
HAL Id: hal-01283083
https://hal.science/hal-01283083v1

Preprint submitted on 4 Mar 2016 (v1), last revised 1 Aug 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integrated Sequence Tagging for Medieval Latin Using
Deep Representation Learning

Mike Kestemont, Jeroen de Gussem°

To cite this version:
Mike Kestemont, Jeroen de Gussem°. Integrated Sequence Tagging for Medieval Latin Using Deep
Representation Learning . 2016. �hal-01283083v1�

https://hal.science/hal-01283083v1
https://hal.archives-ouvertes.fr

1
Journal of Data Mining and Digital Humanities http://jdmdh.episciences.org
ISSN 2416-5999, an open-access journal

Integrated Sequence Tagging for Medieval Latin

Using Deep Representation Learning

Mike Kestemont*, Jeroen De Gussem°

*University of Antwerp, Belgium

°Ghent University, Belgium

Abstract
In this paper we consider two sequence tagging tasks for medieval Latin: part-of-speech tagging and

lemmatization. These are both basic, yet foundational preprocessing steps in applications such as text re-use

detection. Nevertheless, they are generally complicated by the considerable orthographic variation which is

typical of medieval Latin. In Digital Classics, these tasks are traditionally solved in a (i) cascaded and (ii)

lexicon-dependent fashion. For example, a lexicon is used to generate all the potential lemma-tag pairs for a

token, and next, a context-aware PoS-tagger is used to select the most appropriate tag-lemma pair. Apart from

the problems with out-of-lexicon items, error percolation is a major downside of such approaches. In this paper

we explore the possibility to elegantly solve these tasks using a single, integrated approach. For this, we make

use of a layered neural network architecture from the field of deep representation learning.

Introduction and challenges

The Latin language, and its historic variants in particular, have long been a topic of major interest in

Natural Language Processing [Piotrowksi 2012]. Especially in the community of Digital Humanities,

the automated processing of Latin texts has always been a popular research topic. In a variety of

computational applications, such as text re-use detection [Franzini et al, 2015], it is desirable to

annotate and augment Latin texts with useful morpho-syntactical or lexical information, such as

lemma‟s. In this paper, we will focus on two sequence tagging tasks for medieval Latin: part-of-

speech tagging and lemmatization. Given a piece of Latin text, the task of lemmatization involves

assigning each word to a single dictionary headword or „lemma‟: a baseform label (preferably in a

normalized orthography) grouping all word tokens which only differ in spelling and/or inflection

[Knowles et al, 2004]. The task of lemmatization is closely related to that of part-of-speech (PoS)

tagging [Jurafsky etal, 2000], in which each word in a running text should be assigned a tag indicating

its part of speech or word class (e.g. noun, verb, ...). The difficulty of PoS-tagging strongly depends of

course on the complexity and granularity of the tagset chosen. Lemmatization and PoS-tagging are

classic forms of sequence labeling, in which tags are assigned to words, both on the basis of their

individual appearance, as well as the other words which surround them.

While both lemmatization and PoS-tagging are rather basic preprocessing steps, they are

generally complicated by a number of interesting challenges which the Latin language poses. First of

all, while plain stemming might take us a long way [Schinke et al, 1996], many Latin suffixes cannot

be automatically linked to an unambiguous morphological category. Words ending in –ter, for

example, correspond to no less than six different parts of speech: nouns (fra-ter), adjectives (dex-ter),

pronouns (al-ter), adverbs (gravi-ter), numeral adverbs (qua-ter) and prepositions (in-ter) [Manuel de

lemmatisation, LASLA, 2013]. Additionally, like many other languages, Latin is teeming with

homographs which require context to be disambiguated. A token such as legi can both be lemmatized

under the verb lego as under the noun lex. Similarly ambiguous tokens include common forms such

quae, satis or venis. For lemmatization specifically, another problem are verb forms which show no

resemblance to their lemma at all. The fact that tuli is an „active 1st person singular perfect‟ of fero is

not at all obvious, and the same goes for fero‟s perfect participle latus, which could in its own turn be

confused with the homonymous common noun latus (“side”). A tagger has to learn the morphological

connection between tuli, latus and fero by moving beyond outward appearances (prefixes, word stems

or suffixes), and by properly modelling the immediate context surrounding these words.

2
Journal of Data Mining and Digital Humanities http://jdmdh.episciences.org
ISSN 2416-5999, an open-access journal

Latin, as a school-preserved language, changed surprisingly little throughout its history

compared to other languages. Nevertheless, it did witness the introduction of considerable

orthographical variation [Rigg 1996], affecting both the spelling and spacing words, especially in

medieval times. Some variants in Latin spelling are based on convention and relate to editorial

preferences, rather than linguistic evolutions. Well known are the orthographical alterations between

<v> and <u> (e.g. auus, avus versus avvs) and <i> and <j> (e.g. jejunium and ieiunium) to distinguish

between vowels and consonants, a post-medieval distinction which occurs only from the 17th-18th

century onwards. Earlier phonological evolutions within Latin have caused other orthographical

peculiarities. An important example is the evolution from the classical diphtongs <ae> or <oe> to <e>

(aetas vs etas), which in their own turn caused the occurrence of hypercorrected forms such as

aecclesia instead of ecclesia. The implication of the preceding example is that normalizing the spelling

of a word is not a simple conversion task which goes in one direction only (because <e> to <ae> is not

a rule in se if we sometimes need to correct <ae> to <e>). The ambiguity between <ae> and <e> is

problematic, since both can function as case endings and consequently carry relevant inflectional

information which we want the tagger to detect. Other examples of linguistic deviation found in

medieval texts are: the alteration between <ti> and <ci> caused by lenition (e.g. pronuntio vs

pronuncio), the alteration between <e> and <i> because of confusion between the long vowel /e:/ and

the short /i/ (e.g. quolebet vs quolibet), the loss or addition of initial <h> (e.g. habundanter for

abundanter, or ebdomada for hebdomada), strengthened aspiration or fortition (e.g. michi for mihi or

nichil for nihil), the intrusion of <p> after an <m> (e.g. hiemps for hiems, or dampnum for damnum),

etc.

