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Abstract 
In this paper we consider two sequence tagging tasks for medieval Latin: part-of-speech tagging and 

lemmatization. These are both basic, yet foundational preprocessing steps in applications such as text re-use 

detection. Nevertheless, they are generally complicated by the considerable orthographic variation which is 

typical of medieval Latin. In Digital Classics, these tasks are traditionally solved in a (i) cascaded and (ii) 

lexicon-dependent fashion. For example, a lexicon is used to generate all the potential lemma-tag pairs for a 

token, and next, a context-aware PoS-tagger is used to select the most appropriate tag-lemma pair. Apart from 

the problems with out-of-lexicon items, error percolation is a major downside of such approaches. In this paper 

we explore the possibility to elegantly solve these tasks using a single, integrated approach. For this, we make 

use of a layered neural network architecture from the field of deep representation learning. 

 

Introduction and challenges 

The Latin language, and its historic variants in particular, have long been a topic of major interest in 

Natural Language Processing [Piotrowksi 2012]. Especially in the community of Digital Humanities, 

the automated processing of Latin texts has always been a popular research topic. In a variety of 

computational applications, such as text re-use detection [Franzini et al, 2015], it is desirable to 

annotate and augment Latin texts with useful morpho-syntactical or lexical information, such as 

lemma‟s. In this paper, we will focus on two sequence tagging tasks for medieval Latin: part-of-

speech tagging and lemmatization. Given a piece of Latin text, the task of lemmatization involves 

assigning each word to a single dictionary headword or „lemma‟: a baseform label (preferably in a 

normalized orthography) grouping all word tokens which only differ in spelling and/or inflection 

[Knowles et al, 2004]. The task of lemmatization is closely related to that of part-of-speech (PoS) 

tagging [Jurafsky etal, 2000], in which each word in a running text should be assigned a tag indicating 

its part of speech or word class (e.g. noun, verb, ...). The difficulty of PoS-tagging strongly depends of 

course on the complexity and granularity of the tagset chosen. Lemmatization and PoS-tagging are 

classic forms of sequence labeling, in which tags are assigned to words, both on the basis of their 

individual appearance, as well as the other words which surround them.  

While both lemmatization and PoS-tagging are rather basic preprocessing steps, they are 

generally complicated by a number of interesting challenges which the Latin language poses. First of 

all, while plain stemming might take us a long way [Schinke et al, 1996], many Latin suffixes cannot 

be automatically linked to an unambiguous morphological category. Words ending in –ter, for 

example, correspond to no less than six different parts of speech: nouns (fra-ter), adjectives (dex-ter), 

pronouns (al-ter), adverbs (gravi-ter), numeral adverbs (qua-ter) and prepositions (in-ter) [Manuel de 

lemmatisation, LASLA, 2013]. Additionally, like many other languages, Latin is teeming with 

homographs which require context to be disambiguated. A token such as legi can both be lemmatized 

under the verb lego as under the noun lex. Similarly ambiguous tokens include common forms such 

quae, satis or venis. For lemmatization specifically, another problem are verb forms which show no 

resemblance to their lemma at all. The fact that tuli is an „active 1st person singular perfect‟ of fero is 

not at all obvious, and the same goes for fero‟s perfect participle latus, which could in its own turn be 

confused with the homonymous common noun latus (“side”). A tagger has to learn the morphological 

connection between tuli, latus and fero by moving beyond outward appearances (prefixes, word stems 

or suffixes), and by properly modelling the immediate context surrounding these words. 
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Latin, as a school-preserved language, changed surprisingly little throughout its history 

compared to other languages. Nevertheless, it did witness the introduction of considerable 

orthographical variation [Rigg 1996], affecting both the spelling and spacing words, especially in 

medieval times. Some variants in Latin spelling are based on convention and relate to editorial 

preferences, rather than linguistic evolutions. Well known are the orthographical alterations between 

<v> and <u> (e.g. auus, avus versus avvs) and <i> and <j> (e.g. jejunium and ieiunium) to distinguish 

between vowels and consonants, a post-medieval distinction which occurs only from the 17th-18th 

century onwards. Earlier phonological evolutions within Latin have caused other orthographical 

peculiarities. An important example is the evolution from the classical diphtongs <ae> or <oe> to <e> 

(aetas vs etas), which in their own turn caused the occurrence of hypercorrected forms such as 

aecclesia instead of ecclesia. The implication of the preceding example is that normalizing the spelling 

of a word is not a simple conversion task which goes in one direction only (because <e> to <ae> is not 

a rule in se if we sometimes need to correct <ae> to <e>). The ambiguity between <ae> and <e> is 

problematic, since both can function as case endings and consequently carry relevant inflectional 

information which we want the tagger to detect. Other examples of linguistic deviation found in 

medieval texts are: the alteration between <ti> and <ci> caused by lenition (e.g. pronuntio vs 

pronuncio), the alteration between <e> and <i> because of confusion between the long vowel /e:/ and 

the short /i/ (e.g. quolebet vs quolibet), the loss or addition of initial <h> (e.g. habundanter for 

abundanter, or ebdomada for hebdomada), strengthened aspiration or fortition (e.g. michi for mihi or 

nichil for nihil), the intrusion of <p> after an <m> (e.g. hiemps for hiems, or dampnum for damnum), 

etc. 

