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PSEUDO-LINEAR ALGEBRA OVER A DIVISION RING

CÉDRIC MILLIET

Abstract. On considère un analogue de la topologie de Zariski sur un corps gauche K muni d’une
transformation pseudo-linéaire T, et l’on y définit une géométrie algébrique élémentaire : ensembles
T-affines, T-morphismes, et une notion de comorphisme qui témoigne d’une dualité entre la catégorie
des ensembles T-affines et celle des K[t;σ, δ]-modules. En s’appuyant sur des résultats de P. Cohn,
on montre, lorsque σ et δ commutent, que K a une extension K sur laquelle chaque fonction de K[T]
est surjective. Sur K, la projection d’un constructible est constructible, et un théorème des zéros
est valide. Dans un prochain article, on applique ces résultats aux corps gauches NIP.

Given a division ring D and a one dimensional pseudo-linear transformation T, the purpose of
the paper is the study of the subsets of Dn defined by a system of linear equations, each of the form

γ1(x1) + · · ·+ γn(xn) + c = 0, (0.1)

with c being an element of D and for all i ∈ {1, . . . , n} the map γi being a linear operator

γi(x) = ai,0x+ ai,1T(x) + · · ·+ ai,nTm(x) (0.2)

with left coefficients {ai,j : i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}} in D. We write D[T] for the set of
maps (0.2), D[T, n] for the set of maps (0.1) and Cσ,δ(a) for the generalised centraliser defined in
[30, p. 314]. This setting, taken from [25] and [30], has the following advantage: when T = σ, we
recover the usual linear difference operators while the general centraliser is Fix(σ), and when T = δ,
we recover the usual linear differential operators while the centraliser is Const(δ).

The ring D[T] is isomorphic to the Ore extension D[t;σ, δ] when the right dimension [D : Cσ,δ(a)]
is infinite, and D[T, n] has a structure of D[t;σ, δ]-module. We thus begin in Section 1 by ele-
mentary considerations about the dimension of a module over a left Ore domain. In Section 2,
we recall some basic properties of D[T] and D[T, n] which mainly come from [7, 25, 30, 32, 37].
In Section 3, we differ from the setting of [31]: instead of considering varieties defined by skew
Ore polynomials with an appropriate notion of evaluation as in [31, (2.7) p. 46], we call T-affine a
set V(S) defined by a system S of equations like (0.1), and a T-morphism a map between T-affine
sets whose coordinate maps are in D[T, n]; so in a sense, our objects of study are very restricted,
and closer to linear algebra than to algebraic geometry. Still, they encompass the so called “metro
equations” ax−xb = c and their (σ, δ)-generalisations defined in [31, (6.5) p. 63]. There is however a
pregnant analogy with classical algebraic geometry (we have been much influenced by reading parts
of [1, 24, 38, 44, 45]), and we point at a contravariant functor between the category of T-affine sets
and the category of finitely generated D[t;σ, δ]-modules. In Section 4, we call D linearly surjective
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(a notion analogous to the one of algebraically closed fields) if every nonzero γ ∈ D[T] is surjective.
Using results of P. Cohn on the existence of division ring extensions having sufficiently many roots
of certain polynomials, we show that if either σ or δ are inner, or if σ and δ commute, then D has
a linearly surjective extension. In such an extension, using Baur-Monk’s quantifier elimination up
to prime positive formulas for theories of modules, we show that Chevalley’s projection Theorem
for constructible sets holds, as well as a Nullstellensatz. Section 5 is devoted to defining and
calculating the Zariski dimension of a T-affine set V when [D : Cσ,δ(a)] is infinite and σ surjective.
By a diagonalisation argument due to Wedderburn, we show that the dimension of V is the unique
natural number d such that V is T-isomorphic to Dd×U , where U is T-affine of finite right Cσ,δ(a)-
dimension. In Section 6, we study the T-affine sets that do not have proper T-affine subsets of
the same Zariski dimension; we call such sets radical, and we end with a criterion inspired of [27,
Lemma 2.8] and [22, Lemme 5.3] for certain T-affine sets to be radical.

The paper is originally motivated by questions coming from model theory, aiming at under-
standing the complexity of the first-order theory Th(D) of a division ring D in the ring language.
Among these questions, (1) if Th(D) has countably many pure types, is D commutative (from
[48, Problem 12.6])? (2) Does Th(D) satisfy Vaught’s conjecture? (3) If Th(D) does not have the
independence property (see [43, Definition 4.1]), is the dimension [D : Z(D)] finite? The restricted
setting presented in the paper, considering left modules (instead of bimodules) and almost forget-
ting about the role of the ring multiplication but reducing it to scalar left multiplication seems to
be all that is needed to get a positive answer to (3) in characteristic p, presented in a further paper.
But this setting is probably not enough to get an answer to (1), (2) or (3) in characteristic zero.

1. Linear Algebra in a Module over a left Ore domain

Throughout this section, R is a left Ore domain (for any a, b in R \ {0}, the left ideal Ra∩Rb is
nonzero), and M an R-module (all modules considered in the paper are left modules). This section
recalls that M has a dimension that shares several properties of the vector-space dimension. As we
could not find a reference, we hint at proofs that would fit in an undergraduate algebra course.

Say that a tuple v̄ = (v1, . . . , vn) ∈Mn is dependent if there is a nonzero tuple (r1, . . . , rn) ∈ Rn
such that r1v1 + · · ·+ rnvn = 0. Say that v̄ is a basis if independent and maximal. Any independent
family extends to a (possibly empty) basis. For all S ⊆M , we write (S) for the submodule generated
by S. If b̄ is a basis, for every v ∈M \ b̄, there is a nonzero r ∈ R such that rv ∈ (b̄).

Definition 1.1 (algebraicity). We say that v is algebraic over S if there is a nonzero r ∈ R such
that rv ∈ (S). For A ⊆M , we say that A is algebraic over S if every v ∈ A is algebraic over S.

For any S ⊆M , we write cl(S) for the set of algebraic elements over S. Algebraicity is transitive:

Lemma 1.2. If A is algebraic over B and B is algebraic over C, then A is algebraic over C.

Proof. Let a be in A. By assumption, there are r, r1, . . . , rn in R\{0} and a tuple b̄ in Bn such that
one has ra ∈ (b̄) and ribi ∈ (C) for all i ∈ {1, . . . , n}. In particular, there is an expression of the
form sa ∈ (C) +

∑
i∈I
sibi, with s ∈ R \ {0}, and one may choose the set I ⊆ {1, . . . , n} of minimal

cardinality. We claim that I is empty. Otherwise I contains some j. By Ore’s condition, there are
(u, v) in R \ {0} such that usj = vrj hence usjbj ∈ (C), and one has (us)a ∈ (C) +

∑
i∈I\{j}

usibi

with us nonzero as u and s are nonzero, a contradiction with the minimality of I. �

Theorem 1.3 (after Steinitz). All bases of M have the same cardinality.
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Proof. We treat the case whereM has a finite basis b̄ = (b1, . . . , bn). Let (c1, . . . , cm, . . . ) be another
basis. By maximality of b̄, one can write rc1 =

∑
ribi for some nonzero r ∈ R. As c1 is independent,

r1 say is nonzero, so b1 is algebraic over (c1, b2, . . . , bn). As M is algebraic over b̄, by Lemma 1.2,
M is algebraic over (c1, b2, . . . , bn). In a similar way, M is algebraic over (c1, c2, b3, . . . , bn), and
iterating, one can add every ci. If m > n, one concludes that cm is algebraic over its predecessors,
a contradiction, so m 6 n, and all bases of M are finite. By symmetry, one has n = m. �

Definition 1.4 (dimension). We call R-dimension of M the cardinal of any basis of M .