Naturally, orthographical artifacts and homography pose challenging problems from a

computational perspective [Piotrowski 2012]. Consider the surface form poetae to which, already,

three different analyses might be applicable: „nominative masculine plural‟, „genitive masculine

singular‟ and „dative masculine singular‟. In medieval texts, the form poetae could easily be spelled as

poete, a spelling which in its turn causes confusion with other declensions, such as dux, duc-e. Thus, a

good model of the local context in which ambiguous word forms appear is crucial to their

disambiguation. Nevertheless, Latin is a highly synthetic language which generally lacks a strict word

order: it is therefore far from trivial to extract syntactic patterns from Latin sentences (e.g. an adjective

modifying a noun does not necessarily immediately proceed or follow it). This lack of a strict word

order on the one hand and the concordance of morphological features on the other can cause Latin to

display a number of amphibologies or so called “crash blossoms”. These are sentences which allow for

different syntactic readings (e.g. nautae poetae mensas dant).

Resources and related research

While basic sequence tagging tasks such as PoS-tagging are typically considered „solved‟ for many

modern languages such as English, these problems remain more challenging for so-called „resource-

scarce‟ languages, such as Latin, for which fewer or smaller resources are generally available, such as

annotated training corpora. In this section, we review some of the main corpora which are currently

available, including a short characterization, and a brief description of the type of annotations they

include.

Index Thomisticus

From early on, Latin was an important research topic in the emerging community of Digital

Humanities, more specifically in the form of the Index Thomisticus started by Roberto Busa, s.j. in the

second half of the 1940s [Passarotti 2013]. The corpus contains all 118 texts of 13th century author

Thomas Aquinas as well as 61 texts which are related to him, approximating 11 million words which

can be searched online. The website additionally allows to compare and sort words, phrases,

quotations, similitudes, correlations and statistical information. In 2006, the Index Thomisticus team

started a treebank project in close collaboration with the Latin Dependency Treebank [Passarotti et al,

2010; 2014].Their annotation style was inspired by that of the Prague Dependency Treebank and the

Latin grammar of Pinkster [Bamman et al, 2007]. The IT-TB training sets, taken from Thomas

Aquinas‟ Scriptum super Sententiis Magistri Petri Lombardi, are available for download in the

CoNLL-format and comprise over 175.000 tokens. The Index Thomisticus,with its present treebank

3
Journal of Data Mining and Digital Humanities http://jdmdh.episciences.org
ISSN 2416-5999, an open-access journal

venture, is a seminal project that until this very day proves to be of considerable value to the progress

of Latin automatic annotation.

Latin Dependency Treebank

A second project occupied with Latin treebanking is the Latin Dependency Treebank (LDT), which

was developed as a part of the Perseus Project at the Tufts University in 2006. Classical texts from

Caesar, Cicero, Jerome, Vergil, Ovid, Petronius, Phaedrus, Sallust and Suetonius were manually

annotated by adopting the Guidelines for the Syntactic Annotation of Latin Treebanks (cfr. supra),

resulting in a corpus of 53.143 words which was made available online.Treebanking implies full

parsing information (syntactic and semantic annotation), whereas for us only the morphological

information included in the PoS-tag is relevant.

PROIEL

Another noteworthy treebank project is PROEIL (Pragmatic Resources of Old Indo-European

Languages) [Haug and Jøhndal, 2008]. Its goal is to find information structure systems cross-

linguistically over the different translations of the Bible (Latin, Greek, Gothic, Armenian and Church

Slavonic). In a first phase, these texts were automatically PoS-tagged and manually corrected. A rule-

based „guesser‟ consequently suggested the most likely dependency relation for the annotator. Their

annotation scheme for syntactic dependencies was based on that of the LDT, but they have fine-

grained the domain of verbal arguments and adnominal functions [Haug and Jøhndal, 2008]. This

training data has been made available online (in the CoNLL standard), and includes roughly 179.000

Latin words from Jerome‟s New Testament, Cicero‟s Letters to Atticus, Caesar‟s De Bello Gallico and

the Peregrinatio Egeriae.

LASLA

A fourth project worth mentioning is LASLA (Laboratoire d’Analyse Statistique des Langues

Anciennes).This project has developed a lemmatized corpus, comprising classical texts such as those

of Caesar, Catullus, Horace, Ovid and Virgil, which can be searched online if registered, but is not

publicly available for download. Their lemmatization method of Latin is, however, semi-automatic.

Firstly, the word is automatically analyzed on the basis of its stem and case ending, which results in a

list of possible lemmas. At this stage, the choice of the correct lemma and its correct morphological

analysis occurs manually, which is a rather time-consuming undertaking [Mellet and Purnelle, 2002].

For a reference dictionary in producing the lemmas, LASLA has used Forcellini‟s Lexicon totius

latinitatis, with the reasonable argument that it is the least incoherent [Manuel de lemmatisation,

LASLA, 2013].

(CHLT) LemLat

CHLT LemLat is a Neo-Latin morphological analyzer, the first version of which appeared in 1992. It

was “statistically able to lemmatize about 1.300.000 wordforms from the origins to the fifth/sixth

century after Christ” [Bozzi et al, 2002]. CHLT LemLat adopts a rule-based approach which first splits

the token into three parts in order to perform morphological tagging, namely the invariable part of the

wordform (LES, e.g. antiqu-), the paradigmatic suffix (SM, e.g. –issim-) and the ending (SF, e.g. -

orum) [Passarotti, 2007]. Like LASLA, LemLat is unable to contextually disambiguate ambiguous

forms in running text, since it is lexicon-based, and more specifically makes use of the dictionaries

Georges, Gradenwitz and the Oxford Latin Dictionary.

LatinISE

The LatinISE corpus comprises a total of 13 million Latin words covering a time span from the 2nd

century B.C. to the 21st century A.D., was annotated through a combination of two pre-existing

methods. Firstly, the PROEIL Project‟s morphological analyser and Quick Latin were used for

lemmatization and PoS-tagging [McGillivray and Kilgariff, 2013]. This analyser generated various

options in disambiguation for a word. Secondly, the output from the analyser was the input to a

TreeTagger model trained on the Index Thomisticus dataset, which would take context into account

and choose the most likely lemma and PoS-tag. LatinISE can be accessed online on the Sketch Engine,

but is not freely available.

