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PSEUDO-LINEAR ALGEBRA OVER A DIVISION RING

CÉDRIC MILLIET

Abstract. We consider an analogue of the Zariski topology over a division ring (D,σ, δ) equipped
with a ring morphism σ, a σ-derivation δ, and a pseudo-linear transformation θ as introduced by Ore
and Jacobson. A basic closed subset of Dn, which we call θ-affine, is the zero set of a (finite) family
of linear combinations of

{
θi1 (x1), . . . , θin (xn), 1: (i1, . . . , in) ∈ Nn

}
having left coefficients in D.

This enables to define elementary notions of algebraic geometry: θ-affine sets, θ-morphisms, a Zariski
dimension, and a notion of comorphism that witnesses a duality between the category of θ-affine
sets and the category of D[t;σ, δ]-modules. Using results of P. Cohn, we show that when σ and δ
commute, (D,σ, δ) has an extension in which each nonzero polynomial a0x+ a1θ(x) + · · ·+ anθ

n(x)
is surjective. In such an extension, using Baur-Monk’s quantifier elimination, we show that Cheval-
ley’s projection Theorem holds, as well as a Nullstellensatz that provides an equivalence between
the category of θ-affine sets having no proper θ-affine subset of the same Zariski dimension, and the
category of torsion-free finitely generated D[t;σ, δ]-modules. These results are applied in a further
paper to division rings that do not have Shelah’s independence property.

Given a division ring (D,σ, δ, θ) equipped with a ring morphism σ : D → D, a σ-derivation
δ : D → D and a pseudo-linear transformation θ : D → D as defined by Jacobson [20], the purpose
of the paper is the study of the subsets of Dn defined by a system of linear equations

γ(x1, . . . , xn) = 0 (0.1)

where the map γ : Dn → D has the form

γ1(x1) + · · ·+ γn(xn) + c, (0.2)

the element c being in D and each γi : D → D being a linear operator

ai,0id + ai,1θ + · · ·+ ai,nθ
n (0.3)

with left coefficients in D. We write D[θ ] for the set of maps (0.3), D[θ, n] for the set of maps (0.2)
and Cσ,δ(θ) for the generalised centraliser of θ defined in [26, p. 314] by the formula θ(x) = θ(1) ·x.
When θ = σ, we recover the usual linear difference operators and the generalised centraliser is
Fix(σ), and when θ = δ, we recover the usual linear differential operators, and the generalised
centraliser is Const(δ).

With addition and composition, D[θ ] is a ring, isomorphic to the left Ore domain D[t;σ, δ]
when the right dimension [D : Cσ,δ(θ)] is infinite. Since D[θ, n] is a D[t;σ, δ]-module, we begin
by elementary considerations about modules over a left Ore domain in Section 1, and study the
basic properties of D[θ ] and D[θ, n] in Section 2. In Section 3, we call a set defined by a system
of equations like (0.1) a θ-affine set, and a map between θ-affine sets whose coordinate maps are
in D[θ, n] a θ-morphism, and we point at a functor between the category of θ-affine sets and the
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category of finitely generated D[t;σ, δ]-modules. In Section 4, we call (D,σ, δ, θ) linearly surjective
if every nonzero γ ∈ D[θ ] is surjective. Using results of P. Cohn on division ring extensions having
sufficiently many roots, we show that if either σ or δ are inner, or if σ annd δ commute, then D

has a linearly surjective extension (E, σ′, δ′, θ′). In such an extension, using Baur-Monk’s quantifier
elimination up to prime positive formulas for theories of modules, we show that Chevalley’s Theorem
for constructible sets holds, as well as a Nullstellensatz. Section 5 is devoted to defining and
calculating the Zariski dimension of a θ-affine set V when [D : Cσ,δ(θ)] is infinite and σ surjective.
By a diagonalisation argument due to Wedderburn, we show that the Zariski dimension of V is the
unique d ∈ N such that V is θ-isomorphic to Dd × U , where U is θ-affine of finite right Cσ,δ(θ)-
dimension. In Section 6, we study the θ-affine sets that do not have proper θ-affine subsets of the
same Zariski dimension; we call such sets radical, and we provide a criterion inspired of [22, Lemma
2.8] and [19, Lemme 5.3] for certain θ-affine sets to be radical.