Naturally, orthographical artifacts and homography pose challenging problems from a 

computational perspective [Piotrowski 2012]. Consider the surface form poetae to which, already, 

three different analyses might be applicable: „nominative masculine plural‟, „genitive masculine 

singular‟ and „dative masculine singular‟. In medieval texts, the form poetae could easily be spelled as 

poete, a spelling which in its turn causes confusion with other declensions, such as dux, duc-e. Thus, a 

good model of the local context in which ambiguous word forms appear is crucial to their 

disambiguation. Nevertheless, Latin is a highly synthetic language which generally lacks a strict word 

order: it is therefore far from trivial to extract syntactic patterns from Latin sentences (e.g. an adjective 

modifying a noun does not necessarily immediately proceed or follow it). This lack of a strict word 

order on the one hand and the concordance of morphological features on the other can cause Latin to 

display a number of amphibologies or so called “crash blossoms”. These are sentences which allow for 

different syntactic readings (e.g. nautae poetae mensas dant).  
 

Resources and related research 

While basic sequence tagging tasks such as PoS-tagging are typically considered „solved‟ for many 

modern languages such as English, these problems remain more challenging for so-called „resource-

scarce‟ languages, such as Latin, for which fewer or smaller resources are generally available, such as 

annotated training corpora. In this section, we review some of the main corpora which are currently 

available, including a short characterization, and a brief description of the type of annotations they 

include. 
 

Index Thomisticus 

From early on, Latin was an important research topic in the emerging community of Digital 

Humanities, more specifically in the form of the Index Thomisticus started by Roberto Busa, s.j. in the 

second half of the 1940s [Passarotti 2013]. The corpus contains all 118 texts of 13th century author 

Thomas Aquinas as well as 61 texts which are related to him, approximating 11 million words which 

can be searched online. The website additionally allows to compare and sort words, phrases, 

quotations, similitudes, correlations and statistical information. In 2006, the Index Thomisticus team 

started a treebank project in close collaboration with the Latin Dependency Treebank [Passarotti et al, 

2010; 2014].Their annotation style was inspired by that of the Prague Dependency Treebank and the 

Latin grammar of Pinkster [Bamman et al, 2007]. The IT-TB training sets, taken from Thomas 

Aquinas‟ Scriptum super Sententiis Magistri Petri Lombardi, are available for download in the 

CoNLL-format and comprise over 175.000 tokens. The Index Thomisticus,with its present treebank 
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venture, is a seminal project that until this very day proves to be of considerable value to the progress 

of Latin automatic annotation.  
 

Latin Dependency Treebank 

A second project occupied with Latin treebanking is the Latin Dependency Treebank (LDT), which 

was developed as a part of the Perseus Project at the Tufts University in 2006. Classical texts from 

Caesar, Cicero, Jerome, Vergil, Ovid, Petronius, Phaedrus, Sallust and Suetonius were manually 

annotated by adopting the Guidelines for the Syntactic Annotation of Latin Treebanks (cfr. supra), 

resulting in a corpus of 53.143 words which was made available online.Treebanking implies full 

parsing information (syntactic and semantic annotation), whereas for us only the morphological 

information included in the PoS-tag is relevant. 
 

PROIEL 

Another noteworthy treebank project is PROEIL (Pragmatic Resources of Old Indo-European 

Languages) [Haug and Jøhndal, 2008]. Its goal is to find information structure systems cross-

linguistically over the different translations of the Bible (Latin, Greek, Gothic, Armenian and Church 

Slavonic). In a first phase, these texts were automatically PoS-tagged and manually corrected. A rule-

based „guesser‟ consequently suggested the most likely dependency relation for the annotator. Their 

annotation scheme for syntactic dependencies was based on that of the LDT, but they have fine-

grained the domain of verbal arguments and adnominal functions [Haug and Jøhndal, 2008]. This 

training data has been made available online (in the CoNLL standard), and includes roughly 179.000 

Latin words from Jerome‟s New Testament, Cicero‟s Letters to Atticus, Caesar‟s De Bello Gallico and 

the Peregrinatio Egeriae. 
 

LASLA 

A fourth project worth mentioning is LASLA (Laboratoire d’Analyse Statistique des Langues 

Anciennes).This project has developed a lemmatized corpus, comprising classical texts such as those 

of Caesar, Catullus, Horace, Ovid and Virgil, which can be searched online if registered, but is not 

publicly available for download. Their lemmatization method of Latin is, however, semi-automatic. 