We write dimRM for the R-dimension of M , or dimM when there is no ambiguity about R. It
satisfies the properties one would expect from a dimension:

Proposition 1.5. Let be a subset S ⊆M , and let N,L be two more R-modules.

(1) One has dimM ⊕N = dimM + dimN.

(2) If N ⊆M holds, one has dimM = dimM/N + dimN.

(3) The set cl(S) is an R-module and one has dim cl(S) = dim(S).
(4) If M f→ N is a morphism of R-modules, one has dimM = dim ker f + dim im f.

(5) If L g→M
f→ N are morphisms, one has dim ker f ◦ g = dim(ker f ∩ im g) + dim ker g.

We leave the proof of Proposition 1.5 as an exercise. Urya First tells in [17] that Proposition 1.5
follows from the exactness of Ore localisation and the corresponding linear algebra facts, citing
[29, Exercise 18, end of §10]. We did not explore this path further.

2. Twists over a division ring

Our initial setting comes from [25, 30, 37] and has the advantage of providing a uniform frame-
work to deal with both difference and differential linear equations. The notion of pseudo-linear
transformation comes from [25]; we also refer to [7] for an introduction to pseudo-linear algebra.
The statements presented in this section are well-known and appear in the literature somewhat
maybe in a disguised form, as a referee says. We collect them here as a try to make the paper
self-contained and hint at proofs when we could not find precise references.

Given D a division ring, σ a nonzero ring morphism and δ a σ-derivation (that is, satisfying
δ(x+ y) = δ(x) + δ(y) and δ(xy) = σ(x)δ(y) + δ(x)y for all (x, y) in D2), we write D[t;σ, δ] for the
Ore domain of left polynomials a0 + a1t + · · ·+ ant

n with usual addition, and skew multiplication
induced by the rule t · a = σ(a)t + δ(a). Let T = σ · a + δ be the pseudo-linear transformation
induced by a ∈ D (which we sometimes write Ta).

2.1. 1-twists. Let be the ring

D[T] =
{

n∑
i=0

aiTi : ā ∈ Dn+1, n ∈ N
}
,

the elements of which we call twists, or 1-twists. Any nonzero twist γ has an expression of the form
a0id + a1T + · · ·+ anTn with an 6= 0. We call the minimal such n the degree of γ, written deg(γ),
and define deg(0) = −∞. From [37, Theorem 6] and [7, Theorem 1] (see also [32, Corollary 1.3])
follows that D[T] is right Euclidean, and when σ is onto also left Euclidean:

Fact 2.1 (Euclidean division). For all nonzero ρ ∈ D[T] and all γ ∈ D[T],

(1) there is (q, r) ∈ D[T]×D[T] such that γ = qρ+ r and deg(r) < deg(ρ).
(2) if σ is onto, there is (q, r) ∈ D[T]×D[T] such that γ = ρq + r and deg(r) < deg(ρ).
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Corollary 2.2 (factorisation with a root). For any γ ∈ D[T] of degree n + 1 with a nonzero root
b ∈ D×, there is q ∈ D[T] of degree n such that γ = q(T− T(b)b−1id).

Following [30, p. 314], we write Cσ,δ(a) for the generalised centraliser {x ∈ D : Ta(x) = a · x}.
This is a division ring, and any twist is a right Cσ,δ(a)-linear map. The following fact can probably
be derived from [30, Theorem 4.2], or be shown by induction over n.

Fact 2.3 (roots of a twist). The kernel of a nonzero twist of degree n has right Cσ,δ(a)-dimension
at most n. Conversely, a vector subspace of D of dim. n is the kernel of a twist of degree at most n.

Corollary 2.4. The rings D[t;σ, δ] and D[T] are isomorphic if and only if [D : Cσ,δ(a)]r = +∞.

Definition 2.5 (T-division ring, strictness). We call T-division ring any division ring D equipped
with a pseudo-linear map T. We say that D is strict if the right dimension [D : Cσ,δ(a)]r is infinite.

Corollary 2.6. If D is strict, then D[T] is a left Noetherian domain.

2.2. n-twists and twisted Zariski topology. We write D[T, n] for the set of maps of the form
γ1(x1) + · · ·+ γn(xn) + c where γ1, . . . , γn are in D[T] and c in D. We call such maps n-twists.

Definition 2.7. Let the twisted Zariski topology on Dn be the topology whose basic closed sets are
of the form {(x1, . . . , xn) ∈ Dn : γ(x1, . . . , xn) = 0 for all γ ∈ S} where S is a subset of D[T, n].

D[T, n] is a Noetherian D[T]-module by [6, Proposition 7 p. 26], and the twisted Zariski topology
is Noetherian. From Fact 2.3 follows that a basic closed subset of D is a right Cσ,δ(a)-affine space
of finite dimension, and that a basic closed subset of Dn meets a right D-line either trivially or in
a right Cσ,δ(a)-affine space of finite dimension.

Fact 2.8. If Cσ,δ(a) is infinite, the irreducible closed subsets of Dn are the basic closed sets.

Proof. Follows from Neumann’s [36, Lemma 4.1]. �

3. Elementary T-algebraic geometry

Throughout this section, we consider a T-division ring D and introduce basic notions directly
inspired from classical algebraic geometry over a field.

Definition 3.1. We call T-affine set the zero set of a family S of n-twists, which we write

V(S) = {(x1, . . . , xn) ∈ Dn : γ(x1, . . . , xn) = 0 for all γ ∈ S} .

Definition 3.2. Given ∆ ⊆ Dn, we call module of ∆ and write I(∆) the set defined by

I(∆) = {γ ∈ D[T, n] : γ(x1, . . . , xn) = 0 for all (x1, . . . , xn) ∈ ∆} .

Any T-affine set V(S) is right Cσ,δ(a)-affine; any module I(∆) is a submodule of D[T, n]. Since
D[T, n] is a Noetherian module, a T-affine set is the zero set of a finite family of twists.

Remark 3.3. Given a polynomial g ∈ D[t;σ, δ], the map D[t;σ, δ]→ D[T] suggests to define V(g) =
V(g(T)) = {x ∈ D : g(T)(x) = 0}. In [31, (2.7) p. 46], another definition of V(g) is introduced,
defined (with our notation Ta = σ · a+ δ) by V(g) = {a ∈ D : g(Ta)(1) = 0}. These definitions are
not the same. If g(t) =

∑
bit

i and in the particular case (σ, δ) = (id, 0), the former gives the linear
subset

{
x ∈ D :

∑
bixa

i = 0
}
, whereas the later gives the more usual

{
a ∈ D :

∑
bia

i = 0
}
.

We push on the analogy with classical algebraic geometry and define the corresponding notions
of morphisms: T-morphisms for T-affine sets, and usual morphisms of D[T]-modules for modules.
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Definition 3.4. We call T-morphism a map between T-affine sets whose coordinate maps are
twists. We call T-isomorphism a bijective T-morphism whose inverse is also a T-morphism.

In classical algebraic geometry, there is a functor between the category of affine algebraic sets
over a field k and the category of finitely generated k-algebras, which witnesses a duality between
these two categories (see e.g. [20, p. 19]). In our case, there is a functor Γ between the category of
T-affine sets, and the category of finitely generated D[T]-modules.

Definition 3.5. Given a T-affine subset V of Dn, we let Γ(V ) be the D[T]-module defined by

Γ(V ) = D[T, n]/I(V ).

Given a T-morphism f : U → V , we let Γ(f) be the morphism Γ(f) : Γ(V )→ Γ(U) defined by

Γ(f) : γ + I(V ) 7→ γ ◦ f + I(U).

Given two T-affine sets U and V , we write Hom(U, V ) for the set of T-morphisms from U to V ,
and Hom(Γ(V ),Γ(U), 1) for the set of morphisms of D[T]-modules from Γ(V ) to Γ(U) fixing 1.