The paper is originally motivated by questions coming from model theory, aiming at under-
standing the complexity of the first-order theory T(D) of a division ring D in the ring language.
Among these questions, (1) if T(D) has countably many pure types, is D commutative (from
[41, Problem 12.6])? (2) Does T(D) satisfy Vaught’s conjecture? (3) If T(D) does not have the
independence property (see [35, Definition 4.1]), is the dimension [D : Z(D)] finite? The restricted
setting presented in the paper, considering left modules (instead of bimodules) and almost forget-
ting about the role of the ring multiplication but reducing it to scalar left multiplication seems to
be all that is needed to get a positive answer to (3) in characteristic p, presented in a further paper.
But this setting is probably not enough to get an answer to (1), (2) or (3) in characteristic zero.

1. Linear Algebra in a Module over a left Ore domain

Throughout this Section, R is a left Ore domain (for any a, b in R \ {0}, the left ideal Ra ∩ Rb
is nonzero), and M a left R-module. All modules considered in the paper are left modules.

1.1. Basis and algebraicity. A family (v1, . . . , vn) in M is dependent if there is a nonzero tuple
(r1, . . . , rn) in R such that r1v1 + · · ·+ rnvn = 0. It is a basis if it is independent and maximal such.

Lemma 1.1 (incomplete basis). Any independent family extends to a (possibly empty) basis.

For all S ⊂M , we write (S) for the R-submodule generated by S. If b̄ is a basis of M , for every
v ∈M \ b̄, the set b̄ ∪ {v} is dependent, and there is a nonzero r ∈ R such that rv ∈ (b̄).

Definition 1.2. We say that v is algebraic over S if there is a nonzero r ∈ R such that rv ∈ (S).
For A ⊂M , we say that A is algebraic over S if every v ∈ A is algebraic over S.

Lemma 1.3 (transitivity of algebraicity). If A is algebraic over B and B is algebraic over C, then
A is algebraic over C.

Proof. Let a in A. By assumption, there are r, r1, . . . , rn in R \ {0} and a tuple b̄ in Bn such that
one has ra ∈ (b̄) and ribi ∈ (C) for all i ∈ {1, . . . , n}. In particular, there is an expression of the
form sa ∈ (C) +

∑
i∈I
sibi, with s ∈ R \ {0}, and one may choose the set I ⊂ {1, . . . , n} of minimal

cardinality. We claim that I is empty. Otherwise I contains some j. By Ore’s condition, there are
(u, v) in R \ {0} such that usj = vrj hence usjbj ∈ (C), and one has (us)a ∈ (C) +

∑
i∈I\{j}

usibi

with us nonzero as u and s are nonzero, a contradiction with the minimality of I. �



PSEUDO-LINEAR ALGEBRA OVER A DIVISION RING 3

1.2. Dimension.

Theorem 1.4 (after Steinitz). All bases of M have the same cardinality.

Proof. We treat the case whereM has a finite basis b̄ = (b1, . . . , bn). Let (c1, . . . , cm, . . . ) be another
basis. By maximality of b̄, one can write rc1 =

∑
ribi for some nonzero r ∈ R. As c1 is independent,

r1 say is nonzero, so b1 is algebraic over (c1, b2, . . . , bn). As M is algebraic over b̄, by Lemma 1.3,
M is algebraic over (c1, b2, . . . , bn). In a similar way, M is algebraic over (c1, c2, b3, . . . , bn), and
iterating, one can add every ci. If m > n, one concludes that cm is algebraic over its predecessors,
a contradiction, so m 6 n, and all bases of M are finite. By symmetry, one has n = m. �

Definition 1.5. We write dimRM and call R-dimension of M the cardinal of any basis of M .

Lemma 1.6 (sum). Let N be another R-module. One has

dimRM ⊕N = dimRM + dimRN.

Proof. If b̄ is a basis ofM and c̄ of N , then b̄∪c̄ is an independent family ofM⊕N . If u+v ∈M⊕N ,
then u is algebraic over b̄, as well as v over c̄, so there are (s, t) in R \ {0} such that su ∈ (b̄) and
tv ∈ (c̄). By Ore’s condition, there is r ∈ R \ {0} such that r(u+ v) ∈ (b̄, c̄), so b̄ ∪ c̄ is a basis. �

Lemma 1.7 (quotient). Let N ⊂M be a submodule. One has

dimRM/N + dimRN = dimRM.