Firstly, the word is automatically analyzed on the basis of its stem and case ending, which results in a 

list of possible lemmas. At this stage, the choice of the correct lemma and its correct morphological 

analysis occurs manually, which is a rather time-consuming undertaking [Mellet and Purnelle, 2002]. 

For a reference dictionary in producing the lemmas, LASLA has used Forcellini‟s Lexicon totius 

latinitatis, with the reasonable argument that it is the least incoherent [Manuel de lemmatisation, 

LASLA, 2013]. 
 

(CHLT) LemLat 

CHLT LemLat is a Neo-Latin morphological analyzer, the first version of which appeared in 1992. It 

was “statistically able to lemmatize about 1.300.000 wordforms from the origins to the fifth/sixth 

century after Christ” [Bozzi et al, 2002]. CHLT LemLat adopts a rule-based approach which first splits 

the token into three parts in order to perform morphological tagging, namely the invariable part of the 

wordform (LES, e.g. antiqu-), the paradigmatic suffix (SM, e.g. –issim-) and the ending (SF, e.g. -

orum) [Passarotti, 2007]. Like LASLA, LemLat is unable to contextually disambiguate ambiguous 

forms in running text, since it is lexicon-based, and more specifically makes use of the dictionaries 

Georges, Gradenwitz and the Oxford Latin Dictionary. 
 

LatinISE 

The LatinISE corpus comprises a total of 13 million Latin words covering a time span from the 2nd 

century B.C. to the 21st century A.D., was annotated through a combination of two pre-existing 

methods. Firstly, the PROEIL Project‟s morphological analyser and Quick Latin were used for 

lemmatization and PoS-tagging [McGillivray and Kilgariff, 2013]. This analyser generated various 

options in disambiguation for a word. Secondly, the output from the analyser was the input to a 

TreeTagger model trained on the Index Thomisticus dataset, which would take context into account 

and choose the most likely lemma and PoS-tag. LatinISE can be accessed online on the Sketch Engine, 

but is not freely available. 
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CompHistSem 

A very recent and promising project is CompHistSem (Computational Historical Semantics). The 

project, for instance, has applied network theory to detect semantic changes in diachronic Latin 

corpora. Recently, the project has released a composite lexicon called the Frankfurt Latin Lexicon, 

also referred to as the Collex.LA, which brings together lemmas from various web-based 

resources(such as the Latin Wiktionary) [Mehler et al, 2014].  Additionally, the project released the 

TTLab Latin Tagger, with the objective of being able to automatically tag large corpora such as the 

Patrologia Latina. Both these resources, Collex.LA and the TTLab Latin Tagger, are available for trial 

online. Their TTLab Latin Tagger is „hybrid‟ and combines a linguistic rule-based approach with a 

statistical one, avoiding the huge effort rule-based taggers require for every target language separately 

on the one hand, and avoiding the overfitting characteristic of statistical taggers on the other [Mehler 

et al, 2014]. They have trained and tested the TTLab LatinTagger on the Carolingian Capitularia, 

which are ordinances in Latin decreed by Carolingian rulers, split up in several sections or chapters. 

In a recent article, the researchers in this project have contributed a very complete survey 

paper in which they have employed these Capitularia to produce a comparative study of six taggers 

and two lemmatization methods [Eger et al, 2015]. These results probably offer the best discussion of 

the state of the art at present. Out of the six taggers which they have compared, more specifically 

TreeTagger, TnT, Lapos, Mate, OpenNLPTagger and StanfordTagger, the best tagger was reported to 

be Lapos. When it comes to lemmatization, the team concluded that a trained lemmatizer (as opposed 

to a lexicon-based lemmatizers) provides better results (from 93-94% to 94-95%) and moreover deals 

better with lemmatizing words which are out-of-vocabulary (OOV) or which suffer from several 

variations (honos and honor) [Eger et al, 2015]. They used LemmaGen for this specific purpose, which 

is a lemmatizer dependent on induced rule conditions (RDR, ripple-down-rules) [Juršič et al, 2010]. 

This proves that lexicon-based approaches to lemmatization are not always favourable. 

In an upcoming article [Eger et al, forthcoming], they have further developed this idea, by 

showing that the lemmatizer LAT, which relies on statistical inference and treats lemmatization as a 

sequence labeling problem (involving context), provides better results than LemmaGen. Both 

lemmatizers were based on prefix and suffix transformations. Moreover, CompHistSem has shown 

how the „joint learning‟ of a lemmatizer with a tagger (as opposed to „pipeline learning‟, which is the 

independent training and testing on each subcategory as PoS, case, gender etc.) can also improve the 

overall accuracy of the lemmatization / PoS-tagging task, especially in the case of the MarMoT tagger 

which – once additional resources such as word embeddings and an underlying lexicon such as 

Collex.LA are provided – gains the highest results. The CompHistSem-team was generous to provide 

us with the annotated Capitularia-corpus (and their exact train-test splits), which facilitates the 

comparison of our resultsto theirs.  
 