Lemma 3.6. The map Γ : Hom(U, V )→ Hom(Γ(V ),Γ(U), 1) is bijective.

Proof. Γ is injective, and we show that it is surjective as in [20, Proposition 1.33]. If φ : Γ(V )→ Γ(U)
is a given morphism of D[T]-modules that fixes 1, where U ⊆ Dn and V ⊆ Dm, there is a morphism
of D[T]-modules φ̄ such that φ̄(1) = 1 and such that the following diagram commutes.

D[T,m] D[T, n]

Γ(V ) Γ(U)

π1

φ̄

π2

φ

We define a T-morphism f : Dn → Dm putting f =
(
φ̄(x1), . . . , φ̄(xm)

)
. Since φ̄ is a morphism

of D[T]-modules and since φ̄(1) = 1, for any m-twist γ = γ1(x1) + · · ·+ γm(xm) + r, one has

φ̄(γ) = φ̄(γ1(x1) + · · ·+ γm(xm) + r) = γ1(φ̄(x1)) + · · ·+ γm(φ̄(xm)) + r = γ ◦ f,

and according to the above diagram, one has φ◦π1(γ) = π2(γ ◦f). This shows that γ ∈ I(V ) implies
γ ◦ f ∈ I(U), so that f maps U to V . This also shows that φ = Γ(f), so Γ is surjective. �

Corollary 3.7. A T-morphism f is a T-isomorphism if and only if Γ(f) is an isomorphism.

Proof. As in [45, Corollary 11.4.5]. �

4. Linearly surjective T-division rings

Over an algebraically closed field k, Hilbert’s Nullstellensatz makes the duality between affine
algebraic sets and reduced finitely generated k-algebras an equivalence of categories, where irre-
ducible algebraic sets correspond to integral finitely generated k-algebras. In our case, the analogue
of irreducible set is the one of radical set, and analogue of algebraically closed fields seems to be:

Definition 4.1 (linearly surjective). We call a T-division ring D linearly surjective if every nonzero
γ ∈ D[T] is surjective, or equivalently if D, as a D[T]-module, is divisible.
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Definition 4.1 extends definition [2, p. 215] given for differential fields; the wording linearly-closed
exists for difference fields (see e.g. [42, Lemma 9.1 p. 17] or [39, Definition 4.3 p. 15]). Note that
a linearly surjective division ring must be strict. We begin the Section by showing that most T-
division rings have a linearly surjective extension and we show that in such extensions, Chevalley’s
projection theorem holds, as well as a Nullstellensatz.

4.1. Linearly surjective extensions. Following [13, p. 58],

Definition 4.2 (T-extension). Given a T-division ring (D,σ, δ,Ta), a T-extension of D is a T′-
division ring (D′, σ′, δ′) extending (D,σ, δ) and considered with T′ = σ′ · a+ δ′.

Theorem 4.3. Any T-division ring has a linearly surjective T-extension provided that either δ
and σ commute, or σ or δ be inner.

Proof. Recall that an inner automorphism is one of the form x 7→ b−1xb, and an inner σ-derivation
of the form x 7→ σ(x)c − cx. We write σb and δc respectively for the inner automorphism induced
by b and the inner σ-derivation induced by c. We split the proof of Theorem 4.3 into several cases,
beginning with the most elementary one.
Case 1. δ = 0 and σ = id, so that Ta = id · a, and a is transcendental over Z(D). As a

referee says, the theory of division rings with centre Z(D) extending D has ∀∃ axioms, hence has
an existentially closed model D. So a is transcendental over Z(D) = Z(D). By [8, Theorem 2], for
all (b, c) ∈ D2, the equation xa − bx = c has a solution in D. To finish the first case, it is enough
to show that, in D, any γ ∈ D[T] factorises in products of 1-twists of degree 1.

Claim 1. Let D be a division ring. Assume that every polynomial xn + xn−1r1 + · · ·+ xrn + rn+1
with (r1, . . . , rn+1) ∈ Dn+1 has a root in D. Denote by ei(x1, . . . , xn) =

∑
16j1<···<ji6n

xji · · ·xj1 the

ith elementary (non) symmetric polynomial. For any (a1, . . . , an) ∈ Dn, the polynomial system
Σn(ā) = {e1(x1, . . . , xn) = a1, . . . , en(x1, . . . , xn) = an} has a solution (x1, . . . , xn) in D.

Proof of Claim 1. We proceed by induction on n, the case n = 1 being trivial. Assume that the
conclusion holds for any system Σn of n such polynomial equations, and consider the system Σn+1(ā).
Putting x̄ = (x1, . . . , xn), one has the following equivalences:



a1 = x1 + · · ·+ xn + xn+1

a2 = xn+1xn + · · ·+ x2x1
...
an+1 = xn+1xn · · ·x1

⇐⇒



a1 − xn+1 = e1(x̄)
a2 = xn+1e1(x̄) + e2(x̄)
a3 = xn+1e2(x̄) + e3(x̄)
...
an = xn+1en−1(x̄) + en(x̄)
an+1 = xn+1en(x̄)

⇐⇒



a1 − xn+1 = e1(x̄)
a2 − xn+1(a1 − xn+1) = e2(x̄)
a3 − xn+1(a2 − xn+1(a1 − xn+1)) = e3(x̄)
...
an − xn+1(an−1 − xn+1(· · ·xn+1(a1 − xn+1) · · · )) = en(x̄)
an+1 = xn+1[an − xn+1(an−1 − xn+1(· · ·xn+1(a1 − xn+1) · · · ))]
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The last line is a one variable nontrivial polynomial equation, which reads

an+1 − xn+1an + x2
n+1an−1 + · · ·+ (−xn+1)na1 + (−xn+1)n+1 = 0,

and has a solution bn+1 ∈ D by assumption. Replacing xn+1 by bn+1 in the n first equations of the
last system gives a subsystem Σn(c̄) for some precise tuple c̄ ∈ Dn. By induction hypothesis, Σn(c̄)
has a solution (b1, . . . , bn) ∈ Dn, so that (b1, . . . , bn+1) is a solution of Σn+1(ā), as desired. �

We continue the proof of Case 1 of Theorem 4.3, claiming that for any γ ∈ D[T] of the form
xan + a1xa

n−1 + a2xa
n−2 + · · ·+ anx, there is b̄ ∈ Dn such that the following factorisation holds:

γ(x) = (xa+ bnx) · · · (xa+ b1x).

For every x̄ = (x1, . . . , xn) ∈ Dn, one has

(xa+ xnx) · · · (xa+ x1x) = xan + e1(x̄)xan−1 + e2(x̄)xan−2 + · · ·+ en(x̄)x (4.1)

By [10, Theorem 8.5.1], the polynomial xn + xn−1r1 + · · · + xrn + rn+1 has a root in D for every
(r1, . . . , rn+1) ∈ Dn+1. By Claim 1, the system {e1(x̄) = a1, . . . , en(x̄) = an} has a solution b̄ ∈ Dn.
By (4.1), one has γ(x) = (xa+ bnx) · · · (xa+ b1x), as desired.
Case 2. δ = 0 and σ = id, so that Ta = id · a. By Case 1, we may assume that a is algebraic

over Z(D). We first claim that (D, id) has an extension (D2, σt) with centre Z(D2) = Z(D)
where t is transcendental over Z(D2). Consider the division ring D1 = D(x) where x is a central
indeterminate, and the ring morphism τ : g(x) 7→ g(x2). Then no power of τ is inner since τ is
not even surjective, and the division subring fixed by τ is D. Consider the (left) Ore domain
D1[t; τ ] with multiplication rule r · t = tτ(r). Its division ring of (left) fractions, let’s call it D2, has
centre Z(D) by [11, Theorem 7.3.6]. It follows that t is transcendental over Z(D2) = Z(D), and t
commutes with D, so that (D2, σt) extends (D, id). Now, putting b = ta, for each y in (D2, σt), one
has

Ta(y) = σt(y) · a = t−1xb. (4.2)

If a = 0, there is nothing to show and if a 6= 0, then b is transcendental over Z(D2) (it follows
indeed from Brauer’s Lemma, see e.g. [10, Corollary 3.3.9], that the algebraic elements over Z(D2)
form a division subring of D2). By Case 1, (D2, id, 0, id · b) has a linearly surjective extension
(D3, id, 0, id · b). In particular, from (4.2), (D3, σt, 0,Ta) is linearly surjective.
Case 3. Both σ and δ are inner. Then σ = σb and δ = σ · c− c · id for some b ∈ D× and c ∈ D.