Proof. Let b̄+N be a basis for M/N and c̄ a basis for N . Let us show that b̄ ∪ c̄ is a basis for M .
If there is a linear combination γ(x̄) + γ′(ȳ) vanishing in (b̄, c̄), one has γ(b̄+N) ∈ N, so γ = 0 and
γ′(c̄) = 0, whence γ′ = 0. The family b̄ ∪ c̄ is thus independent. If v ∈M , by maximality of b̄+N ,
there is r ∈ R \ {0} and a linear combination γ such that rv − γ(b̄) ∈ N. By maximality of c̄, there
is s ∈ R \ {0} such that srv − sγ(b̄) ∈ (c̄). As sr is nonzero, v is algebraic over b̄ ∪ c̄. �

Definition 1.8. For any S ⊂M , we write cl(S) for the set of algebraic elements over S.

Lemma 1.9 (algebraic closure). For all S ⊂M , the set cl(S) is an R-module and

dimR cl(S) = dimR(S).

Proof. Let a and b in cl(S). For all r ∈ R, the element a + rb is algebraic over {a, b}, which is
algebraic over S, so a+ rb is algebraic over S by Lemma 1.3, and cl(S) is a submodule. A basis b̄
for (S) is also a basis for cl(S) since cl(S) is algebraic over (S), hence over b̄. �

Lemma 1.10 (Rank-Nullity). Let f : M → N be a morphism of R-modules. Then

dimR ker f + dimR im f = dimRM.

Proof. Considering the induced bijection M/ ker f → im f and in view of Lemma 1.7, we may
assume without loss of generality that f is a bijection. In this case, it is straightforward that
(b1, . . . , bn) are independent in M if and only if (f(b1), . . . , f(bn)) are independent in N . �

Corollary 1.11. Let f : M → N and g : S →M be morphisms of R-modules. Then

dimR ker f ◦ g = dimR(ker f ∩ im g) + dimR ker g.

Proof. Usual proof using the Rank-Nullity Lemma. �
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2. Twists over division rings

Our initial setting is the one introduced in [32], which provides a uniform framework to deal
with difference and differential equations. Let D be a division ring and σ : D → D a nonzero ring
morphism. Let δ : D → D be a σ-derivation, that is, satisfying

δ(x+ y) = δ(x) + δ(y) and δ(xy) = σ(x)δ(y) + δ(x)y for any (x, y) ∈ D2.

We write D[t;σ, δ] for the Ore domain of left polynomials a0 +a1t+ · · ·+antn with usual addition,
and skew multiplication induced by the rule

t · a = σ(a)t+ δ(a). (2.1)

When δ is zero, we simply write D[t;σ].

2.1. 1-Twists. Let θ : D → D be a pseudo-linear transformation in the sense of [20], that is,

θ(x+ y) = θ(x) + θ(y) and θ(xy) = σ(x)θ(y) + δ(x)y for any (x, y) ∈ D2. (2.2)

For any element a in D, the map θa = σ · a+ δ is a pseudo-linear transformation, and conversely, a
pseudo-linear θ satisfies θ(x) = σ(x) · θ(1) + δ(x), so that θ = θa for a = θ(1) (from [7, Lemma 3]).
We sometimes write θa instead of θ when we want to stress on the element a = θ(1).

We define the set D[θ ] of 1-twists by

D[θ ] =
{

n∑
i=0

aiθ
i : ā ∈ Dn+1, n ∈ N

}
.

By (2.2), one has the equality θ ◦ aθn = σ(a)θn+1 + δ(a)θn, so that (D[θ ],+, ◦) is a unitary ring,
with the convention θ0 = id. One can show that the map a0 + · · ·+ ant

n 7→ a0id + · · ·+ anθ
n is a

ring morphism from D[t;σ, δ] to D[θ ]. In particular, any pseudo-linear transformation θ defines a
structure of D[t;σ, δ]-module on D by

(g(t), a) 7→ g(t) · a = g(θ)(a).

Conversely any structure of D[t;σ, δ]-module on D (that extends the natural structure of D-module
of D) is induced by the action a 7→ t · a, which is a pseudo-linear transformation since, by (2.1),

t · a = (t · a) · 1 = (σ(a)t+ δ(a)) · 1 = σ(a)(t · 1) + δ(a) = θt·1(a).

Any nonzero γ ∈ D[θ ] has a (possibly non unique) expression of the form a0id + a1θ+ · · ·+ anθ
n

with an 6= 0. We call a minimal such n the degree of γ, written deg(γ), and also define deg(0) = −∞.

