit Theorem.

In this paper we take a step further and analyze more complex parameters, specially extremal parame-
ters. Some results have been obtained previously for triangulations [5, 12] and trees [4, 13], but here we
aim at a systematic treatment of the subject, covering the most important extremal parameters and proving
limit laws whenever possible. Our main results are summarized as follows.

• For graphs, connected graphs and 2-connected graphs, the degree of the root vertex converges to a
discrete law. More precisely, if pk is the probability that the root has degree k, then∑

pkw
k =

A(w)

(1− qw)2
,

where A(w) is a polynomial of degree two and q is a quadratic irrational with 0 < q < 1. It follows
that the tail of the distribution satisfies, for some c > 0,

pk ∼ ckqk, as k →∞.

• For graphs, connected graphs and 2-connected graphs, the maximum degree ∆n is of logarithmic
order. More precisely, for each class under consideration there exists a constant c > 0 such that

∆n

log n
→ c in probability.

• The largest connected component Mn in graphs is of logarithmic order: there exists c > 0 such that

Mn

log n
→ c in probability.

The same result holds for the largest 2-connected component in connected graphs.

• For triangulations, connected graphs and 2-connected graphs, the diameter Dn is of order
√
n. For

each class under consideration, there exist constants 0 < c1 < c2 such that

c1
√
n < EDn < c2

√
n.

†This research is based on joint work with Michael Drmota.
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Fig. 2: Left: a dissection consisting of a root face (in gray) with an arbitrary dissection glued at each non-root edge.
Center: the root of the connected graph belongs to three blocks (in gray); to any other vertex of these blocks there are
two connected graphs attached, possibly reduced to a single vertex. Right: between every two consecutive vertices
of the root component (in gray) there is an arbitrary graph, possibly empty. In all three cases the root is the vertex on
top.

To our knowledge, the diameter of random configurations has not been studied before, even in the ba-
sic case of triangulations. These results reflect the tree-like nature of non-crossing configurations. In
particular, the diameter is of order

√
n, like the height of plane trees,

In the rest of this section we collect several preliminaries needed in the paper. In Section 2 we analyze
the degree of the root vertex. Sections 3 and 4 are devoted to the maximum degree and the largest
component, respectively, and are based on the first and second moment method. Finally, in Section 5 we
analyze the diameter, making use of iterated functions. Proofs are only sketched due to limitations of
space.

1.1 Generating functions
We denote by G(z) and C(z) the generating functions for arbitrary and connected graphs, respectively,
counted by the number of vertices. Furthermore, let B(z) be the generating function for 2-connected
graphs, where z marks the number of vertices minus one. We have the following relations for the generat-
ing functions. They reflect the decomposition of a dissection as a sequence of dissections attached to the
root region, of a connected graph into 2-connected components, and of an arbitrary graph into connected
components [9] (see Figure 2).

B(z) = z +
B(z)2

1−B(z)

C(z) =
z

1−B(C(z)2/z)

G(z) = 1 + C(zG(z)).

Hence we obtain

B(z) =
1 + z −

√
1− 6z + z2

4

which has a square-root singularity at z = 3− 2
√

2. Furthermore, C = C(z) is the solution to

C3 + C2 − 3zC + 2z2 = 0.

and has a dominant singularity at z =
√

3/18. Finally it follows that G(z) satisfies the equation

G2 + (2z2 − 3z − 2)G+ 3z + 1 = 0
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which leads to

G(z) =
2− 3z − 2z2 − z

√
1− 12z + 4z2

2
.

Functions B(z) and G(z) are clearly of square-root type; function C(z) has also a local expansion in√
1− z18/

√
3.

1.2 First and second moment method
In order to obtain results for the maximum statistics of the root degree we follow the methods of [8]. They
are based on the so-called first and second moment methods.

Lemma 1.1 Let X be a discrete random variable on non-negative integers with finite first moment. Then

P{X > 0} ≤ min{1,EX}.