One thus has
Ta(x) = σ(x)a+ σ(x)c− cx = b−1xb(a+ c)− cx. (4.3)

By Case 2 the division ring (D, id, 0, id · b(a+ c)), has a linearly surjective extension (D1, σt, 0, σt ·
b(a+ c)). It follows that the extension (D1, σtb, σtb ·c−c · id,Ta) of (D,σ, δ,Ta) is linearly surjective.
Case 4. Only σ is inner. Then σ = σb for some b ∈ D×. In the Ore domain D[t;σ, δ], the

multiplication rule σ(r)t = tr+δ(r) shows that δt = σb ·t−t·id extends δ. By [10, Proposition 2.1.2],
δt extends uniquely to the division ring of fractions of D[t;σ, δ], and we are back to Case 3.
Case 5. Only δ is inner. Then δ = σ · c− c · id for some c ∈ D. In the (left) Ore domain D[t;σ],

the multiplication rule r · t = tσ(r) shows that the conjugation σt extends σ, and we extend δ to
D[t;σ] by δ′ = σt · c − c · id. By [10, Proposition 2.1.2], δ′ extends uniquely to the division ring of
(left) fractions of D[t;σ], and we are back to Case 3.
Case 6. The maps σ and δ commute. In D[t;σ] with rule r · t = tσ(r), the conjugation σt

extends σ. Since σ and δ commute, by [47, Theorem 2.3], the map δ extends to a σt-derivation of
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D[t;σ] by putting δ(t) = 0 (see also [9, Exercise 2 p. 57]), and δ extends uniquely to a σt-derivation
of the division ring of (left) fractions of D[t;σ], so we are back to Case 4. �

4.2. Constructible sets and Chevalley’s projection Theorem.

Definition 4.4 (constructible set). Given a T-division ring D, we call a subset of Dn constructible
if it is a finite boolean combination of closed sets for the twisted Zariski topology.

Theorem 4.5 (after Chevalley). Let D be linearly surjective and f a T-morphism.

(1) The image by f of a closed set is closed.
(2) The image by f of a constructible set is constructible,

Proof. The classical version of Chevalley’s Theorem is an immediate consequence of Tarski’s quan-
tifier elimination in algebraically closed fields, and we proceed similarly by quantifier elimination.

Claim 2. Given a left Euclidean domain R (in the sense of Fact 2.1.1) and matrices A,B in
Mm,n(R), there is C inMm,n(R) such that for all divisible R-module M and ȳ in Mn, one has

Cȳ = 0 ⇐⇒ ∃x̄ ∈Mn (Ax̄ = Bȳ) .

Proof of Claim 2. Arguing as in [15, Proposition 6.1], one can find invertible square matrices P
and Q (where Q has coefficients in {0, 1}), and an upper triangular matrix

T =
(
T1
0

)
with T1 upper triangular having nonzero diagonal coefficients, such that A = P ·T ·Q. The formula
∃x̄ ∈ Mn (Ax̄ = Bȳ) is equivalent to ∃x̄ ∈ Mn(T x̄ = Cȳ) where C = P−1Q. Writing C = (C1, C2)
by blocks compatible with T = (T1, 0), the formula ∃x̄ ∈Mn(T x̄ = Cȳ) reads

∃x̄ ∈Mn (T1x̄ = C1ȳ) ∧ C2ȳ = 0.

As M is divisible, the formula ∃x̄ ∈ Mn (T1x̄ = C1ȳ) is satisfied by any tuple ȳ in M , so ∃x̄ ∈
Mn (Ax̄ = Bȳ) is equivalent to C2ȳ = 0. �

Fact 4.6 (Baur-Monk [4]). Given a ring R and an R-module M , any formula φ(ȳ) (possibly with
parameters, with |ȳ| = n) in the language LR = (+,−, 0, {r· : r ∈ R}) of R-modules is equivalent
in M to a finite boolean combination of formulas {φi(ȳ) : i ∈ I}, each formula φi(ȳ) being of the
form ∃x̄(Aix̄ = Biȳ + āi) with Ai, Bi inMm,n(R) and āi ∈Mn.

A more recent reference for Baur-Monk Theorem is [34, Corollary 2.6.5]. From Claim 2 and
Fact 4.6 follows immediately:

Claim 3. Given a left Euclidean domain R and a divisible R-module M , any subset of Mn defined
by a formula in the language LR is definable by a quantifier-free formula in LR.

We go back to the proof of Theorem 4.5. For point (1), it suffices to show that the image of
a basic closed F closed. Since translations are bicontinuous, we may also assume that 0 ∈ F and
f(0) = 0. Then F is given by a linear system A′x̄ = 0, and f(x̄) = ȳ by the system A′′x̄ = ȳ for
some matrices A′, A′′ with coefficients in the ring D[T]. Putting A = (A′, A′′) and B = (0, id), one
has ȳ ∈ f(F ) if and only if ∃x̄ ∈ Dn(Ax̄ = Bȳ), and one concludes by Lemma 2.1.1 and Claim 2
applied to M = D. For point (2), we note that a constructible set is defined by a quantifier-free
formula in the language LD[T] and conversely, a quantifier-free formula defines a constructible set.
Since a T-morphism is definable (with parameters) in the language LD[T], the image f(C) of a
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constructible set C is definable, hence constructible by Claim 3. From (2), one can also derive
(1) by a topological argument: f(F ) is constructible, and since the topology is Noetherian, f(F )
contains a dense open set U of its Zariski closure f(F ) by [45, Proposition 1.4.6]. f(F ) is a group,
so for any a ∈ f(F ), the set a−U is open in f(F ), so (a−U)∩U is nonempty, from which follows
a ∈ U + U and f(F ) = U + U . Since U ⊆ f(F ), one has f(F ) = f(F ). �

4.3. Weak Nullstellensatz.

Theorem 4.7 (weak Nullstellensatz). Over a linearly surjective T-division ring, if I is a module
avoiding 1, then V(I) is nonempty.

Proof. Again, the classical weak Nullstellensatz has a short proof derived from quantifier elimination
(see e.g. [18]), and we follow this line.

Claim 4. Let R be a right Euclidean domain, M a divisible R-module, and Σ a linear system
{Ax̄ = b̄} with b̄ ∈Mm and A ∈Mm,n(R). If Σ has a solution in an R-module extending M , then
Σ has a solution in M .

Proof of Claim 4. If Σ has a solution in an extension ofM , by [29, Theorem 3.20] and [29, Corollary
3.17’], Σ has a solution in a divisible module N extending M . By Claim 2, there is a matrix C such
that Cb̄ = 0 holds in N , hence also in M . By Claim 2 again, Σ has a solution in M . �

We are now ready to prove Theorem 4.7. I has finitely many generators γ1, . . . , γr. We consider
the system Σ = {γ1(x̄) = 0, . . . , γr(x̄) = 0} and the D[T]-module D. Since I does not contain 1,
there is an embedding D → D[T, n]/I of D[T]-modules. But Σ has a solution in D[T, n]/I, namely
(x1 + I, . . . , xn + I). Since D divisible, Σ also has a solution in D by Claim 4. �

Corollary 4.8. Over a linearly surjective T-division ring D, for any maximal module I avoiding 1,
there is ā ∈ Dn such that

I = (x1 − a1, . . . , xn − an).