4
Journal of Data Mining and Digital Humanities http://jdmdh.episciences.org
ISSN 2416-5999, an open-access journal

CompHistSem

A very recent and promising project is CompHistSem (Computational Historical Semantics). The

project, for instance, has applied network theory to detect semantic changes in diachronic Latin

corpora. Recently, the project has released a composite lexicon called the Frankfurt Latin Lexicon,

also referred to as the Collex.LA, which brings together lemmas from various web-based

resources(such as the Latin Wiktionary) [Mehler et al, 2014]. Additionally, the project released the

TTLab Latin Tagger, with the objective of being able to automatically tag large corpora such as the

Patrologia Latina. Both these resources, Collex.LA and the TTLab Latin Tagger, are available for trial

online. Their TTLab Latin Tagger is „hybrid‟ and combines a linguistic rule-based approach with a

statistical one, avoiding the huge effort rule-based taggers require for every target language separately

on the one hand, and avoiding the overfitting characteristic of statistical taggers on the other [Mehler

et al, 2014]. They have trained and tested the TTLab LatinTagger on the Carolingian Capitularia,

which are ordinances in Latin decreed by Carolingian rulers, split up in several sections or chapters.

In a recent article, the researchers in this project have contributed a very complete survey

paper in which they have employed these Capitularia to produce a comparative study of six taggers

and two lemmatization methods [Eger et al, 2015]. These results probably offer the best discussion of

the state of the art at present. Out of the six taggers which they have compared, more specifically

TreeTagger, TnT, Lapos, Mate, OpenNLPTagger and StanfordTagger, the best tagger was reported to

be Lapos. When it comes to lemmatization, the team concluded that a trained lemmatizer (as opposed

to a lexicon-based lemmatizers) provides better results (from 93-94% to 94-95%) and moreover deals

better with lemmatizing words which are out-of-vocabulary (OOV) or which suffer from several

variations (honos and honor) [Eger et al, 2015]. They used LemmaGen for this specific purpose, which

is a lemmatizer dependent on induced rule conditions (RDR, ripple-down-rules) [Juršič et al, 2010].

This proves that lexicon-based approaches to lemmatization are not always favourable.

In an upcoming article [Eger et al, forthcoming], they have further developed this idea, by

showing that the lemmatizer LAT, which relies on statistical inference and treats lemmatization as a

sequence labeling problem (involving context), provides better results than LemmaGen. Both

lemmatizers were based on prefix and suffix transformations. Moreover, CompHistSem has shown

how the „joint learning‟ of a lemmatizer with a tagger (as opposed to „pipeline learning‟, which is the

independent training and testing on each subcategory as PoS, case, gender etc.) can also improve the

overall accuracy of the lemmatization / PoS-tagging task, especially in the case of the MarMoT tagger

which – once additional resources such as word embeddings and an underlying lexicon such as

Collex.LA are provided – gains the highest results. The CompHistSem-team was generous to provide

us with the annotated Capitularia-corpus (and their exact train-test splits), which facilitates the

comparison of our resultsto theirs.

This survey shows that for lemmatization and part-of-speech tagging, we currently have the

following annotated data at our disposal without restrictions: the Index Thomisticus Treebank, the

Latin Dependency Treebank, the PROIEL data and the annotated Capitularia corpus. All of these

annotated corpora offer at least a lemma, coarse PoS tags and a fine-grained morphological analysis.

Interestingly, three clear trends become obvious. (1) Firstly, The automatic annotation of Latin texts

has been moving away from semi-automated, rule-based approaches (e.g. PROIEL, LASLA, CHLT

LemLat) to data-driven machine learning techniques (e.g. the TreeTagger in LatinISE and

CompHistSem). In general, older approaches were strongly dependent on static lexica, which for each

word form would exhaustively list all potential morphological analysis, e.g. in the form of tag-lemma

pairs. In the case of ambiguity, a statistically trained part-of-speech tagger would be used to later

single out the best option.

First of all, such a lexicon-based lemmatization approach has the disadvantage that it is in

principle unable to correctly lemmatize out-of-vocabulary words, which are not covered in the

available lexica. In the case of medieval texts, orthographic variation renders this problem even more

acute. Moreover, lexicon-based strategies are very susceptible to the problem of error percolation: if

the trained tagger predicts the wrong PoS tag, this renders it less likely that the tagger will be able to

select the correct lemma. The CompHistSem project leads the way in this respect, showing that

statistical lemmatization techniques offer an interesting, and perhaps even more robust alternative to

5
Journal of Data Mining and Digital Humanities http://jdmdh.episciences.org
ISSN 2416-5999, an open-access journal

traditional lexicon-based approaches. (2) Secondly, CompHistSem‟s latest results demonstrate that

taggers which include distributed word representations (so-called “embeddings”, see below) are

generally superior to previous approaches. This observation will prove very relevant in the next

section, because our architecture heavily makes use of a highly similar representation strategy. (3)

Very few systems have attempted to learn the tasks of lemmatization and PoS-tagging in an integrated

fashion. Most systems continue to learn both tasks independently although some systems would make

use of cascade taggers, where the output of e.g. the PoS-tagger would be subsequently fed as input to

the lemmatizer. Nevertheless, previous research has clearly demonstrated that both tasks might

mutually inform each other [Toutanova et al, 2009].

An Integrated Architecture

In this section, we describe our attempt at an integrated architecture which can be used for the

automated sequence tagging of medieval Latin at several levels, e.g. combined lemmatization and

PoS-tagging. This architecture is comparable in nature to other sequence taggers, such as Morfette

[Chrupała et al, 2008; Chrupała 2008]. Our architecture is in principle language-independent and could

be easily applied to other languages and corpora too. While this section is restricted to a complete, but

high level description, minor details of the architecture and training procedure can be checked in the

code repository which is associated with this paper. A graphical depiction of our complete model is

depicted in Fig. 1. The overall idea behind the architecture is simple. We first create two „subnets‟ that

act as encoders: one subnet is used to model a particular focus token, which we like to tag, and a

second subnet serves to model the lexical context surrounding the focus token. The result of these two

„encoding‟ subnets is joined into a single representation which is then fed to two other „decoding‟

networks: one network which will generate the lemma and another which will predict the PoS tag.

Latin is a highly inflected language: in order to arrive at a good model for individual words, it

is therefore vital to take into account morphemic information at the subword level. For this, we make

use of recent advances in the field of “deep” representation learning [LeCun et al, 2015; Bengio et al,

2013], where it has been demonstrated recently that (even longer) pieces of text can be efficiently

modeled from the raw character level upwards [Chrupała 2014; Zhang et al, 2015; Bagnall 2015; Kim

et al, 2016]. We therefore present individual words to the network using a simple matrix

representation as follows: each row represents a character and the columns represent the respective

character positions in the word (cf. [Zhang et al, 2015]). We set the number of columns to be the

length of the longest word in the training material: longer words at test time are truncated to this fixed

length, and shorter words are padded with all-zero columns. The cells are populated with binary „one

hot‟ values, indicating the presence or absence of a character in a specific position in the word. A

simplified example of this representation is offered below in Table 1 (for the word aliquis). All tokens

are lowercased before this conversion, in order to limit the size of the character vocabulary.