This survey shows that for lemmatization and part-of-speech tagging, we currently have the 

following annotated data at our disposal without restrictions: the Index Thomisticus Treebank, the 

Latin Dependency Treebank, the PROIEL data and the annotated Capitularia corpus. All of these 

annotated corpora offer at least a lemma, coarse PoS tags and a fine-grained morphological analysis. 

Interestingly, three clear trends become obvious. (1) Firstly, The automatic annotation of Latin texts 

has been moving away from semi-automated, rule-based approaches (e.g. PROIEL, LASLA, CHLT 

LemLat) to data-driven machine learning techniques (e.g. the TreeTagger in LatinISE and 

CompHistSem). In general, older approaches were strongly dependent on static lexica, which for each 

word form would exhaustively list all potential morphological analysis, e.g. in the form of tag-lemma 

pairs. In the case of ambiguity, a statistically trained part-of-speech tagger would be used to later 

single out the best option. 

First of all, such a lexicon-based lemmatization approach has the disadvantage that it is in 

principle unable to correctly lemmatize out-of-vocabulary words, which are not covered in the 

available lexica. In the case of medieval texts, orthographic variation renders this problem even more 

acute. Moreover, lexicon-based strategies are very susceptible to the problem of error percolation: if 

the trained tagger predicts the wrong PoS tag, this renders it less likely that the tagger will be able to 

select the correct lemma. The CompHistSem project leads the way in this respect, showing that 

statistical lemmatization techniques offer an interesting, and perhaps even more robust alternative to 
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traditional lexicon-based approaches. (2) Secondly, CompHistSem‟s latest results demonstrate that 

taggers which include distributed word representations (so-called “embeddings”, see below) are 

generally superior to previous approaches. This observation will prove very relevant in the next 

section, because our architecture heavily makes use of a highly similar representation strategy. (3) 

Very few systems have attempted to learn the tasks of lemmatization and PoS-tagging in an integrated 

fashion. Most systems continue to learn both tasks independently although some systems would make 

use of  cascade taggers, where the output of e.g. the PoS-tagger would be subsequently fed as input to 

the lemmatizer. Nevertheless, previous research has clearly demonstrated that both tasks might 

mutually inform each other [Toutanova et al, 2009]. 
 

An Integrated Architecture 

In this section, we describe our attempt at an integrated architecture which can be used for the 

automated sequence tagging of medieval Latin at several levels, e.g. combined lemmatization and 

PoS-tagging. This architecture is comparable in nature to other sequence taggers, such as Morfette 

[Chrupała et al, 2008; Chrupała 2008]. Our architecture is in principle language-independent and could 

be easily applied to other languages and corpora too. While this section is restricted to a complete, but 

high level description, minor details of the architecture and training procedure can be checked in the 

code repository which is associated with this paper. A graphical depiction of our complete model is 

depicted in Fig. 1. The overall idea behind the architecture is simple. We first create two „subnets‟ that 

act as encoders: one subnet is used to model a particular focus token, which we like to tag, and a 

second subnet serves to model the lexical context surrounding the focus token. The result of these two 

„encoding‟ subnets is joined into a single representation which is then fed to two other „decoding‟ 

networks: one network which will generate the lemma and another which will predict the PoS tag.  

Latin is a highly inflected language: in order to arrive at a good model for individual words, it 

is therefore vital to take into account morphemic information at the subword level. For this, we make 

use of recent advances in the field of “deep” representation learning [LeCun et al, 2015; Bengio et al, 

2013], where it has been demonstrated recently that (even longer) pieces of text can be efficiently 

modeled from the raw character level upwards [Chrupała 2014; Zhang et al, 2015; Bagnall 2015; Kim 

et al, 2016]. We therefore present individual words to the network using a simple matrix 

representation as follows: each row represents a character and the columns represent the respective 

character positions in the word (cf. [Zhang et al, 2015]). We set the number of columns to be the 

length of the longest word in the training material: longer words at test time are truncated to this fixed 

length, and shorter words are padded with all-zero columns. The cells are populated with binary „one 

hot‟ values, indicating the presence or absence of a character in a specific position in the word. A 

simplified example of this representation is offered below in Table 1 (for the word aliquis). All tokens 

are lowercased before this conversion, in order to limit the size of the character vocabulary. 
 

Char/position 1 (a) 2 (l) 3 (i) 4 (q) 5 (u) 6 (i) 7 (s) 8 (-) 9 (-) 10 (-) 

a 1 0 0 0 0 0 0 0 0 0 

l 0 1 0 0 0 0 0 0 0 0 

i 0 0 1 0 0 1 0 0 0 0 

q 0 0 0 1 0 0 0 0 0 0 

u 0 0 0 0 1 0 0 0 0 0 

s 0 0 0 0 0 0 1 0 0 0 

 

Table 1: Example of the character-level representation of an individual focus token (aliquis): this representation 

encodes the presence of characters (one per row) in subsequent positions of the word (the columns). Shorter 

words are padded with all-zero columns. 
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Next, we model these matrix-representations of words using so-called „Long Short-Term 