Proof. We write Jā = (x1−a1, . . . , xn−an) and first claim that Jā is a maximal module avoiding 1.
Assume Jā is contained in a proper module J . One can write any γ ∈ J \ Jā under the form

γ = γ1(x1 − a1) + · · ·+ γn(xn − an) + b,

for some 1-twists γ1, . . . , γn and b ∈ D. Since γ /∈ Jā, one has b 6= 0, and γ ∈ J yields 1 ∈ J . This
shows the claim. By maximality of Jā, from the inclusion Jā ⊆ I(ā) follows the equality Jā = I(ā).
Now, if I is a maximal module avoiding 1, it contains a point ā by Theorem 4.7. One thus has
I ⊆ I(ā), and equality holds by maximality of I. �

4.4. Strong Nullstellensatz, closed modules and radical sets. Following Definition 1.1, when
D is strict, we define the closure cl(I) of a module I to be the set of algebraic elements over I:

cl(I) = {γ ∈ D[T, n] : ∃ρ ∈ D[T] \ {0}, ργ ∈ I} .

Theorem 4.9 (Nullstellensatz). If D is linearly surjective, for any module J avoiding 1, one has

I(V(J)) ⊆ cl(J).

Proof. Let γ1, . . . , γr be a generating family for J , let γ ∈ IV(J), and let us consider the D[T]-
module I = (γ1, . . . , γr, γ + 1). If x̄ ∈ V(I), then x̄ ∈ V(J), so γ(x̄) = 0. But one also has
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γ(x̄) + 1 = 0, a contradiction, so V(I) is empty. By Theorem 4.7, the module I contains 1 so there
exist ρ1, . . . , ρr, ρ in D[T] such that

1 = ρ(γ + 1) + ρ1γ1 + · · ·+ ρrγr.

The twist ρ is nonzero since J avoids 1. Applying this equality to a point of V(J) (which is nonempty
by Theorem 4.7), we get ρ(1) = 1 hence ργ ∈ J , whence γ ∈ cl(J). �

Note that D being strict implies I + D ⊆ cl(I) for every module I. We say that I is a closed
module if cl(I) = I +D. It follows from Proposition 1.5.3 that cl(I) is a closed D[T]-module.

Definition 4.10 (radical set). We say that a T-affine set U is radical if its module I(U) is closed.

Note that U is radical if and only if the D[T]-torsion of Γ(U) is D.

Lemma 4.11. If U , V are T-isomorphic T-affine sets, then U is radical if and only if V is radical.

Proof. If f : U → V is a T-isomorphism, its comorphism Γ(f) : Γ(V ) → Γ(U) is bijective hence
maps the torsion of Γ(V ) onto the torsion of Γ(U), and Γ(f) fixes 1. �

Corollary 4.12. Over a linearly surjective T-division ring, for any closed J avoiding 1, one has

I(V(J)) = J.

Proof. By Theorem 4.9, one has J ⊆ IV(J) ⊆ J + D. By Theorem 4.7, the set V(J) is nonempty,
so IV(J) does not contain 1, hence IV(J) ⊆ J . �

Corollary 4.13. Over a linearly surjective D, the functor Γ induces an equivalence of categories

Γ: {radical T-affine sets} → {torsion-free finitely generated D[T]-modules}.

Proof. Given a nonempty radical U , let us show that Γ(U) is isomorphic to M ⊕ D where M is
a torsion-free finitely generated D[T]-module. Considering U up to a translation, which preserves
the notion of radicality by Lemma 4.11, we may assume that U contains 0. It follows that I(U) ⊆
(x1, . . . , xn) and one has Γ(U) = (x1, . . . , xn)/I(U)⊕D, and M = (x1, . . . , xn)/I(U) is torsion-free.
Conversely, given a torsion-free finitely generated D[T]-module M , let us show that M ⊕ D is
isomorphic to some Γ(U) for a T-affine set. Since M is finitely generated, it is isomorphic to some
(x1, . . . , xn)/N where N is a submodule of the free D[T]-module (x1, . . . , xn). Since M is torsion-
free, one has cl(N) = N . If we set U = V(N) ⊆ Dn, one has that U is radical, and hence N = IV(N)
by Corollary 4.12, so M ⊕D is isomorphic to (x1, . . . , xn)/I(U)⊕D = D[T, n]/I(U) = Γ(U). One
concludes with Lemma 3.6. �

4.5. Examples. Examples of linearly surjective difference fields include (kp, σp) where kp is a field
of characteristic p with no finite algebraic extension divisible by p (such as

⋃
Fppn or Falg

p ) and σp the
Frobenius map. By Łos Theorem, given nonprincipal ultrafilters U on N and V on the set of prime
numbers, the field

∏
n→U

(
kp, σ

n
p

)
of characteristic p, and the field

∏
p→V (kp, σp) of characteristic 0

are also linearly surjective. By [5, Corollary 2.10], the field W(kp) of Witt vectors over kp with the
Witt Frobenius is linearly surjective, and so is the field kp((t)) of formal Laurent series over kp with
the ring morphism σt :

∑
rit

i 7→
∑

rpi t
i. It is also noticed in [3, Lemma 4.6] that a contractive

and σ-henselian valued difference field is linearly surjective. From these examples, one can build
noncommutative examples using:

Lemma 4.14. If (D,σ) is a linearly surjective difference division ring, and τ : D → D a nonzero
ring morphism that commutes with σ, then
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(1) the division ring of fractions of D[t; τ ] with σt :
∑

rit
i 7→

∑
σ(ri)ti is linearly surjective,

(2) the division ring of Laurent series D((t, τ)) with σt :
∑

rit
i 7→

∑
σ(ri)ti is lin. surjective.

We leave the proof of Lemma 4.14 as an exercise. Possible references for twisted Laurent series
are [10, Section 2.3 p. 66] and [26, Section 1.10 p 37]. We note that the division ring of fractions
of D[t;σ] is a proper subring of D((t, σ)) since series

∑
tf(i) where f : N → N has a positive

acceleration, are not rational (see also the rationality criterion in [10, Proposition 2.3.3]). When D
is countable, the fraction field of D[t;σ] is countable, whereas D((t, σ)) is uncountable.

5. The Zariski dimension

This section introduces an analogue of the classical Zariski dimension of an algebraic variety. We
still call this dimension Zariski as it coincides with the usual Zariski dimension for an algebraic
group defined by p-polynomials, and shares many other geometric features, as well as (Krull-like
and topological-like) definitions in terms of length of certain chains. Throughout the section, D is
a strict T-division ring, and we also assume that σ is surjective.

Definition 5.1 (Zariski dimension). For a T-affine set V , we define the Zariski dimension of V to
be the dimension of the D[T]-module Γ(V ).

We write dimV for this dimension and hope there cannot be any confusion with the dimension
of V as a right Cσ,δ(a) affine space, which is most of the time simply infinite. Note that if V ⊆ Dn

holds, one has the equality dimV = n−dimD[T] I(V ). It follows that Dn has dimension n, and that
the empty set, a single point, or Cσ,δ(a) all have dimension zero. From Proposition 1.5 also follow:

Lemma 5.2. For any two T-isomorphic T-affine U and V , one has dimU = dimV.

Lemma 5.3. For any two nonempty T-affine U and V , one has dim (U × V ) = dimU + dimV.