Char/position 1 (a) 2 (l) 3 (i) 4 (q) 5 (u) 6 (i) 7 (s) 8 (-) 9 (-) 10 (-)

a 1 0 0 0 0 0 0 0 0 0

l 0 1 0 0 0 0 0 0 0 0

i 0 0 1 0 0 1 0 0 0 0

q 0 0 0 1 0 0 0 0 0 0

u 0 0 0 0 1 0 0 0 0 0

s 0 0 0 0 0 0 1 0 0 0

Table 1: Example of the character-level representation of an individual focus token (aliquis): this representation

encodes the presence of characters (one per row) in subsequent positions of the word (the columns). Shorter

words are padded with all-zero columns.

6
Journal of Data Mining and Digital Humanities http://jdmdh.episciences.org
ISSN 2416-5999, an open-access journal

Next, we model these matrix-representations of words using so-called „Long Short-Term

Memory‟ (LSTM) layers [Hochreiter et al, 1997; Graves et al, 2013]. LSTM is a powerful type of

sequence modeler to which is currently paid a great deal of attention in the field of representation

learning, in the context of natural language processing in particular [LeCun et al, 2015]. Briefly put,

this sort of „recurrent‟ modeler will iteratively work its way through the subsequent positions in a time

series, such as the character positions in our matrix. At the end of the series, the LSTM is able to

output a single, dense vector representation of the entire sequence. LSTMs are interesting sequence

modelers, because they can capture longer-term dependencies between the information at different

positions in the time series. From the point of view of the present task, one could for instance expect

the LSTM to develop a sensitivity to the presence of specific morphemes in words, such as word stems

or inflectional endings. LSTM layers can be stacked on top of each other, to obtain deeper levels of

abstraction. In our experiments, we use stacks of two LSTM layers throughout.

Apart from this character-level representation, our network architecture has a separate subnet

which we use to model the lexical neighbourhood surrounding a focus token for the purpose of

contextual disambiguation. For the sake of simplicity, here we used the series of tokens, starting from

two words before the focus token until (and including) the token following the focus token (including

the focus token itself), which is common contextual parametrization in this sort of sequence tagging

[cf. Zavrel et al, 1999]. This part of the network is based on the concept of so-called „word

embeddings‟ [Baroni et al, 2010; Mikolov et al, 2013; Manning, 2015]. In traditional Machine

Learning approaches, words are represented using their index in a vocabulary: in the case of a

vocabulary consisting of 10,000 words, each token would get represented by a vector of 10,000 binary

values, one of which would be set to 1, and all others to zero (hence, the alternative name „one-hot

encoding‟). Such a representation has the disadvantage that it requires word vectors of a considerable

dimensionality (e.g. 10,000). Moreover, it is a categorical word representation that judges all words to

equidistant, which is of course a less useful approximation in the case of synonyms or spelling

variants.

In the case of „embeddings‟, tokens are represented by vectors of a much lower dimensionality

(e.g. 150), which offer word representations in which the available information is distributed much

more evenly over the available units. The general idea is that such word embeddings do not only come

at a much lower computational cost, but that they also offer a smoother representation of words,

because they are able to reflect, for instance, the closer semantic distance between synonyms. From a

computational perspective, learning word embeddings typically involves optimizing a randomly

initialized matrix [Levy et al, 2015], which for each vocabulary item holds a fixed-size vector of e.g.

150 dimensions. While such a matrix can quickly grow very large, word embeddings are still very

efficient, because for each token only a single vector in the matrix has to be updated each time, leaving

the rest of the matrix unaltered. In our network architecture, modelling the context surrounding a focus

token as such involves to select 4 vectors from our embeddings matrix, and concatenate these into a

single vector. At this point, we have obtained a model of the focus token, as well as the surrounding

context. We now concatenate both „encoding‟ representations into a single „hidden representation‟.

We now proceed towards to decoding parts of our network, which will produce the ultimate output for

a focus token.

As to the lemmatization, we now feed our „hidden representation‟ into a second stack of

LSTMs, by repeating this representation n times, where n corresponds to the maximum lemma length

encountered during training. The task of this „decoding‟ LSTM is to produce the correct lemma by

generating the required lemma character by character. This is an extremely challenging approach to

the problem of lemmatization. Previous approaches have approached lemmatization in a more

conventional classification setting: either the lemma was considered an atomic class label [Kestemont

et al, 2010] or the lemmatization was solved by predicting an „edit script‟ as a class label [Chrupała

2008; Chrupała et al, 2008; Eger et al, 2015], which could be used to convert the input token to its

lemma. Instead of having the LSTM stack eventually output a single vector (as was the case for the

encoder), we have it now output for each character slot in the lemma a probability distribution over the

characters in our alphabet. Therefore, we represent the lemma as a character matrix, using the exact

same representation method as for the input tokens (cf. Table 1). We borrow the idea of an encoder-

decoder LSTM architecture from a seminal paper in the field of Machine Translation which showed

that stacks of encoding/decoding LSTMs can be used to transduce sentences from a source language

7
Journal of Data Mining and Digital Humanities http://jdmdh.episciences.org
ISSN 2416-5999, an open-access journal

into a target language [Sutskever et al, 2015; Cho et al, 2014]. Here, however, we do not learn to map

a series of words in one language to a series of words in another language, but we use it to translate the

series of characters in a token, to a series of characters representing the corresponding lemma.

The proposed network architecture is „multi-headed‟ [Bagnall 2015], in the sense that a single

architecture is used to simultaneously solve multiple tasks in an integrated fasion. Apart from the

„lemma-head‟, we also add a second „head‟ to the architecture whose aim it is to predict a PoS tag for

a focus token. Here, we use the „hidden representation‟ obtained from the encoder and feed it into a

stack of two standard dense layers (LeCun et al, 2015). As is increasingly common in representation

learning, we apply dropout to these layers (p=.5), meaning that during training, each time randomly

half of the available values in a vector are set to zero [Srivastava, 2014]. As a non-linearity, we use

rectified linear units, which set all negative values to zero. Finally, we produce a probability vector for

each PoS label, which is normalized using a so-called softmax layer, ensuring that the resulting

probabilities sum to one.