Memory‟ (LSTM) layers [Hochreiter et al, 1997; Graves et al, 2013]. LSTM is a powerful type of 

sequence modeler to which is currently paid a great deal of attention in the field of representation 

learning, in the context of natural language processing in particular [LeCun et al, 2015]. Briefly put, 

this sort of „recurrent‟ modeler will iteratively work its way through the subsequent positions in a time 

series, such as the character positions in our matrix. At the end of the series, the LSTM is able to 

output a single, dense vector representation of the entire sequence. LSTMs are interesting sequence 

modelers, because they can capture longer-term dependencies between the information at different 

positions in the time series. From the point of view of the present task, one could for instance expect 

the LSTM to develop a sensitivity to the presence of specific morphemes in words, such as word stems 

or inflectional endings. LSTM layers can be stacked on top of each other, to obtain deeper levels of 

abstraction. In our experiments, we use stacks of two LSTM layers throughout. 

Apart from this character-level representation, our network architecture has a separate subnet 

which we use to model the lexical neighbourhood surrounding a focus token for the purpose of 

contextual disambiguation. For the sake of simplicity, here we used the series of tokens, starting from 

two words before the focus token until (and including) the token following the focus token (including 

the focus token itself), which is common contextual parametrization in this sort of sequence tagging 

[cf. Zavrel et al, 1999]. This part of the network is based on the concept of so-called „word 

embeddings‟ [Baroni et al, 2010; Mikolov et al, 2013; Manning, 2015]. In traditional Machine 

Learning approaches, words are represented using their index in a vocabulary: in the case of a 

vocabulary consisting of 10,000 words, each token would get represented by a vector of 10,000 binary 

values, one of which would be set to 1, and all others to zero (hence, the alternative name „one-hot 

encoding‟). Such a representation has the disadvantage that it requires word vectors of a considerable 

dimensionality (e.g. 10,000). Moreover, it is a categorical word representation that judges all words to 

equidistant, which is of course a less useful approximation in the case of synonyms or spelling 

variants. 

In the case of „embeddings‟, tokens are represented by vectors of a much lower dimensionality 

(e.g. 150), which offer word representations in which the available information is distributed much 

more evenly over the available units. The general idea is that such word embeddings do not only come 

at a much lower computational cost, but that they also offer a smoother representation of words, 

because they are able to reflect, for instance, the closer semantic distance between synonyms. From a 

computational perspective, learning word embeddings typically involves optimizing a randomly 

initialized matrix [Levy et al, 2015], which for each vocabulary item holds a fixed-size vector of e.g. 

150 dimensions. While such a matrix can quickly grow very large, word embeddings are still very 

efficient, because for each token only a single vector in the matrix has to be updated each time, leaving 

the rest of the matrix unaltered. In our network architecture, modelling the context surrounding a focus 

token as such involves to select 4 vectors from our embeddings matrix, and concatenate these into a 

single vector. At this point, we have obtained a model of the focus token, as well as the surrounding 

context. We now concatenate both „encoding‟ representations into a single „hidden representation‟. 

We now proceed towards to decoding parts of our network, which will produce the ultimate output for 

a focus token. 

As to the lemmatization, we now feed our „hidden representation‟ into a second stack of 

LSTMs, by repeating this representation n times, where n corresponds to the maximum lemma length 

encountered during training. The task of this „decoding‟ LSTM is to produce the correct lemma by 

generating the required lemma character by character. This is an extremely challenging approach to 

the problem of lemmatization. Previous approaches have approached lemmatization in a more 

conventional classification setting: either the lemma was considered an atomic class label [Kestemont 

et al, 2010] or the lemmatization was solved by predicting an „edit script‟ as a class label [Chrupała 

2008; Chrupała et al, 2008; Eger et al, 2015], which could be used to convert the input token to its 

lemma. Instead of having the LSTM stack eventually output a single vector (as was the case for the 

encoder), we have it now output for each character slot in the lemma a probability distribution over the 

characters in our alphabet. Therefore, we represent the lemma as a character matrix, using the exact 

same representation method as for the input tokens (cf. Table 1). We borrow the idea of an encoder-

decoder LSTM architecture from a seminal paper in the field of Machine Translation which showed 

that stacks of encoding/decoding LSTMs can be used to transduce sentences from a source language 
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into a target language [Sutskever et al, 2015; Cho et al, 2014]. Here, however, we do not learn to map 

a series of words in one language to a series of words in another language, but we use it to translate the 

series of characters in a token, to a series of characters representing the corresponding lemma. 