5.1. Main result. Theorem 5.5 bellow classifies T-affine sets up to isomorphism, and has a sur-
prisingly simple proof via a diagonalisation argument using the following fact:

Fact 5.4 (see Cohn [12, Theorem 1.4.7 p. 80]). Let R be a both left and right principal domain
and A an m × n matrix with coefficients in R. Then the row and column rank of A are the
same; denoting the common value by r, we can find P ∈ GLm(R) and Q ∈ GLn(R) such that
PAQ−1 = diag(e1, . . . , er, 0, . . . , 0), with ei||ei+1 and er 6= 0.

As an editor tells, Fact 5.4 also appears in [2, Theorem 5.3.3 p. 226] for Euclidean domains and
is attributed in this case in [2, p. 229] to Wedderburn [49, Theorem 10.1 p. 139] and Jacobson [25].

Theorem 5.5. Let V be nonempty T-affine. There is a T-isomorphism V ' Dd × U , where U is
a right Cσ,δ(a)-vector space of finite dimension, and d = dimV .

Proof. Translating V , we may assume that V contains zero. Let (γ1, . . . , γm) be generators of I(V ).
We write γi = γi1(x1) + · · ·+ γin(xn) with each γij in D[T], and consider the m× n matrix

A =


γ11 . . . γ1n
...

...
γm1 . . . γmn

 .
By Fact 5.4, one has A = PBQ for invertible square matrices P,Q with coefficients in D[T] and
B = diag(0, . . . , 0, βd+1, . . . , βn) where βd+1, . . . , βn are nonzero elements of D[T] and d is the
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number of zero entries on the diagonal of B (hence independent of any T-extension of D). One has
the equivalence (x1, . . . , xn) ∈ V ⇐⇒ BQ(x1, . . . , xn) = 0. The map (x1, . . . , xn) 7→ Q(x1, . . . , xn)
induces a T-isomorphism V ' {ȳ ∈ Dn : Bȳ = 0}, from which follows V ' Dd × V(βd+1) × · · · ×
V(βn), as desired. Next we show d = dimV . Putting U = Dd × V(βd+1) × · · · × V(βn), and
choosing βd+1, . . . , βn having minimal degrees, one can show using the right Euclidean division that
I(U) = (βd+1(xd+1), . . . , βn(xn)). One thus has d = dimU , and by Lemma 5.2, also d = dimV . �

In the case of an infinite perfect field k of characteristic p equipped with the Frobenius T(x) = xp,
one recovers from Theorem 5.5 the classical counterpart that a connected algebraic subgroup of kn
defined by p-polynomials is T-isomorphic to kd (see e.g. [46, Corollary 3.3.15]). Note that D need
not be linearly surjective in Theorem 5.5.

Corollary 5.6. Given a fixed set S of twists with coefficients in D, if V(S) is nonempty, then
dim V(S) does not depend on the T-extension of D in which V(S) is considered.

5.2. Calculation rules. We now assume that D is linearly surjective. As a Corollary of the
Nullstellensatz, the dimension of V(S) does not depend on the set S chosen:

Lemma 5.7. Let V(S) ⊆ Dn be nonempty T-affine. One has dim V(S) = n− dimD[T](S).

Proof. By Theorem 4.9, one has S ⊆ IV(S) ⊆ cl(S). Conclude with Proposition 1.5. 3. �

Theorem 5.8 (cut by a T-hypersurface). Let V(S) ⊆ Dn be T-affine and γ an n-twist.

(1) If γ is algebraic over S and V(S, γ) nonempty, one has dim V(S, γ) = dim V(S).
(2) If γ is not algebraic over S and V(S, γ) is nonempty, one has dim V(S, γ) = dim V(S)− 1.

Proof. Point (1) follows from Proposition 1.5. 3 and Lemma 5.7. For point (2), if γ is not algebraic
over S, then one has the equality dimD[T](S, γ) = dimD[T](S) + 1. �

Corollary 5.9. If U ( V are nonempty T-affine and V is radical, one has dimU < dimV .

Proof. Since U ⊆ V is a proper inclusion, I(V ) ⊆ I(U) is also proper. For any γ ∈ I(U) \ I(V ), since
I(V ) is closed and U nonempty, one has γ /∈ cl(I(V )) hence dimU < dimV by Theorem 5.8.2. �

We end the subsection by characterizing the dimension in terms of length of certain chains.

Theorem 5.10. The Zariski dimension of a nonempty T-affine V(S) ⊆ Dn is equal to

(1) the maximal length d of a chain S ⊆ I0 ( I1 ( · · · ( Id of proper closed submodules
of D[T, n] avoiding 1 and containing S,

(2) the maximal length d of a chain V0 ( V1 ( · · · ( Vd ⊆ V(S) of nonempty proper radical
T-affine subsets of V(S),

(3) the minimal number d of n-twists γ1, . . . , γd needed for V(S, γ1, . . . , γd) to be nonempty and
have dimension 0.

Proof. Towards point (1), we first build a length m = dim V(S) chain of closed modules avoiding 1.
Let (γ1, . . . , γn−m) be a basis for (S). Since V(S) is nonempty, (S) does not contain 1, and one can
build a chain of modules avoiding 1 of the form (γ1, . . . , γi) choosing inductively γi /∈ cl(γ1, . . . , γi−1)
for i > n−m.

Claim 5. Let I be a closed module containing 1, let K ⊆ I be a submodule avoiding 1, and J a
maximal module avoiding 1 such that K ⊆ J ⊆ I. Then J is closed.
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Proof of Claim 5. Let α ∈ cl(J). Since D is divisible, there is a nonzero γ ∈ D[T] of minimal
degree such that there is d ∈ D with γ(α + d) ∈ J . We claim that γ has degree 0, so α ∈ J + D,
as desired. Assume deg(γ) > 1 for a contradiction, then α + d ∈ I \ J , so (α + d, J) contains 1 by
maximality of J , and there is ε ∈ D[T] such that ε(α+d) ∈ J+1. Dividing ε by γ by Lemma 2.1.1,
one has ε = qγ+ r with deg(r) < deg(γ), hence r(α+ d) ∈ J + 1. Since 1 /∈ J , one has r 6= 0. Since
r(d′) = 1 for some d′ ∈ D, one has r(α+ d− d′) ∈ J , which contradicts the minimality of γ. �

We continue the proof of Theorem 5.10.1. For each i ∈ {0, . . . ,m}, setting I−1 = (γ1, . . . , γn−m),
there is a maximal submodule Ii of cl(γ1, . . . , γn−m+i) that avoids 1 and contains Ii−1. By Claim 5,
the chain I0 ( · · · ( Im has the desired properties. Conversely, given a maximal chain as in (1), we
show inductively that dimD[T] Id−i = n−i. For i = 0, the module Id is maximal so has dimension n.
If dimD[T] Id−i = n− i, one has dimD[T] Id−i−1 6 n− i−1 since Id−i is closed, and equality holds by
maximality of the chain. This shows dim V(I0) = d, but cl(S) = I0 +D by maximality of the chain,
hence dimV = d. For (2), by Corollary 4.12, there is a one-to-one order reversing correspondence
between closed modules avoiding 1 and nonempty radical T-affine sets, so (2) is equivalent to (1).
For point (3), if V(S) has dimension d, by Theorem 5.8, one needs at least d twists γ1, . . . , γd to
have dim V(S, γ1, . . . , γd) = 0. One can find such twists by completing a basis of (S). �

5.3. T-Morphisms and dimension. D still denotes a linearly surjective T-division ring.

Theorem 5.11. Let U be an irreducible T-affine set and f : U → Dm a T-morphism. One has

dim im f + dim ker f = dimU.