We train this network during a maximum of 15 epochs using an optimization method called

„minibatch gradient descent‟, with an initial batch size of 100. More specifically, we used the

RMSprop update mechanism, which helps networks to converge faster because it keeps track of the

recent gradient history of each parameter. After 10 epochs, we would decrease the current learning rate

by a factor of three and the initial batch size with a factor to get more fine-updates for each batch.

Some more specific implementation details: we do not apply any dropout in the recurrent layer as it

proved to be detrimental; the recurrent layers use the tanh-nonlinearity, and all other nonlinearities

which we tested failed to converge. All recurrent layers and dense layers have a dimensionality of 150,

with the exception of the final output layer of the encoding LSTM, which we set to 450. We used a

dimensionality of 100 for the embeddings matrix (below, we offer a visualization of one of its

optimized versions). We implemented these models using the keras, sklearn, gensim and theano

[Bastien et al, 2012] libraries and trained them on an NVIDIA Titan X. Depending on the model‟s

complexity and current batch size, one epoch on average would take between 600 and 1000 seconds.

Figure 1 Graphical representation of the proposed model architecture. The model has two „encoding‟ subnets,

which model a focus token and the surrounding context: the result is concatened into a single hidden

8
Journal of Data Mining and Digital Humanities http://jdmdh.episciences.org
ISSN 2416-5999, an open-access journal

representation. This represent is fed to two „headnets‟: one which aims to generate the target lemma on a

character-by-character basis; a second which predicts the PoS tag.

Datasets and evaluation metrics

 Non-Classicized Classicized

Train Dev Test Train Dev Test

Tokens 389,304 43,256 49,018 389,304 43,256 49,018

Unique tokens 38,044 10,353 11,526 38,045 10,353 5.71

Prop. unseen NA 5.14 5.71 NA 5.14 5.71

Unique lemmas 12,413 4,904 5,256 10,906 4,568 4,837

Table 2: Statistics on the two datasets used in terms of number of words etc: the test set in the non-classisized

spelling is identical to the one used by Eger et al. [2015].

In this paper we evaluate the performance of our models using the traditional accuracy score (i.e. the

ratio of correct answers over all answers). As is common in linguistic sequence tagging studies, we

make a distinction between known and unknown tokens in the development and test data. “Unknown”

tokens refer to the predictions for surface tokens which were not verbatimly encountered in the

training data (which does not say anything about whether the target lemma for that surface form was

encountered during training or not). In the training of neural networks, it has become standard to

differentiate between a training set, a development set and a test set. The general idea here is that

algorithms can be trained on the training data during a number of iterations: after each epoch, the

system will gain in performance and can be evaluated on the held-out development data. When the

performance of the system on the development data is no longer increasing, this is a sign that the

system is overfitting the training data and will not generalize or scale well to the unseen data. At this

point, one should halt the training procedure (a procedure also known as „early stopping‟). Finally, the

system can be evaluating on the actual test data; this testing procedure should be postponed to the very

end, to guarantee that researchers have not been optimizing a system in the light of a specific text set.

We have used the exact same test data as Eger et al. (2015), whose data set we will be

focusing on. For development data, we have used the final 10% of instances of the remaining data; the

first 90% were used as training data. Importantly, while this is a very objective approach to evaluating

our system, this division of the data will put our architecture at a slight disadvantage in comparison to

previous studies, in the sense that our system will only have been trained of 90% of all the available

training data. Thus, our models can be expected to have a slightly worse lexical coverage, which might

result in slightly lower scores etc.. One important aspect of PoS-tagging is the complexity or

granularity of the tagset used, which has of course an important impact on the performance of a tagger.

In this exploratory paper, we limit our experiments to the simple PoS tags in the dataset, which only

distinguish very basic word classes (e.g. N for nouns, V for verbs, etc.).

One important issue with the original annotation standard used for the Capitularia data can be

illustrated using the following example. Consider the spelling of the word oracio, which has shifted

from the classical oratio as a result of the lenition of the /t/ in medieval times. The current

lemmatization standard will map both tokens to two separate lemmas, whereas they might just as well

as be mapped to the same lemma. For many projects (e.g. semantic or literary analysis), we would like

a lemmatizer to collapse both spellings and map both spelling to the same “superlemma”, preferably in

a uniform, “classical” spelling (for the sake of simplicity). We have therefore produced an alternative

version of the Capitularia corpus, where we have added restriction that all lemmas should appear in a

classicized orthography, as present in the well-known reference dictionary by Lewis & Short, thus

normalizing all other variants.

9
Journal of Data Mining and Digital Humanities http://jdmdh.episciences.org
ISSN 2416-5999, an open-access journal

Amongst many, some of the more important rules are that both <v> and <u> are retained in

their respective distinctions as consonant and vowel (auus or avvs is normalized to avus), <j>

disappears for <i> (conjunx is normalized to coniunx), the diphtong <ae> is corrected or recovered

where this is necessary (aecclesia to ecclesia, but demon to daemon), <ti> is recovered where <ci> is

inappropriate in classical spelling (rationem instead of racionem), assimilations - especially in the case

of prepositional prefixes - are allowed (collabor instead of conlabor), etc. Since many of the tokens in

the Capitularia data had not been normalized to a standard spelling, we had to manually correct all

deviant lemmas to the Lewis and Short norm, thus creating a resource to train models with classical

spellings and lemmas. Regarding lemmatization conventions, the predominant principle is that all

words are converted to their base form, which is the nominative singular for nouns, the nominative

masculine singular for pronouns, adjectives and ordinal numbers, and the first person singular for

verbs. Some choices are perhaps worth mentioning. For instance, comparatives and superlatives have

been redressed to their neutral base forms (e.g. maior to magnus), gerunds and participles to their 1st

person singular verb form. Adverbs retained their original form. Below, we will also report results

using this dataset, which can be considered easier in the sense that the set of output lemmas is smaller,

(see Table 2 for an overview), but more difficult in the sense that the character transduction between

tokens and lemmas potentially becomes more complicated in the corrected cases.

Results and discussion

As to the lemmatization results, our test scores are generally lower than the most successful scores

reported by Eder et al. [2015], with an overall drop around 1.5-2.% in overall accuracy on the test set.

This was partially to be expected, given the fact that our training only represents 90% of theirs, and

thus has a slightly worse lexical coverage. Also, our formulation of the lemmatization task, as a

character-per-character string generation task is much more complex, and currently does not seem to

outperform more conventional approaches, in particular that of dedicated tools such as LemmaGen.