Furthermore, if X is a non-negative random variable which is not identically zero and has finite second
moment then

P{X > 0} ≥ (EX)2

E (X2)
.

We apply this principle for the random variable Yn,k that counts the number of vertices of degree > k in
a random graph with n vertices. This random variable is closely related to the maximum degree ∆n by

Yn,k > 0 ⇐⇒ ∆n > k.

One of our aims is to get bounds for the expected maximum degree E∆n. Due to the relation

E∆n =
∑
k≥0

P{∆n > k} =
∑
k≥0

P{Yn,k > 0}

we are led to estimate the probabilities P{Yn,k > 0}, which can be done via the first and second moment
methods by estimating the first two moments

EYn,k and EY 2
n,k.

Actually, we work with the probabilities dn,k that a random vertex in a graph of size n has degree k.
They are related to the first moment by

EYn,k = n
∑
`>k

dn,`. (1)

Similarly we deal with probabilities dn,k,` that two different randomly selected vertices have degrees k
and `. Here we have

EY 2
n,k = n

∑
`>k

dn,` + n(n− 1)
∑

`1,`2>k

dn,`1,`1 .

In what follows we will make use of power series of the square-root type, that is a power series y(x)
with a square root singularity at x0 > 0, that is, y(x) admits a local representation of the form

y(x) = g(x)− h(x)
√

1− x/x0 (2)
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for |x− x0| < ε for some ε > 0 and | arg(x− x0)| > 0, where g(x) and h(x) are analytic and non-zero
at x0. Moreover, y(x) can be analytically continued to the region

D = D(x0, ε) = {x ∈ C : |x| < x0 + ε} \ [x0,∞). (3)

The following technical lemma subsumes some results from [8] and is adapted for our needs (the proof
is very similar). It guarantees that, if the generating functions associated to the degree of the root and the
degree of a secondary vertex have a certain local expansion of the square-root type, then automatically the
maximum degree is c log n for a well-defined constant c. For our functions these conditions are relatively
easy to check.

Lemma 1.2 Let f(x,w) =
∑

n,k fn,kx
nwk be a double generating and g(x,w, t) =

∑
n,k,` gn,k,`x

nwkt`

be a triple generating function of non-negative numbers fn,k and gn,k,` such that the probabilities dn,k
and dn,k,` that a random vertex in a graph of size n has degree k and that two different randomly selected
vertices have degrees k and `, respectively, are given by

dn,k =
fn,k
fn

and dn,k,` =
gn,k,`
gn

,

where fn =
∑

k fn,k and gn =
∑

k,` gn,k,`. Suppose that f(x,w) can be represented as

f(x,w) =
G(x,X,w)

1− y(x)w
, (4)

where X =
√

1− x/x0, y(x) is a power series with non-negative coefficients of square-root type,

y(x) = g(x)− h(x)
√

1− x/x0,

where 0 < g(x0) < 1 and the function G(x, v, w) is analytic in the region

D′ = {(x, v, w) ∈ C3 : |x| < x0 + η, |v| < η, |w| < 1/g(x0) + η}

for some η > 0 and satisfies G(x0, 0, 1/g(x0)) 6= 0.
Furthermore suppose that g(x,w, t) can be represented as

g(x,w, t) =
H(x,X,w, t)

X (1− y(x)w)2(1− y(x)t)2
, (5)

where the function H(x, v, w, t) is non-zero and analytic at (x, 0, w, t) = (x0, 0, 1/g(x0), 1/g(x0)).
Let ∆n denote the maximum degree of a random graph in this class of size n. Then we have

∆n

log n
→ 1

log g(x0)−1
in probability (6)

E∆n ∼
1

log g(x0)−1
log n (n→∞). (7)
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We do not go into the details of the proof. We just mention that the main intermediate step is to prove that

dn,k ∼ ckg(x0)k and dn,k,` ∼ dn,kdn,` ∼ c2k`g(x0)k+`

uniformly for k ≤ C log n and ` ≤ C log n (for a certain constant c > 0 and an arbitrary constant C > 0).
With the help of these asymptotic relations one gets asymptotic expansions for EYn,k and EY 2

n,k that can
be used to estimate the probabilities P{∆n > k} from below and above and which lead to the final result.