Lemma 2.1 (Euclidean division). For all nonzero ρ ∈ D[θ ] and all γ ∈ D[θ ],

(1) there is (q, r) ∈ D[θ ]×D[θ ] such that γ = qρ+ r and deg(r) < deg(ρ).
(2) if σ is onto, there is (q, r) ∈ D[θ ]×D[θ ] such that γ = ρq + r and deg(r) < deg(ρ).

Proof. This follows from Ore’s [32, Theorem 6] stating that the skew polynomial ring D[t;σ, δ] is
right Euclidean, and when σ is onto also left Euclidean, and from the fact that the map

∑
ait

i 7→∑
aiθ

i is a ring morphism from D[t;σ, δ] to D[θ ] (see [7, Theorem 1] or [28, Corollary 1.3]). �

Lemma 2.2 (factorisation). Let γ ∈ D[θ ] of degree n+1 having a nonzero root b. There is q ∈ D[θ ]
of degree n such that γ = q(θ − θ(b)b−1id).

Proof. Since γ has degree n+ 1, the map θ cannot be a left homothety. It follows that θ− θ(b)b−1id
is nonzero and has degree 1. By Lemma 2.1.1, there are q ∈ D[θ ] and r ∈ D such that γ equals
q(θ − θ(b)b−1id) + r · id. Since γ(b) = 0, one must have r = 0. �
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Following the notation in [26, p. 314], we define the generalised centraliser Cσ,δ(θ) by

Cσ,δ(θ) = {x ∈ D : θ(x) = θ(1) · x} .

In the particular case when θ(x) = x · a, then Cσ,δ(θ) is the usual centraliser of a. When θ = σ,
then Cσ,δ(σ) is the division ring fixed by σ, defined by σ(x) = x, and in the case θ = δ, then Cσ,δ(δ)
is the division ring of constants of δ, defined by δ(x) = 0. From [26, Lemma 3.2.(1)], one has:

Lemma 2.3. The centraliser Cσ,δ(θ) is a division ring, and any γ ∈ D[θ ] is right Cσ,δ(θ)-linear.

Proof. For any c ∈ Cσ,δ(θ), one has θa(c) = a · c. By (2.2), for any x ∈ D, one has

θa(xc) = σ(x)θa(c) + δ(x)c = σ(x)a · c+ δ(x)c = θa(x)c. (2.3)

It follows from (2.3) that Cσ,δ(θ) is a ring, and that any γ ∈ D[θ ] is right Cσ,δ(θ)-linear. The
formula δ(x−1) = −σ(x−1)δ(x)x−1 also provides us with

θa(x−1) = σ(x−1)
(
a · x− δ(x)

)
x−1, (2.4)

from which follows that Cσ,δ(θ) is a division ring. �

Lemma 2.4 (kernel of a twist). The kernel of a 1-twist of degree n ∈ N, is a right Cσ,δ(θ)-vector
space of dimension at most n. Conversely, a right Cσ,δ(θ)-vector subspace of D of dimension n ∈ N
is the kernel of a 1-twist of degree n (or −∞).

Proof. The first statement of Lemma 2.4 can probably be derived from [26, Theorem 4.2]. Here is a
short alternative proof by induction on n, beginning with a twist θ− rid of degree 1. If x and y are
nonzero roots of θa − rid, one has rx− δ(x) = σ(x)a, so by (2.4), θr(x−1) = ax−1. By (2.2) follows

θa(x−1y)− ax−1y = σ(x−1)ry + δ(x−1)y − ax−1y = (θr(x−1)− ax−1)y = 0,

so x and y are right Cσ,δ(θ)-dependent. Now if γ has degree n + 1 and has a nonzero root, by
Lemma 2.2, one has γ = qγ′ where q has degree n and γ′ has degree 1. Since γ, q and γ′ are right
Cσ,δ(θ)-linear maps, by Corollary 1.11 and induction hypothesis, one has dim ker γ 6 dim ker q +
dim ker γ′ 6 n+1. For the converse, we consider a right Cσ,δ(θ)-vector subspace of D of dimension n
spanned by (r1, . . . , rn). We define γn ∈ D[θ ] inductively by putting γ1 = θa − θa(r1)r−1

1 id and
γi+1 = (θa − a · id) ◦ γi(ri+1)−1 · γi. An immediate induction shows that γi has degree at most i,
that span(r1, . . . , ri) = ker γi so that γi(ri+1) is nonzero and γi+1 is well defined. �

As in [26, Corollary 4.4], specifying θ = δ in Lemma 2.4 yields [11, Theorem 3.7.1] (or Amitsur’s
[1, Theorem 1] when σ is onto) stating that the kernel of a differential operator

∑
aiδ

i of degree n
has right dimension at most n over the the division ring of constants. Taking θ = σ yields that the
kernel of a difference operator

∑
aiσ

i of degree n has right dimension at most n over the division
ring fixed by σ. Taking θ(x) = x · a yields that the kernel of the map a0x + · · · + anxa

n has right
dimension at most n over the centraliser of a, and if D is a field of characteristic p, taking θ(x) = xp

yields that a p-polynomial a0x+ · · ·+ anx
pn has at most pn roots.