Interestingly, however, our model is not outperformed by the results which Eger et al. [2015] reported

for lexicon-based approaches, indicating that our Machine Learning approach too, relaxes the overall

need for large, corpus-external lexica. Surprisingly, the accuracy scores for all tasks remain relatively

low for the training data too, and none of our models reached accuracies above 96% for a particular

tagging task, indicating the relative difficulty of the modelling tasks under scrutiny. The results for the

„classicized lemmas‟ version of the data set are generally in the same ballpark as the non-classicized

data. This is a valuable result, since the string transduction task does in fact become more complex

(although the set of output lemmas does shrink).

 In this respect, it is worth pointing out that the results for the PoS-tagging task are relatively

high and mostly on par with the best corresponding results reported by Eder et al. [2015]. This is

somewhat surprising, given the limited training data we use, as well as the fact that the model is fairly

generic, and does not include any of the more task-specific bells and whistles which current PoS-

taggers typically include. One common feature which modern PoS-taggers often include is that the

recently predicted PoS for the previous words are added as a feature that might help to disambiguate

the current focus token. We did not include such features in our model, because they are not trivial to

implement using a mini-batch training method. Nevertheless, our results suggest that our network

produces excellent tagging results for the PoS labels. In all likelihood, this is due to the inclusion of

distributed word embeddings, which have advanced the state of the art across multiple NLP [Manning,

2016].

Note that in our implementation, we would first „pretrain‟ a conventional word embeddings

model on the training data, using a popular implementation of word2vec‟s skipgram algorithm

[Mikolov et al, 2013]. The fact that this pretraining data set is much smaller in size than the one used

by Eger et al. [2015], i.e. the whole Patrologia Latina, did not seem to pose a serious disadvantage.

We used the resulting embeddings matrix, which is a cheap method to speed up convergence.

Importantly, therefore, our word embeddings are dynamic, and the corresponding weight matrix will

in fact be optimized during the training process to optimize them even further in the light of a specific

task. Arguably, this is why our word embeddings approach is still on par with the approach reported

by Eger. et al. [2015] where the word embeddings are added as a static feature, although the

embeddings are trained on a much larger dataset. This creates interesting perspectives for future

research. Below, we include a visualization of the word embeddings after training, using the popular t-

10
Journal of Data Mining and Digital Humanities http://jdmdh.episciences.org
ISSN 2416-5999, an open-access journal

SNE algorithm [Van der Maaten et al, 2008]. As visibly demonstrated, the model seems to learn useful

representations of high-level word classes -- e.g. preprositions form a tight cluster in light blue (ex, in,

pro, …) -- but also collocational patterns (nostro tempore, in light green).

For the integrated learning experiment, the results are curiously mixed: interestingly, in some

respect, the tasks do seem to mutually inform themselves. The PoS results, for instance, are higher in

the case of the integrated approach, which suggests that the PoS-tagging is helped by the information

which is being backpropagated by the lemmatization-specific components. Surprisingly, however, this

is not the case for lemmatization scores, which are actually lower in the integrated experiments. This is

especially true for the unknown word scores. We hypothesize that the successful lemmatization of

unknown words makes use of the surplus capacity in the hidden representation, or the capacity which

is not strictly needed to predict the known word lemmas. In the integrated architecture, the PoS-tagger

will require more information from the hidden representation, putting pressure on this surplus

capacity. This strongly suggests that both tasks are to some extent competing for resources in the

network, and further research into the matter is required.

Figure 2 A typical visualization of the word embeddings for the set of the 500 most frequent tokens in the

training data after 15 epochs of optimization. A conventional agglomerative cluster analysis was ran on the data

points in the scatterplot to identify 8 word clusters, which were coloured accordingly as a reading aid. These

results are for the classicized corpus (integrated task of lemmatization and simple PoS tag prediction).

As to an analysis of the errors, one of the most recurrent lemmatization errors is the intrusion of

unwanted consonants or vowels, a typical problem because we generated the lemmas in a character-

by-character fashion. Such instances can sometimes be interpreted as a form of “computational

hypercorrection”, in that the tagger tries to solve a problem where there is none. This is true for the

normalization of praesentaliter to praesintaliter, in which we see a correction of the <e> to the <i>

which we would indeed have required if it were a token such as quolebet. Sometimes the tagger seems

sensitive to an orthographic problem but incorrectly solves it, which is the case for ymnus being

normalized to omnis. Another typical problem is that proper names are not recognized as such, but as a

different part of speech, and are consequently “normalized” to an unrecognisable form (e.g.

extinguntto extinno). In general, we have noticed that this intrusion of consonants and vowels

11
Journal of Data Mining and Digital Humanities http://jdmdh.episciences.org
ISSN 2416-5999, an open-access journal

sometimes causes the fabrication of a lemma which is still quite far off from the lemma we wanted to

predict, such as the lemmatization of intromissi to intromittu, or lapidem to lapid. Another interesting

error was that pluribus was in some rare occasions lemmatized to multus, which indicates that the

word embeddings in our model have struck a connection between two words that have semantic

equivalence. This noise provides the pointers which we will need for solving this problem in future

endeavours. Interestingly, a lot of the lemmatization errors which were eventually made, involve only

small differences at the character level near the end of the lemma, which was in some ways to be

expected since we generated the lemma left-to-right. Although some minor postprocessing might

already be very helpful here, this suggest that the application of „bidirectional‟ recurrent networks

might be a valuable direction for future research [Graves et al, 2005].

 Train Dev Test

Task All All Kno Unk All Kno Unk

Lemma 95.08 93.54 95.73 53.25 93.16 95.74 50.58

PoS 95.14 94.16 95.03 78.04 93.97 95.14 74.81

Lemma /

PoS

92.09 /

95.59

91.03 /

94.50

93.53 /

95.34

44.85 /

78.98

90.54 /

94.44

93.57 /

40.37

40.37 /

75.63

Table 3 Results (in accuracy) for the original, non-classicized lemmas in the Capitularia dataset [Eger

et al, 2015]. Results are shown for the train, development and test set, for all words, as well as for the

known and unknown words separately.

 Train Dev Test

Task All All Kno Unk All Kno Unk

Lemma 95.40 93.91 96.22 51.27 93.57 96.27 48.91

Lemma /

PoS

92.65 /

95.70

91.43 /

94.58

93.92 /

95.43

45.71 /

78.94

91.19 /

94.47

94.17 /

95.63

41.83 /

75.34

Table 3 Results (in accuracy) for the Capitularia dataset with „classicized‟ lemmas [Eger et al, 2015].