The key conditions in the lemma are equations (4) and (5) for the shape of the generating functions
marking the degree of one and two vertices, respectively, and the square-root type of the univariate func-
tion y(x). In (4) we find a linear factor in w and in (5) we find a quadratic factor both in w and in t. In
Section 3 we point out how these conditions are satisfied in our case.

1.3 Iterated functions
The results on the diameter are based on the following lemma on iterated functions. In the next statement,
the notation A(z) � B(z) means that the coefficients of A(z) =

∑
n anz

n and B(z) =
∑

n bnz
n satisfy

an ≤ bn.

Lemma 1.3 Suppose that F (z, t) is an analytic function at (z, t) = (0, 0) such that the equation T (z) =
F (z, T (z)) has a solution T (z) that is analytic at z = 0 and has non-negative Taylor coefficients. Suppose
that T (z) has a square-root singularity at z = z0 and can be continued to a region of the form (3), such
that Ft(z0, t0) = 1, Fz(z0, t0) 6= 0, and Ftt(z0, t0) 6= 0, where t0 = T (z0).

Let T0(z) be a power series with 0 ≤c T0(z) ≤c T (z), such that T0(z) is analytic at z = z0, and let
Tk(z), k ≥ 1 be iteratively defined by

Tk(z) = F (z, Tk−1(z)).

Assume that Tk−1(z) ≤c Tk(z) ≤c T (z).
Let Hn be an integer valued random variable that is defined by

P{Hn ≤ k} =
[zn]Tk(z)

[zn]T (z)

for those n with [zn]T (z) > 0. Then

EHn ∼

√
2π

z0Fz(z0, t0)Ftt(z0, t0)
n1/2 and

Hn√
n
→ 2√

z0Fz(z0, t0)Ftt(z0, t0)
max
0≤t≤1

e(t),

where e(t) denotes the Brownian excursion of duration 1.

The lemma is a direct extension of [10]; see also [6, Th. 4.8, Th. 4.59] for the proof techniques.

2 Degree of the root
Let B(z, w), C(z, w) and G(z, w) the corresponding generating functions, where w counts the degree of
the root vertex p1. Then a simple adaptation of the basic equations for B(z), C(z) and G(z) gives

B(z, w) = wz +
wB(z, w)B(z)

1−B(z)
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C(z, w) =
z

1−B(C(z)2/z, w)

G(z, w) = 1 + C(zG(z), w).

In particular, we have
B(z, w) =

wz

1− w
2 (1− z −

√
1− 6z + z2)

. (8)

This means that z = 3−2
√

2 is a squareroot singularity for |w| <
√

2+1. A similar phenomenon appears
for C(z, w) and G(z, w). From these expressions we can obtain the limit distribution of the root degree.
Let dBk be the limiting probability that the root in a 2-connected graph has degree k, that is,

dBk = lim
n→∞

[zn][wk]B(z, w)

[zn]B(z)
.

Define analogously dCk and dGk for connected and arbitrary graphs. Using singularity analysis one obtains
the degree distribution in all cases, encoded in the corresponding probability generating function.

Theorem 2.1 The limiting distribution of the root degree in 2-connected, connected and arbitrary graphs
are given by∑

k≥1

dBk w
k =

2(3− 2
√

2)w2

(1− (
√

2− 1)w)2
= 0.34w2 + 0.28w3 + 0.18w4 + 0.01w5 + 0.05w6 + · · · .

∑
k≥1

dCk w
k =

(1− 1√
3
)2

2

w(w + 1 +
√

3)

(1− (1− 1√
3
)w)2

= 0.24w + 0.29w2 + 0.21w3 + 0.12w4 + 0.07w5 + · · · .

∑
k≥1

dGk w
k =

(1−
√

2)2

2

(1 + w)2

(1− (
√

2− 1)w)2
= 0.09 + 0.24w + 0.27w2 + 0.18w3 + 0.11w4 + · · · .