Corollary 2.5. The rings D[t;σ, δ] and D[θ ] are isomorphic if and only if [D : Cσ,δ(θ)]rt = +∞.

We call θ-division ring any division ring (D,σ, δ) equipped with a ring morphism σ, a σ-derivation δ
and a pseudo-linear map θ. We say that D is strict if the right dimension [D : Cσ,δ(θ)]rt is infinite.

Corollary 2.6. If D is a strict θ-division ring, then D[θ ] is a left Noetherian and left Ore domain.
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2.2. n-Twists and twisted Zariski topology. We write D[θ, n] for the set of maps γ : Dn → D

of the form γ1(x1) + · · ·+ γn(xn) + c where γ1, . . . , γn are in D[θ ] and c in D.

Definition 2.7. Let the twisted Zariski topology on Dn be the topology whose basic closed sets are
of the form {(x1, . . . , xn) ∈ Dn : γ(x1, . . . , xn) = 0 for all γ ∈ S} where S is a subset of D[θ, n].

Since D[θ, n] is a finitely generated module over the left Noetherian ring D[θ ], it is a Noetherian
module by [6, Proposition 7 p. 26], and the twisted Zariski topology is Noetherian.

Lemma 2.8. A basic Zariski closed subset of D is a right Cσ,δ(θ)-affine subspace of finite dimension.

Proof. This follows from Lemma 2.4. �

Lemma 2.9. A basic Zariski closed subset of Dn meets a right D-line either trivially or in a right
Cσ,δ(θ)-affine space of finite dimension.

Proof. It suffices to consider a basic closed set V defined by a single equation γ(x1, . . . , xn) = 0.
Let L be a right D-line given by {x1 = a1xj + b1, . . . , xn = anxj + bn} for some j ∈ {1, . . . , n} and
tuples ā, b̄ in D. Replacing every xi by aixj + bi in the equation γ(x̄) = 0 yields an equation of the
form γ′(xj) = 0 for some γ′ ∈ D[θ, 1] and one concludes with Lemma 2.4. �

Lemma 2.10. If Cσ,δ(θ) is infinite, the irreducible closed subsets of Dn are the basic closed sets.

Proof. Let V be a nonempty basic closed set covered by a finite union V1 ∪ · · · ∪ Vq of basic closed
subsets. Translating V , we may assume that V is an additive group. By Neumann’s [31, Lemma
4.1], one Vi is a subgroup of V of finite index. Since V/Vi is a right Cσ,δ(θ)-vector space, one must
have V = Vi, so V is irreducible. Conversely, an irreducible closed set is a basic closed set. �

3. Elementary θ-algebraic geometry

Throughout this Section, we consider a θ-division ring D and introduce basic notions directly
inspired from classical algebraic geometry.

Definition 3.1. We call θ-affine set the zero set of a family S of n-twists, which we write

V(S) = {(x1, . . . , xn) ∈ Dn : γ(x1, . . . , xn) = 0 for all γ ∈ S} .

Definition 3.2. Given ∆ ⊂ Dn, we call module of ∆ and write I(∆) the set defined by

I(∆) = {γ ∈ D[θ, n] : γ(x1, . . . , xn) = 0 for all (x1, . . . , xn) ∈ ∆} .

Any θ-affine set is right Cσ,δ(θ)-affine, and any module I(∆) is a left D[θ ]-submodule of D[θ, n].
Since D[θ, n] is a Noetherian module, a θ-affine set is the zero set of a finite family of twists.

Remark 3.3. Given a polynomial g ∈ D[t;σ, δ], the map D[t;σ, δ]→ D[θ ] suggests to define V(g) =
V(g(θ)) = {x ∈ D : g(θ)(x) = 0}. In [27, (2.7) p.46], another definition of V(g) is introduced,
defined (with our notation θa = σ · a + δ) by V(g) = {a ∈ D : g(θa)(1) = 0}. These definitions are
not the same. If g(t) =

∑
bit

i and in the particular case (σ, δ) = (id, 0), the former gives the linear
subset

{
x ∈ D :

∑
bixa

i = 0
}
, whereas the later gives the more usual

{
a ∈ D :

∑
bia

i = 0
}
.