Proof. Being the continuous image of an irreducible set, im f is irreducible hence T-affine by The-
orem 4.5.1. Considering the comorphism Γ(f) : Γ(Dm)→ Γ(U), one has

ker Γ(f) = I(im f) and im Γ(f) = (f1, . . . , fm, I(U)) /I(U).

Putting J = (f1, . . . , fm, I(U)), by Corollary 5.7, the Zariski dimension of V(J) is n − dimD[T] J .
Since V(J) equals ker f , one has

dimD[T] ker Γ(f) = m− dim im f and dimD[T] im Γ(f) = dimU − dim ker f,

and the conclusion follows from the Rank-Nullity Proposition 1.5. 4 applied to Γ(f). �

Theorem 5.12 (after Ax-Grothendieck). Let f : Dn → Dn be a T-morphism whose fibers have
Zariski dimension zero. Then f is surjective.

Proof. im f has Zariski dimension n by Theorem 5.11, and f is surjective by Corollary 5.9. �

6. Radical sets

We defined the notion of a radical set over a strict T-division ring D in Section 4.4. This last
section gives this notion a closer look, and provides a criterion for certain T-affine sets to be radical.
This criterion plays a central role in a forthcoming paper.

Lemma 6.1. Let U ⊆ V be nonempty T-affine sets. Then U and V have the same Zariski dimension
if and only if the Cσ,δ(a) dimension of V/U is finite.

Proof. Let us assume that U and V have the same dimension. It suffices to show that for any
γ ∈ I(U), the quotient V/V ∩ V(γ) has finite right Cσ,δ(a)-dimension. As I(U) and I(V ) have the
same dimension, γ is algebraic over I(V ). Let ρ ∈ D[T] be nonzero of degree n such that ργ ∈ I(V ).
Let ḡ0, . . . , ḡn in V , and let us show that their images in V/V ∩ V(γ) are right Cσ,δ(a)-dependent.
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As γ(ḡ1), . . . , γ(ḡn) are roots of ρ, by Fact 2.3, there is a nontrivial Cσ,δ(a)-linear combination with
γ(ḡ0)λ0+· · ·+γ(ḡn)λn = 0, so ḡ0λ0+· · ·+ḡnλn belongs to V ∩V(γ). This shows that V/V ∩V(γ) has
Cσ,δ(a)-dimension at most n, as desired. Conversely, assume that V/U has finite Cσ,δ(a)-dimension,
and let γ ∈ I(U). Then V/V ∩ V(γ) has a finite basis (ḡ1, . . . , ḡn) + V ∩ V(γ). By Fact 2.3, there
is ρ ∈ D[T] of degree at most n which vanishes on every γ(ḡi), so in particular ρ is nonzero and
ργ ∈ I(V ). This shows that I(U) is algebraic over I(V ), so U and V have the same dimension. �

6.1. Radical components.

Definition 6.2. Given a T-affine set V and a point a ∈ V , the radical component of a in V is the
intersection of all T-affine subsets of V that contain a and have the same Zariski dimension as V .

We write V 0(a) for the radical component of a in V .

Lemma 6.3. For any T-affine set V and a ∈ V , the sets V and V 0(a) have the same Zariski
dimension d, and V 0(a) is a radical set. If σ is surjective, V 0(a) is T-isomorphic to Dd.

Proof. The first assertion follows from Lemma 6.1 and the fact that the topology is Noetherian.
To show that V 0(a) is radical, let γ be algebraic over I(V 0(a)). Then also γ′ = γ − γ(a) is
algebraic over I(V 0(a)). By the argument used in the proof of Lemma 6.1, the Cσ,δ(a)-dimension of
V 0(a)/V 0(a) ∩V(γ′) is finite. By Lemma 6.1, V 0(a) ∩V(γ′) has the same Zariski dimension as V ,
so V 0(a) ⊆ V(γ′). This shows that γ′ belongs to I(V 0(a)), and that I(V 0(a)) is closed. The last
assertion follows from Theorem 5.5 and Lemma 4.11. �

6.2. An example of a radical group. Given a strict T-division ring D where T is induced by a,
a natural number n > 1 and a tuple b̄ = (b1, . . . , bn), we consider the T-affine set

Gb̄ = {(x1, . . . , xn) ∈ Dn : b1(Tx1 − ax1) = bi(Txi − axi) for all 1 6 i 6 n} ,

and we look for conditions for Gb̄ to be radical. We shall need the following Lemma.

Lemma 6.4. Given any tuple (r1, . . . , rn) ∈ Dn, the right dimension of (r1, . . . , rn) over Cσ,δ(a)
does not vary when computed in a T-extension of D.

Proof. By Fact 2.3, right Cσ,δ(a)-dependence of a tuple (r1, . . . , rn) is expressible by a quantifier-free
formula stating that the ri are all roots of a certain 1-twist of degree less than n with coefficients
in D, so right Cσ,δ(a)-dependence of (r1, . . . , rn) does not depend on the T-extension of D. �

Lemma 6.5 bellow is inspired by [27, Lemma 2.8] and its linearised version [22, Lemma 5.3]. It
plays a crucial role in [27] and [22] in the particular case when (D,T) is an algebraically closed field
(k, σp) of characteristic p equipped with the Frobenius σp. In that particular case, if

(
b−1
1 , . . . , b−1

n

)
are Fp-linearly independent, [22, Lemma 5.3] states that, Gb̄ is connected as an algebraic group,
whereas Lemma 6.5 only states that Gb̄ has no subgroup of finite index defined by p-polynomials.
But one recovers the conclusion of [22, Lemma 5.3] knowing that Gb̄ is σp-isomorphic to (k,+) by
Theorem 5.5, and (k,+) is connected, so that Gb̄ is connected as well.

Lemma 6.5. Assume that a is central, and σ and δ commute. Given b̄ = (b1, . . . , bn) in D×, the
set Gb̄ is radical if and only if

(
b−1
1 , . . . , b−1

n

)
are left Cσ,δ(a)-linearly independent.
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Proof. We first assume that Gb̄ is radical and put γ = T − aid. If there are (r1, . . . , rn) in Cσ,δ(a)
such that r1b

−1
1 + · · ·+ rnb

−1
n = 0, one has for every (x1, . . . , xn) ∈ Gb̄,

γ(r1x1 + · · ·+ rnxn) =
n∑
i=1

riγ(xi) =
n∑
i=1

rib
−1
i biγ(xi) =

(
n∑
i=1

rib
−1
i

)
b1γ(x1) = 0.

It follows that r1x1 + · · · + rnxn is algebraic over I (Gb̄), so belongs to I (Gb̄) by assumption. This
implies that r1x1 + · · ·+ rnxn vanishes on Cσ,δ(a)× · · · × Cσ,δ(a), hence (r1, . . . , rn) is zero.