The first item in the previous theorem was proved in [7], and independently in [1].

3 Maximum Degree
The functions B(z, w), C(z, w) and G(z, w) are easily seen to satisfy the conditions imposed on f(z, w)
in Lemma 1.2. Next we consider the generating functions B(z, w, t), C(z, w, t), and G(z, w, t), where
we consider, in addition to the degree of the root p1, the degree of another vertex pj (with j 6= 1) marked
by the variable t.

For 2-connected graphs we consider two different cases. The generating function B1(z, w, t) deals
with the degree of p2 and the generating function B2(z, w, t) with the general case pj , j ≥ 2. In [8] these
functions were already computed, as follows:

B1(z, w, t) = zwt+
z2w2t2(1 + z(2A+ 1))

(1− zw(2A+ 1))(1− zt(2A+ 1))

B2(z, w, t) =
z2w2t2(1 + z(2A+ 1))(P1 + z(wt− w − t)P2)

(1− zw(2A+ 1))2(1− zt(2A+ 1))2(1− z(4A+ 3))
,

P1 = 1− z(4A+ 1), P2 = 1− 2A+ z(2A+ 1), A =
1− 3z −

√
1− 6z + z2

4z
.
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We set B(z, w, t) = B1(z, w, t) +B2(z, w, t).
Now we check that the conditions of Lemma 1.2 are satisfied. Function y(x) in the statement is our

A which is certainly of square-root type. Function B(z, w) derived in Equation (8) displays a factor
1−Aw in the denominator, and B(z, w, t) displays a quadratic factor, the role of y(x) being played now
by C(z)2 + C(z)− z, which is of square-root type.

Similarly, the corresponding function C(z, w, t) for connected can be expressed as

C(z, w, t) =
P (C(z), w, t, z)

(3C(z)2 + 2C(z)− 3z)(z − w(C(z)2 + C(z)− z))2(z − t(C(z)2 + C(z)− z))2
,

for an explicit polynomial P (c, w, t, z). Since B(z) and C(z) are of square-root type it is immediate
that the functions B(z, w), B(z, w, t) and C(z, w), C(z, w, t), respectively, satisfy the assumptions of
Lemma 1.2. Finally the generating function G(z, w, t) for all graphs satisfies

G(z, w, t) = C(zG(z), w, t) +
∂C(zG(z), w)

∂z
(G(z, t) +G(z, 1, t)),

Again it is easy to check that these functions satisfy the conditions in Lemma 1.1. Applying it we obtain
the main result of this section.

Theorem 3.1 The maximum degree ∆n for 2-connected, connected and arbitrary non-crossing graphs
satisfies

∆n

log n
→ c in probability,

where c = 1/ log(q−1) and q =
√

2 − 1 for 2-connected and arbitrary graphs, and q = 1 − 1/
√

3 for
connected graphs. In all cases we also have

E∆n ∼ c log n as n→∞.

4 Largest component
The size Mn of the largest component can be handled with the same tools as the maximum degree, but
we need to refine the analysis. Let Xn,k denote the number of components of size k in a random graph of
size n and set

Yn,k =
∑
`>k

Xn,`

the number of components with more than k vertices. Then we have

Yn,k > 0 ⇐⇒ Mn > k.

Hence, by applying the first and second moment method we can estimate the probabilities P{Mn > k}
with the help of the first two moments EYn,k and EY 2

n,k. However, in contrast to the maximum degree
it is not enough to calculate the probability that the root component has size k, since the number of
components is also a random variable. By definition we have

Xn,k =
∑

c component

1[|c|=k]
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Let pn,m denote probability that a graph with n vertices has m components, pn,m,k the probability that a
graph with n vertices has m components and the root component has size k, and pn,k|m the probability
that a graph with n vertices has a root component of size k conditioned on the event that the graph has m
components. Clearly we have pn,m,k = pn,k|mpn,m, and consequently

EXn,k =
∑
m≥1

pn,mmpn,k|m =
∑
m≥1

mpn,m,k.