Results are shown for the train, development and test set, for all words, as well as for the known and

unknown words separately.

Conclusion and future research

In this paper, we have presented at attempt of the joint learning of two sequence tagging tasks for

medieval Latin: lemmatization and PoS-tagging. These tasks are traditionally solved using a cascaded

approach, which we tried to bypass by jointly learning both tasks in a single, integrated model. As a

model, we have proposed a novel Machine Learning approach, based upon recent advances in deep

representation learning using neural networks. When trained on both tasks separately, our model

yields acceptable scores, which are on par with previously reported studies. Interestingly, our approach

too is lexicon-independent, which places our results in line with previous studies with have moved

away from lexicon-based approaches. When learned jointly, we observed that the PoS-tagging

accuracy increased, but lemmatization accuracy decreased. Further research is required to find out how

this competition for resources in the network can be handled in a better way. An important novelty of

this paper, is that we produced a novel annotation layer in the Capitularium dataset in which we

normalized the medieval orthography of the lemma labels used by “classicizing” them. In spite of the

12
Journal of Data Mining and Digital Humanities http://jdmdh.episciences.org
ISSN 2416-5999, an open-access journal

increased difficulty of the string transduction task, our model performed reasonably well on this novel

data in terms of lemmatization.

Acknowledgements

Our sincerest gratitude goes out towards our colleagues Prof. Dr. Jeroen Deploige and Prof. Dr. Wim

Verbaal from Ghent University, whose expertise and feedback was indispensable in the creation of

this paper, which is a preliminary step in our joint project “Collaborative Authorship in Twelfth

Century Latin Literature: A Stylometric Approach to Gender, Synergy and Authority”, funded by BOF

(Bijzonder Onderzoeksfonds) in Ghent. Without their considerate guidance in respectively the

historical and linguistic / literary field, this article would have proven to be an impossibility.

References
Bagnall D. Author Identification using multi-headed Recurrent Neural Networks. CLEF (Notebook for PAN). 2015.
Bamman D., Passarotti M., Busa R., Crane G. The annotation guidelines of the Latin Dependency Treebank and Index

Thomisticus Treebank. The treatment of some syntactic constructions in Latin. LREC (Proceedings of the Sixth

International Conference on Language Resources and Evaluation). 2008:71-76.
Bamman D., Passarotti M., Crane G., Raynaud S. Guidelines for the Syntactic Annotation of Latin Treebanks (v. 1.3.).

2007:1-48. http://nlp.perseus.tufts.edu/syntax/treebank/1.3/docs/guidelines.pdf.
Baroni M., Lenci A. Distributional Memory: A General Framework for Corpus-Based Semantics. Computational Linguistics.

2010;36(4):673-721.
Bastien F., Lamblin P., Pascanu R., Bergstra J., Goodfellow I.J., Bergeron A., Bouchard N., Bengio Y. Theano: new features

and speed improvements. Deep Learning and Unsupervised Feature Learning. NIPS (Neural Information Processing

Systems) Workshop. 2012:1-10.
Bengio Y., Courville A., Vincent P. Representation Learning: A Review and New Perspectives. IEEE Transactions on

Pattern Analysis and Machine Intelligence. 2013;35(8):1798-1828.
Bozzi A., Cappelli G., Passarotti M., Ruffolo P. Periodic Progress Report: Workpackage 5. Neo-Latin Morphological

Analyser. 2002:1-17. (from documents on their webpage http://www.ilc.cnr.it/lemlat/)
Cho K., van Merrienboer B., Bahdanau D., Bengio Y. On the Properties of Neural Machine Translation: Encoder-Decoder

Approaches. SSST. 2014;8.
Chrupała G. Normalizing tweets with edit scripts and recurrent neural embeddings. Proceedings of the 52nd Annual Meeting

of the Association for Computational Linguistics (Short Papers). 2014:680-686.
Chrupała G. Towards a Machine-Learning Architecture for Lexical Functional Grammar Parsing. Chapter 6. PhD

dissertation. Dublin City University, 2008.
Chrupała G., Dinu G., van Genabith, J. Learning Morphology with Morfette. Proceedings of the International Conference on

Language Resources and Evaluation (LREC). 2008.
Devine A.M., Stephens L.D. Latin Word Order: Structured Meaning and Information. Oxford University Press (Oxford),

2006.
Graves A., Schmidhuber J. Framewise phoneme classification with bidirectional LSTM and other neural network

architectures. Neural Networks. 2005;18:602–610.
Haug D.T.T., Jøhndal M.L. Creating a Parallel Treebank of the Old Indo-European Bible Translations. edd. Sporleder C.,

Ribarov K. LaTeCH (Proceedings of the Second Workshop on Language Technology for Cultural Heritage Data).

2008:27-34.
Hochreiter S., Schmidhuber J. Long Short-Term Memory. Neural Computation. 1997;9(8):1735-1780.
http1 http://www.ilc.cnr.it/lemlat/
http2 http://ilk.uvt.nl/conll/
http3 http://itreebank.marginalia.it/view/download.php
http4 http://proiel.github.io
http5 http://www.quicklatin.com/
http6 http://sites.tufts.edu/perseusupdates/2013/01/17/querying-the-perseus-ancient-greek-and-latin-treebank-data-in-

annis/
http7 https://perseusdl.github.io/treebank_data/
http8 http://web.philo.ulg.ac.be/lasla/
http9 http://www.comphistsem.org/home.html
http10 http://www.corpusthomisticum.org
http11 https://www.sketchengine.co.uk
Eger, S., Gleim, R., Mehler, A. Lemmatization and morphological tagging in German and Latin: A comparison and a survey

of the state-of-the-art. 2016. (forthcoming).
Eger S., vor der Brück T., Mehler A. Lexicon-assisted tagging and lemmatization in Latin: A comparison of six taggers and

two lemmatization methods. LaTeCH (Proceedings of the 9th Workshop on Language Technology for Cultural Heritage,

Social Sciences, and Humanities). 2015:105-113. (106).
Franzini G., Franzini E., Büchler M. Historical Text Reuse: What Is It? (http://http://etrap.gcdh.de/?page_id=332).
Graves A., Mohamed A., Hinton G. Speech Recognition with Deep Recurrent Neural Networks. Acoustics, Speech and