We show the converse by induction on n. If n = 1, then Gb1 equals D, so Gb1 is radical. Let us
assume that the Lemma is proved for n− 1 and that Gb1,...,bn is not radical over D. Then Gb1,...,bn

is not radical over any T-extension (E,T′) of (D,T). We chose (E,T′) linearly surjective by Theo-
rem 4.3 and we look at T′-varieties over E. By induction hypothesis and Lemma 6.4 (since T still
defines a pseudo-linear transformation in the opposite division ring), we may assume that Gb1,...,bn−1

is radical over E. One has dimGb1,...,bn > 1 by Theorem 5.8, and, since the kernel of the first pro-
jection π1 : Gb1,...,bn → E has dimension 0, one also has dimGb1,...,bn 6 1 by Theorem 5.11. Writing
G0
b1,...,bn

for the radical component of 0 in Gb1,...,bn , one has dim
(
G0
b1,...,bn

)
= 1 by Lemma 6.3, so

one of the n main projections of G0
b1,...,bn

, say on the first coordinate, is onto,

π1 : G0
b1,...,bn

−� E. (6.1)

Consider the projection on the first n − 1 coordinates π : Gb1,...,bn → Gb1,...,bn−1 . Since kerπ has
dimension 0, the image π

(
G0
b1,...,bn

)
is σ′-affine and has dimension 1 by Theorem 5.11. Since

Gb1,...,bn−1 is radical, by Corollary 5.9, the following restriction is onto

π : G0
b1,...,bn

−� Gb1,...,bn−1 . (6.2)

By assumption, there is a linear γ′ ∈ cl (I (Gb1,...,bn)) \ I (Gb1,...,bn) with coefficients in D. Replacing
inductively T′(xi) by axi + b−1

i b1γ(x1) for all i ∈ {2, . . . , n} in the equation γ′(x̄) = 0, the system
{γ′(x̄) = 0, b1γ(x1) = · · · = bnγ(xn)} is equivalent to one of the form

{α(x1) + r2x2 + · · ·+ rnxn = 0, b1γ(x1) = · · · = bnγ(xn)},

with r2, . . . , rn in D. Since Gb1,...,bn−1 is radical, we may assume rn = 1. Composing by γ, we get

γα(x1) + γ(r2x2) + · · ·+ γ(rn−1xn−1) + b−1
n b1γ(x1) = 0,

which holds for all (x1, . . . , xn−1) ∈ Gb1,...,bn−1 by (6.2). Taking x2 = 1 and else xj = 0 yields
r2 ∈ Cσ

′,δ′(a) ∩D = Cσ,δ(a), and symmetrically r2, . . . , rn−1 ∈ Cσ,δ(a), hence

γα(x1) + r2b
−1
2 b1γ(x1) + · · ·+ rn−1b

−1
n−1b1γ(x1) + b−1

n b1γ(x1) = 0,

which holds for all x1 ∈ E by (6.1). It follows that α(x1) = r1x1 for some r1 ∈ Cσ,δ(a), which yields

r1b
−1
1 + r2b

−1
2 + · · ·+ rn−1b

−1
n−1 + b−1

n = 0,

so (b−1
1 , . . . , b−1

n ) are left Cσ,δ(a)-dependent, and the induction is proved. �

7. Appendix. On ω-stage Euclidean domains

We show here that a matrix with coefficients in an ω-stage Euclidean ring is equivalent to a
diagonal one. This generalises the corresponding Theorem [49, 10.1 p. 139] for Euclidean rings in a
different direction than the PID case [12, 1.4.7 p. 80]. We also provide a trigonalisation result when
coefficients belong to an ω-stage left Euclidean ring. Let us recall the definitions adapted from the
commutative case [14, p. 135], which appear e.g. in [33, Section 7 p. 27]:
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Let R be an integral domain, and (a, b) in R2. A right k-stage division chain starting from (a, b)
is a sequence of equations a = bq1 + r1, b = r1q2 + r2, r1 = r2q3 + r3, . . . , rk−2 = rk−1qk + rk.

Definition 7.1 (ω-stage right Euclidean). Let N : R → Z be a function with N(0) = 0 and
N(a) > 0 for all a 6= 0. The ring R is ω-stage right Euclidean if for every pair (a, b) with b 6= 0, there
is a right k-stage division chain for some k ∈ N such that last remainder rk satisfies N(rk) < N(b).

An ω-stage left Euclidean domain is defined similarly, and we say that a domain is ω-stage
Euclidean if it is both ω-stage right and left Euclidean with respect to the same function N .

Theorem 7.2. Let R be an ω-stage Euclidean ring and A ∈ Mn(R). There exist a diagonal
B ∈Mn(R) and invertible P,Q ∈ GLn(R) such that A = PBQ.

Proof. We slightly modify the diagonalisation algorithm of [21, Theorem 7.10] given for commuta-
tive Euclidean rings. For any i 6= j, let Fij be the matrix obtained from the identity matrix by
interchanging row i and row j, Hij(r) the one obtained from the identity by adding r times row j

to row i and H̄ij(r) by adding column j times r to column i. Since each of these matrix have
coefficients in a commutative subring and have determinant −1 or 1, they are invertible. The effect
of premultiplying a matrix

(a) by Fij is to interchange row i and row j,
(b) by Hij(r) is to add r times row j to row i,

and the effect of postmultiplying a matrix

(c) by Fij is to interchange column i and column j,
(d) by H̄ij(r) is to add column j times r to column i,

Our aim is to reduce the starting matrix A to an equivalent matrix of the form
r11 0 · · · 0
0
... C

0

 (£)

If A = (aij) is nonzero, by a suitable exchange of lines and columns, we may assume a11 6= 0. We
describe a finite sequence of elementary row and column operations which, when performed on A,
either yields a matrix of the form (£) or else leads to a matrix B = (bij) satisfying

N(b11) < N(a11) (e)

In the latter case we go back to the beginning and apply the sequence of operations again. The
sequence of operations is as follows.
Case 1. There is a second nonzero entry aj1 in the first column. Consider a left k-stage division
chain aj1 = q1a11 + r1, a11 = q2r1 + r2,. . . , rk−2 = qkrk−1 + rk with N(rk) < N(a11) starting from
(aj1, a11). Adding −q1 times row 1 to row j and interchanging rows 1 and j replaces in the first
column the pair (a11, aj1) by (r1, a11). Then adding −q2 times row 1 to row j and interchanging
rows 1 and j replaces (r1, a11) by (r2, r1). Continuing this way k times, we end with a first column
in which the initial pair (a11, aj1) has been replaced by (rk, rk−1). So this achieves (e).
Case 2. There is a second nonzero entry a1j in the first row. We proceed similarly considering a
right k-stage division chain starting from (a1j , a11), and also achieve (e).
Case 3. (£) is achieved. �

With a similar argument, we get this generalisation of [15, Proposition 6.2]:
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Theorem 7.3. Let R be an ω-stage left Euclidean ring and A ∈ Mn(R), there exist invertible
P,Q ∈ GLn(R) with Q having {0, 1} coefficients, and an upper triangular B ∈Mn(R) of the form

B =
(
B11 B12
0 0

)
where B11 is upper triangular with nonzero diagonal coefficients , such that A = PBQ.

Proof. Starting with a nonzero A, our aim is to reduce A to an equivalent matrix of the form
r11 r12 · · · r1n
0
... C

0

 , ($)

where r11 is nonzero. Repeating Case 1 of the previous proof eventually leads to a matrix of the
form ($) where r11 is nonzero since the last but one remainder rk−1 of a division chain is nonzero. �

Given an ω-stage left Euclidean domain R, Theorem 7.3 has the following immediate consequences
on the first order theory of divisible R-modules. We consider the language LR of left R-modules
and write DMR for the LR-theory of divisible R-modules axiomatised by the axioms ∀y∃x(rx = y)
for all nonzero r ∈ R, and the axioms of left R-modules. An equation is a formula of the form
r1x1 + · · ·+ rnxn = 0. A formula is prime positive (p.p. for short) if of the form ∃x̄ϕ(x̄, ȳ) for some
finite conjunction ϕ of equations. With a proof similar to the one of [40, Theorem 2.Z.1], one has
a quantifier elimination result for p.p.-formulas:

Corollary 7.4. For all p.p.-formula ∃x̄ϕ(x̄, ȳ), there are finitely many equations ϕi(ȳ) such that

DMR |= ∀ȳ
(∧

ϕi(ȳ)↔ ∃x̄ϕ(x̄, ȳ)
)
.

Corollary 7.5. For a boolean combination ϕ of p.p.-sentences, one has DMR |= ϕ or DMR |= ¬ϕ.

Corollary 7.6. Let M be a divisible R-module and Σ a finite set of equations. If Σ has a solution
in a left R-module extending M , then Σ has a solution in M .
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