The proposed network architecture is „multi-headed‟ [Bagnall 2015], in the sense that a single 

architecture is used to simultaneously solve multiple tasks in an integrated fasion. Apart from the 

„lemma-head‟, we also add a second „head‟ to the architecture whose aim it is to predict a PoS tag for 

a focus token. Here, we use the „hidden representation‟ obtained from the encoder and feed it into a 

stack of two standard dense layers (LeCun et al, 2015). As is increasingly common in representation 

learning, we apply dropout to these layers (p=.5), meaning that during training, each time randomly 

half of the available values in a vector are set to zero [Srivastava, 2014]. As a non-linearity, we use 

rectified linear units, which set all negative values to zero. Finally, we produce a probability vector for 

each PoS label, which is normalized using a so-called softmax layer, ensuring that the resulting 

probabilities sum to one. 

We train this network during a maximum of 15 epochs using an optimization method called 

„minibatch gradient descent‟, with an initial batch size of 100. More specifically, we used the 

RMSprop update mechanism, which helps networks to converge faster because it keeps track of the 

recent gradient history of each parameter. After 10 epochs, we would decrease the current learning rate 

by a factor of three and the initial batch size with a factor to get more fine-updates for each batch. 

Some more specific implementation details: we do not apply any dropout in the recurrent layer as it 

proved to be detrimental; the recurrent layers use the tanh-nonlinearity, and all other nonlinearities 

which we tested failed to converge. All recurrent layers and dense layers have a dimensionality of 150, 

with the exception of the final output layer of the encoding LSTM, which we set to 450. We used a 

dimensionality of 100 for the embeddings matrix (below, we offer a visualization of one of its 

optimized versions). We implemented these models using the keras, sklearn, gensim and theano 

[Bastien et al, 2012] libraries and trained them on an NVIDIA Titan X. Depending on the model‟s 

complexity and current batch size, one epoch on average would take between 600 and 1000 seconds. 
 

 
Figure 1 Graphical representation of the proposed model architecture. The model has two „encoding‟ subnets, 

which model a focus token and the surrounding context: the result is concatened into a single hidden 
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representation. This represent is fed to two „headnets‟: one which aims to generate the target lemma on a 

character-by-character basis; a second which predicts the PoS tag. 

 

Datasets and evaluation metrics 

 

 Non-Classicized Classicized 

 

Train Dev Test Train Dev Test 

Tokens 389,304 43,256 49,018 389,304 43,256 49,018 

Unique tokens 38,044 10,353 11,526 38,045 10,353 5.71 

Prop. unseen NA 5.14 5.71 NA 5.14 5.71 

Unique lemmas 12,413 4,904 5,256 10,906 4,568 4,837 

Table 2: Statistics on the two datasets used in terms of number of words etc: the test set in the non-classisized 

spelling is identical to the one used by Eger et al. [2015]. 

 

In this paper we evaluate the performance of our models using the traditional accuracy score (i.e. the 

ratio of correct answers over all answers). As is common in linguistic sequence tagging studies, we 

make a distinction between known and unknown tokens in the development and test data. “Unknown” 

tokens refer to the predictions for surface tokens which were not verbatimly encountered in the 

training data (which does not say anything about whether the target lemma for that surface form was 

encountered during training or not). In the training of neural networks, it has become standard to 

differentiate between a training set, a development set and a test set. The general idea here is that 

algorithms can be trained on the training data during a number of iterations: after each epoch, the 

system will gain in performance and can be evaluated on the held-out development data. When the 

performance of the system on the development data is no longer increasing, this is a sign that the 

system is overfitting the training data and will not generalize or scale well to the unseen data. At this 

point, one should halt the training procedure (a procedure also known as „early stopping‟). Finally, the 

system can be evaluating on the actual test data; this testing procedure should be postponed to the very 

end, to guarantee that researchers have not been optimizing a system in the light of a specific text set. 

We have used the exact same test data as Eger et al. (2015), whose data set we will be 

focusing on. For development data, we have used the final 10% of instances of the remaining data; the 

first 90% were used as training data. Importantly, while this is a very objective approach to evaluating 

our system, this division of the data will put our architecture at a slight disadvantage in comparison to 

previous studies, in the sense that our system will only have been trained of 90% of all the available 

training data. Thus, our models can be expected to have a slightly worse lexical coverage, which might 

result in slightly lower scores etc.. One important aspect of PoS-tagging is the complexity or 

granularity of the tagset used, which has of course an important impact on the performance of a tagger. 

In this exploratory paper, we limit our experiments to the simple PoS tags in the dataset, which only 

distinguish very basic word classes (e.g. N for nouns, V for verbs, etc.). 