Signal Processing (ICASSP), 2013 IEEE International Conference. 2013:6645-6649.
Jurafsky D.S., Martin J.H. Speech and Language Processing. An Introduction to Natural Language Processing,

Computational Linguistics and Speech Recognition. Englewood Cliffs, 2000:285-318.

http://www.ilc.cnr.it/lemlat/
http://www.ilc.cnr.it/lemlat/
http://ilk.uvt.nl/conll/
http://itreebank.marginalia.it/view/download.php
http://proiel.github.io/
http://ilk.uvt.nl/conll/
http://sites.tufts.edu/perseusupdates/2013/01/17/querying-the-perseus-ancient-greek-and-latin-treebank-data-in-annis/
http://sites.tufts.edu/perseusupdates/2013/01/17/querying-the-perseus-ancient-greek-and-latin-treebank-data-in-annis/
https://perseusdl.github.io/treebank_data/
http://web.philo.ulg.ac.be/lasla/
http://www.comphistsem.org/home.html
http://www.corpusthomisticum.org/
https://www.sketchengine.co.uk/
http://http/etrap.gcdh.de/?page_id=332

13
Journal of Data Mining and Digital Humanities http://jdmdh.episciences.org
ISSN 2416-5999, an open-access journal

Kestemont M., Daelemans W. De Pauw G. Weigh your words – memory-based lemmatization for Middle Dutch. LLC.

2010;25(3):287-301.
Kim Y. et al. Character-Aware Neural Language Models. AAAI. 2016. (forthcoming).
Knowles G., Mohd Don Z. The notion of a “lemma”. Headwords, roots and lexical sets. International Journal of Corpus

Linguistics. 2004;9:69-81.
LeCun Y., Bengio Y., Hinton G. Deep Learning. Nature. 2015;521:436-444.
Lewis C.T., Short C., Andrews E.A., Freund W. A Latin Dictionary, Founded on Andrews' edition of Freund's Latin

dictionary revised, enlarged, and in great part rewritten by Charlton T. Lewis, Ph.D. and Charles Short, LL.D. Oxford,

Clarendon Press, 1879.
Manning, C.D. Computational Linguistics and Deep Learning. Computational Linguistics. 2015;41(4):701-707.
Matjaž J., Mozetič I., Erjavec T., Lavrač N. LemmaGen: Multilingual Lemmatisation with Induced Ripple-Down Rules.

Journal of Universal Computer Science. 2010;16:1190-1214.
McGillivray B., Kilgariff, A. Tools for historical corpus research, and a corpus of Latin. New Methods in Historical Corpus

Linguistics. edd. Durrell P., Scheible M., Whitt S., Bennett R.J. 2013;3:247-255.
Mehler A., Gleim R., Waltinger U., Diewald N. Time Series of Linguistic Networks in the Patrologia Latina. GI Jahrestagung

(2). 2010:586-593.
Mehler A., vor der Brück T., Gleim R., Geelhaar T. Towards a Network Model of the Coreness of Texts: An Experiment in

Classifying Latin Texts Using the TTLab Latin Tagger. From Ontology Learning to Automated Text Processing

Applications. Text Mining. edd. Bieman C., Mehler A. Springer International Publishing (Switzerland). 2014:87-112.
Mellet S., Purnelle G. Les atouts multiples de la lemmatisation: l‟exemple du latin. JADT (Journées internationales

d’Analyse statistique des Données Textuelles). 2002;6:529-538.
Mikolov T., Sutskever I., Chen K., Corrado G.S., Dean J. Distributed representations of words and phrases and their

compositionality. NIPS (Neural Information Processing Systems). 2013;26:3111–3119.
Levy O., Goldberg Y., Dagan I. Improving Distributional Similarity with Lessons Learned from Word Embeddings. TACL

(Transactions of the Association for Computational Linguistics). 2015;3:211-225.
Passarotti M. From Syntax to Semantics. First Steps Towards Tectogrammatical Annotation of Latin. LaTeCH (Proceedings

of the 8th Workshop on Language Technology for Cultural Heritage, Social Sciences, and humanities). EACL. 2014:100-

109.
Passarotti M. One Hundred Years Ago. In Memory of Father Roberto Busa SJ. Proceedings of the Third Workshop on

Annotation of Corpora for Research in the Humanities. edd. Mambrini F. et al. Sofia, 2013:15-24.
Passarotti M. LEMLAT. Uno strumento per la lemmatizzazione morfologica automatica del latino. From Manuscript to

Digital Text. Problems of Interpretation and Markup. Proceedings of the Colloquium (Bologna, June 12th 2003). edd. Citti

F., Del Vecchio T. 2007:107-128.
Passarotti M., Dell‟Orletta F. Improvements in Parsing the Index Thomisticus Treebank. Revision, Combination and a

Feature Model for Medieval Latin. LREC (Proceedings of the International Conference on Language Resources and

Evaluation). 2010;(17-23):1964-1971.
Piotrowski M. Natural Language Processing for Historical Texts. Morgan & Claypool Publishers, 2012.
Rigg A.G. Orthography and Pronunciation. Medieval Latin: An Introduction and Bibliographical Guide. edd. Mantello

F.A.C, Rigg A.G. The Catholic University of America Press (Washington, D.C.), 1996:79-83.
Schinke R, Greengrass M, Robertson AM, Willett P. A stemming algorithm for Latin text databases. Journal of

Documentation. 1996;52:172-187.
Srivastava N., Hinton G., Krizhevsky A. Sutskever I., Salakhutdinov R. Dropout: A Simple Way to Prevent Neural Networks

from Overfitting. Journal of Machine Learning Research. 2014;15:1929-1958.
Sutskever I., Vinyals O., Le V.Q. Sequence to Sequence Learning with Neural Networks. NIPS (Neural Information

Processing Systems). 2014: 3104-3112.
Toutanova K., Cherry C. A global model for joint lemmatization and part-of-speech prediction. Proceedings of the Joint

Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language

Processing of the AFNLP. 2009;1:486-494.
van der Maaten L.J.P., Hinton G.E. Visualizing High-Dimensional Data Using t-SNE. Journal of Machine Learning

Research. 2008;9:2579-2605.
Zavrel J., Daelemans W. Recent Advances in Memory-Based Part-of-Speech Tagging. Actas del VI Simposio Internacional

de Comunicacion Social. 1999:590-957.
Zhang X., Zhao J., Lecun Y. Character-level Convolutional Networks for Text Classification. NIPS (Neural Information

Processing Systems). 2015;28:1-9.