The quantity pn,m,k can be handled as follows. Let y mark the number of components and u the size of
the component of the root p1. Then we have

G(z, y, u) =
∑
n,m,k

pn,m,k gnx
nymuk = 1 + yC(zuG(z, y, 1)),

where gn denotes the number of graphs of size n. Using this expression we prove:

Lemma 4.1 There exists a constant c > 0 and a constant ρ < 1 such that uniformly for k ≤ C log n
(where C > 0 is an arbitrary constant)

EYn,k ∼ c nρkk1/2. (9)

Furthermore we have for every ε > 0, uniformly for all n, k ≥ 0,

EYn,k = O
(
n(ρ+ ε)k

)
. (10)

The asymptotic relations (9) and (10) imply an upper bound for EMn of the form ∼ log n/ log(1/ρ).
A corresponding lower bound follows by considering the second moment. Since

X2
n,k =

∑
c1,c2 components

1[|c1|=k]1[|c2|=k]

we obtain
EX2

n,k = EXn,k +
∑
m≥1

m2p
(2)
n,m,k,k,

where p(2)n,m,k,k denotes the probability that a graph with n vertices hasm components, the root component
has size k and a uniformly and randomly chosen component different from the root component has also
size k. Similarly we have for k 6= `

EXn,kXn,` =
∑
m≥1

m2p
(2)
n,m,k,`,

where p(2)n,m,k,` denotes the probability that a graph with n vertices hasm components, the root component
has size k and a uniformly and randomly chosen component different from the root component has size `.

If we know the behaviour of EXn,kXn,` also obtain that of EY 2
n,k =

∑
`1,`2>k EXn,`1Xn,`2 . In order

to deal with these second moments we introduce another variable v that takes care of the size of a second



640 Anna de Mier and Marc Noy

component different from the root component. The corresponding generating function is given by

G(z, y, u, v) =
∑

n,m,k,`

p
(2)
n,m,k,` gn,m(m− 1)xnymukv`

= yC ′(uzG(z, y)) (uzG(z, y, v) + uzG(z, y, 1, v)) ,

where gn,m denotes the number of graphs with n vertices and m components. Using this we prove:

Lemma 4.2 We have uniformly for k ≤ C log n and ` ≤ C log n (where C > 0 is an arbitrary constant)

EY 2
n,k ≥ c2 n2ρ2kk(1 + o(1)) (11)

where the constant c is as in Lemma 4.1.

With the help of Lemmas 4.1 and 4.2 we obtain corresponding lower bounds for EMn. To state our
main result we use the exact value of ρ.

Theorem 4.3 The size Mn of the largest component in non-crossing graphs satisfies

Mn

log n
→ c in probability,

where c = 1/ log(3
√

3(49
√

2− 69)/2). We also have

EMn ∼ c log n as n→∞.

A similar result holds for the size of the largest 2-connected component in connected graphs. We omit
the details for lack of space.

5 Diameter
The diameter of a connected graph is the maximum distance between any pair of vertices. In this section
we show that the diameter Dn of connected and 2-connected non-crossing graphs is of order

√
n. To

get equations for the exact value of the diameter is usually very hard (to our knowledge, only in the case
of trees exact results are known [14, 2]). Instead we prove results on the parameter dn, which is the
maximum distance from a vertex to the root p1. Since clearly we have

dn ≤ Dn ≤ 2dn,

it is enough to obtain bounds of the right order of magnitude for dn.
We start with 2-connected graphs. Let dn be the maximum distance to the root vertex p1. Using the

decomposition of 2-connected graphs according to the root region, one can prove the following.

Lemma 5.1 LetBk(z) be the generating function of 2-connected non-crossing graphs with dn ≤ k. Then
B0(z) = 0 and

Bk(z) =
z

1− z − 4Bk−1(z)2 + 2zBk−1(z)
(k ≥ 1) (12)
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Theorem 5.2 The expected value of dn in 2-connected graphs is asymptotically given by

E dn ∼ c
√
πn. with c = (3 +

√
2)21/4/7 = 0.749916 . . .