One important issue with the original annotation standard used for the Capitularia data can be 

illustrated using the following example. Consider the spelling of the word oracio, which has shifted 

from the classical oratio as a result of the lenition of the /t/ in medieval times. The current 

lemmatization standard will map both tokens to two separate lemmas, whereas they might just as well 

as be mapped to the same lemma. For many projects (e.g. semantic or literary analysis), we would like 

a lemmatizer to collapse both spellings and map both spelling to the same “superlemma”, preferably in 

a uniform, “classical” spelling (for the sake of simplicity). We have therefore produced an alternative 

version of the Capitularia corpus, where we have added restriction that all lemmas should appear in a 

classicized orthography, as present in the well-known reference dictionary by Lewis & Short, thus 

normalizing all other variants. 
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Amongst many, some of the more important rules are that both <v> and <u> are retained in 

their respective distinctions as consonant and vowel (auus or avvs is normalized to avus), <j> 

disappears for <i> (conjunx is normalized to coniunx), the diphtong <ae> is corrected or recovered 

where this is necessary (aecclesia to ecclesia, but demon to daemon), <ti> is recovered where <ci> is 

inappropriate in classical spelling (rationem instead of racionem), assimilations - especially in the case 

of prepositional prefixes - are allowed (collabor instead of conlabor), etc. Since many of the tokens in 

the Capitularia data had not been normalized to a standard spelling, we had to manually correct all 

deviant lemmas to the Lewis and Short norm, thus creating a resource to train models with classical 

spellings and lemmas. Regarding lemmatization conventions, the predominant principle is that all 

words are converted to their base form, which is the nominative singular for nouns, the nominative 

masculine singular for pronouns, adjectives and ordinal numbers, and the first person singular for 

verbs. Some choices are perhaps worth mentioning. For instance, comparatives and superlatives have 

been redressed to their neutral base forms (e.g. maior to magnus), gerunds and participles to their 1st 

person singular verb form. Adverbs retained their original form. Below, we will also report results 

using this dataset, which can be considered easier in the sense that the set of output lemmas is smaller, 

(see Table 2 for an overview), but more difficult in the sense that the character transduction between 

tokens and lemmas potentially becomes more complicated in the corrected cases. 
 

Results and discussion 

As to the lemmatization results, our test scores are generally lower than the most successful scores 

reported by Eder et al. [2015], with an overall drop around 1.5-2.% in overall accuracy on the test set. 

This was partially to be expected, given the fact that our training only represents 90% of theirs, and 

thus has a slightly worse lexical coverage. Also, our formulation of the lemmatization task, as a 

character-per-character string generation task is much more complex, and currently does not seem to 

outperform more conventional approaches, in particular that of dedicated tools such as LemmaGen. 

Interestingly, however, our model is not outperformed by the results which Eger et al. [2015] reported 

for lexicon-based approaches, indicating that our Machine Learning approach too, relaxes the overall 

need for large, corpus-external lexica. Surprisingly, the accuracy scores for all tasks remain relatively 

low for the training data too, and none of our models reached accuracies above 96% for a particular 

tagging task, indicating the relative difficulty of the modelling tasks under scrutiny. The results for the 

„classicized lemmas‟ version of the data set are generally in the same ballpark as the non-classicized 

data. This is a valuable result, since the string transduction task does in fact become more complex 

(although the set of output lemmas does shrink). 

 In this respect, it is worth pointing out that the results for the PoS-tagging task are relatively 

high and mostly on par with the best corresponding results reported by Eder et al. [2015]. This is 

somewhat surprising, given the limited training data we use, as well as the fact that the model is fairly 

generic, and does not include any of the more task-specific bells and whistles which current PoS-

taggers typically include. One common feature which modern PoS-taggers often include is that the 

recently predicted PoS for the previous words are added as a feature that might help to disambiguate 

the current focus token. We did not include such features in our model, because they are not trivial to 

implement using a mini-batch training method. Nevertheless, our results suggest that our network 

produces excellent tagging results for the PoS labels. In all likelihood, this is due to the inclusion of 

distributed word embeddings, which have advanced the state of the art across multiple NLP [Manning, 

2016]. 

Note that in our implementation, we would first „pretrain‟ a conventional word embeddings 

model on the training data, using a popular implementation of word2vec‟s skipgram algorithm 

[Mikolov et al, 2013]. The fact that this pretraining data set is much smaller in size than the one used 

by Eger et al. [2015], i.e. the whole Patrologia Latina, did not seem to pose a serious disadvantage. 

We used the resulting embeddings matrix, which is a cheap method to speed up convergence. 

Importantly, therefore, our word embeddings are dynamic, and the corresponding weight matrix will 

in fact be optimized during the training process to optimize them even further in the light of a specific 

task. Arguably, this is why our word embeddings approach is still on par with the approach reported 

by Eger. et al. [2015] where the word embeddings are added as a static feature, although the 

embeddings are trained on a much larger dataset. This creates interesting perspectives for future 

research. Below, we include a visualization of the word embeddings after training, using the popular t-
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SNE algorithm [Van der Maaten et al, 2008]. As visibly demonstrated, the model seems to learn useful 

representations of high-level word classes -- e.g. preprositions form a tight cluster in light blue (ex, in, 

pro, …) -- but also collocational patterns (nostro tempore, in light green). 

For the integrated learning experiment, the results are curiously mixed: interestingly, in some 

respect, the tasks do seem to mutually inform themselves. The PoS results, for instance, are higher in 

the case of the integrated approach, which suggests that the PoS-tagging is helped by the information 

which is being backpropagated by the lemmatization-specific components. Surprisingly, however, this 

is not the case for lemmatization scores, which are actually lower in the integrated experiments. This is 

especially true for the unknown word scores. We hypothesize that the successful lemmatization of 

unknown words makes use of the surplus capacity in the hidden representation, or the capacity which 

is not strictly needed to predict the known word lemmas. In the integrated architecture, the PoS-tagger 

will require more information from the hidden representation, putting pressure on this surplus 

capacity. This strongly suggests that both tasks are to some extent competing for resources in the 

network, and further research into the matter is required. 
 

 
 

Figure 2 A typical visualization of the word embeddings for the set of the 500 most frequent tokens in the 

training data after 15 epochs of optimization. A conventional agglomerative cluster analysis was ran on the data 

points in the scatterplot to identify 8 word clusters, which were coloured accordingly as a reading aid. These 

results are for the classicized corpus (integrated task of lemmatization and simple PoS tag prediction). 

 

As to an analysis of the errors, one of the most recurrent lemmatization errors is the intrusion of 

unwanted consonants or vowels, a typical problem because we generated the lemmas in a character-

by-character fashion. Such instances can sometimes be interpreted as a form of “computational 

hypercorrection”, in that the tagger tries to solve a problem where there is none. This is true for the 

normalization of praesentaliter to praesintaliter, in which we see a correction of the <e> to the <i> 

which we would indeed have required if it were a token such as quolebet. Sometimes the tagger seems 

sensitive to an orthographic problem but incorrectly solves it, which is the case for ymnus being 

normalized to omnis. Another typical problem is that proper names are not recognized as such, but as a 

different part of speech, and are consequently “normalized” to an unrecognisable form (e.g. 

extinguntto extinno). In general, we have noticed that this intrusion of consonants and vowels 
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sometimes causes the fabrication of a lemma which is still quite far off from the lemma we wanted to 

predict, such as the lemmatization of intromissi to intromittu, or lapidem to lapid. Another interesting 

error was that pluribus was in some rare occasions lemmatized to multus, which indicates that the 

word embeddings in our model have struck a connection between two words that have semantic 

equivalence. This noise provides the pointers which we will need for solving this problem in future 

endeavours. Interestingly, a lot of the lemmatization errors which were eventually made, involve only 

small differences at the character level near the end of the lemma, which was in some ways to be 

expected since we generated the lemma left-to-right. Although some minor postprocessing might 

already be very helpful here, this suggest that the application of „bidirectional‟ recurrent networks 

might be a valuable direction for future research [Graves et al, 2005].  
 

 Train Dev Test 

Task All All Kno Unk All Kno Unk 

Lemma 95.08 93.54 95.73 53.25 93.16 95.74 50.58 

PoS 95.14 94.16 95.03 78.04 93.97 95.14 74.81 

Lemma / 

PoS 

92.09 / 

95.59 

91.03 / 

94.50 

93.53 / 

95.34 

44.85 / 

78.98 

90.54 / 

94.44 

93.57 / 

40.37 

40.37 / 

75.63 

Table 3 Results (in accuracy) for the original, non-classicized lemmas in the Capitularia dataset [Eger 

et al, 2015]. Results are shown for the train, development and test set, for all words, as well as for the 

known and unknown words separately. 
 

 Train Dev Test 

Task All All Kno Unk All Kno Unk 

Lemma 95.40 93.91 96.22 51.27 93.57 96.27 48.91 

Lemma / 

PoS 

92.65 / 

95.70 

91.43 / 

94.58 

93.92 / 

95.43 

45.71 / 

78.94 

91.19 / 

94.47 

94.17 / 

95.63 

41.83 / 

75.34 

Table 3 Results (in accuracy) for the Capitularia dataset with „classicized‟ lemmas [Eger et al, 2015]. 

Results are shown for the train, development and test set, for all words, as well as for the known and 

unknown words separately. 
 

Conclusion and future research 

In this paper, we have presented at attempt of the joint learning of two sequence tagging tasks for 

medieval Latin: lemmatization and PoS-tagging. These tasks are traditionally solved using a cascaded 

approach, which we tried to bypass by jointly learning both tasks in a single, integrated model. As a 

model, we have proposed a novel Machine Learning approach, based upon recent advances in deep 

representation learning using neural networks. When trained on both tasks separately, our model 

yields acceptable scores, which are on par with previously reported studies. Interestingly, our approach 

too is lexicon-independent, which places our results in line with previous studies with have moved 

away from lexicon-based approaches. When learned jointly, we observed that the PoS-tagging 

accuracy increased, but lemmatization accuracy decreased. Further research is required to find out how 

this competition for resources in the network can be handled in a better way. An important novelty of 

this paper, is that we produced a novel annotation layer in the Capitularium dataset in which we 

normalized the medieval orthography of the lemma labels used by “classicizing” them. In spite of the 
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increased difficulty of the string transduction task, our model performed reasonably well on this novel 

data in terms of lemmatization. 
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