The proof is an application of Lemma 1.3 with F (z, t) = z(1− z − 4t2 + 2zt)−1 and

z0 = 3− 2
√

2, t0 = 1−
√

2/2, Fz(z0, t0) = (1 + 2
√

2)/2, Ftt(z0, t0) = 8 + 2
√

2.

Next we turn to connected graphs. As above we discuss only the largest distance dn to the root vertex p1,
but instead of studying dn directly, we look at two new parameters dn and dn that satisfy dn ≤ dn ≤ dn.
For the lower bound, we consider the tree structure of the block decomposition of a connected graph.
Let dn be the maximum number of cut-points on a path to the root vertex. The following lemma follows
directly from the decomposition of connected graphs.

Lemma 5.3 Let Ck(z) be the generating function corresponding to those connected non-crossing config-
urations with dn ≤ k. Then we have C0(z) = z/(1−B(z)) and

Ck(z) =
z

1−B(Ck−1(z)2/z)
, (k ≥ 1).

Theorem 5.4 The expected value of dn is asymptotically given by

E dn ∼ c
√
πn with c =

√
2(1−

√
3/3) = 0.597716 . . .

The proof combines the recurrence in Lemma 5.3 and the equation for B(z), from where we find the
following explicit expression for Ck(z) in terms of Ck−1(z):

Ck(z) =
3

2
z − 1

2
C2

k−1 −
1

2

√
z2 − 6zC2

k−1 + C4
k−1.

The result follows by applying Lemma 1.3 for F (z, c) = 3z/2− c2/2−
√
z2 − 6zc2 + c4/2 and

z0 =

√
3

18
, c0 =

1

6
(
√

3− 1), Fz(z0, c0) =
3−
√

3

2
, Fcc(z0, c0) = 9(5 + 3

√
3).

For the upper bound, we use an alternative decomposition of connected graphs [9]. Take the root of
a connected graph and consider the orderer list {v1, . . . , vd} of its neighbours. The subgraph induced
between two consecutive neighbours vi and vi+1 is either a connected graph not reduced to a point or two
disjoint connected graphs containing vi and vi+1, respectively. This decomposition produces the equation

C(z) = z

(
C(z)2

2z − C(z)− C(z)2

)
. (13)

Now to define an application dG from the set of vertices of a connected graph G to N recursively as
follows. If x is the root-vertex, then dG(x) = 0. Otherwise, the vertex x belongs, according to the
decomposition scheme, to at least one connected subgraph C which has either one or two vertices that are
neighbours of the root. If x is adjacent to the root of G, then x may belong to two such subgraphs; in this
case, pick C to be the one that contains the vertex with smallest label. Define dG(x) = dC(x) + 1. For
instance, for each n there is only one graph with d(x) ≤ 1 for all vertices x.

Then dn is the maximum of d in a connected graph with n vertices. Clearly dn is an upper bound for
the diameter. The following lemma is immediate from the alternative decomposition of connected graphs.



642 Anna de Mier and Marc Noy

Lemma 5.5 Let Ck(z) be the generating function corresponding to those connected non-crossing con-
figurations with dn ≤ k. Then we have C0(z) = z and

Ck(z) = z

(
1 +

Ck−1(z)2

2z − Ck−1(z)− Ck−1(z)2

)
, (k ≥ 1).

Theorem 5.6 The expected value of dn is asymptotically given by

E dn ∼ c
√
πn, with c =

√
2(1 +

√
3/3)/2 = 1.115355 . . .

The proof follows from another application of Lemma 1.3.
We conclude by remarking that a similar result can be prove for triangulations of a polygon. If dn is as

before for triangulations, we have

E dn ∼
2

3

√
πn.
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[7] M. Drmota, O. Giménez, M. Noy. Degree distribution in random planar graphs. J. Combin. Theory Ser. A 118
(2011), 2102–2130.
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