We push on the analogy with classical algebraic geometry and define the corresponding notions
of morphisms: θ-morphisms for θ-affine sets, and usual morphisms of D[θ ]-modules for modules.

Definition 3.4. We call θ-morphism a map between θ-affine sets whose coordinates are twists. We
call θ-isomorphism a bijective θ-morphism whose inverse is also a θ-morphism.
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In classical algebraic geometry, there is a functor between the category of affine algebraic sets
over a field k and the category of finitely generated k-algebras, which witnesses a duality between
these two categories (see e.g. [18, p. 19]). In our case, there is a functor Γ between the category of
θ-affine sets, and the category of finitely generated D[θ ]-modules.

Definition 3.5. Given a θ-affine subset V of Dn, we let Γ(V ) be the D[θ ]-module defined by

Γ(V ) = D[θ, n]/I(V ).

Given a θ-morphism f : U → V , we let Γ(f) be the morphism Γ(f) : Γ(V )→ Γ(U) defined by

Γ(f) : γ + I(V ) 7→ γ ◦ f + I(U).

Given two θ-affine sets U and V , we write Hom(U, V ) for the set of θ-morphisms from U to V ,
and Hom(Γ(V ),Γ(U), 1) for the set of morphisms of D[θ ]-modules from Γ(V ) to Γ(U) fixing 1.

Lemma 3.6. The map Γ : Hom(U, V )→ Hom(Γ(V ),Γ(U), 1) is bijective.

Proof. Γ is injective, and we show that it is surjective as in [18, Proposition 1.33]. If φ : Γ(V )→ Γ(U)
is a given morphism of D[θ ]-modules that fixes 1, where U ⊂ Dn and V ⊂ Dm, there is a morphism
of D[θ ]-modules φ̄ such that φ̄(1) = 1 and such that the following diagram commutes.

D[θ,m] D[θ, n]

Γ(V ) Γ(U)

π1

φ̄

π2

φ

We define a θ-morphism f : Dn → Dm putting f =
(
φ̄(x1), . . . , φ̄(xm)

)
. Since φ̄ is a morphism

of D[θ ]-modules and since φ̄(1) = 1, for any m-twist γ = γ1(x1) + · · ·+ γm(xm) + r, one has

φ̄(γ) = φ̄(γ1(x1) + · · ·+ γm(xm) + r) = γ1(φ̄(x1)) + · · ·+ γm(φ̄(xm)) + r = γ ◦ f,

and according to the above diagram, one has φ◦π1(γ) = π2(γ ◦f). This shows that γ ∈ I(V ) implies
γ ◦ f ∈ I(U), so that f maps U to V . This also shows that φ = Γ(f), so Γ is surjective. �

Corollary 3.7. A θ-morphism f is a θ-isomorphism if and only if Γ(f) is an isomorphism.

Proof. As in [36, Corollary 11.4.5], if f : U → V is a θ-isomorphism then the inverse of Γ(f) is
Γ(f−1). Conversely, if φ ∈ Hom(Γ(U),Γ(V )) satisfies Γ(f) ◦ φ = idΓ(U) and φ ◦ Γ(f) = idΓ(V ), then
φ fixes 1, so φ = Γ(g) for some θ-morphism g : V → U by Lemma 3.6. One thus has Γ(f) ◦ Γ(g) =
Γ(g ◦ f) = Γ(idU ), whence g ◦ f = idU and symmetrically f ◦ g = idV . �

We call a θ-morphism f : U → V dominant if f(U) is dense in V for the twisted Zariski topology,
and a closed immersion if f(U) is Zariski closed in V and f : U → f(U) is a θ-isomorphism. One
has the analogue of [17, Theorem 4.88]:

Lemma 3.8. Let f : U → V be a θ-morphism with U irreducible. Then,

(1) Γ(f) is injective if and only if f is dominant,
(2) Γ(f) is surjective if and only if f is a closed immersion.
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Proof. Towards point (1), since Γ(f) sends γ + I(V ) to γ ◦ f + I(U), the statement Γ(f) is injective
is equivalent to γ ∈ I(V ) ⇐⇒ γ ◦ f ∈ I(U). Since γ ◦ f ∈ I(U) is equivalent to γ ∈ I(f(U)), one
has that Γ(f) is injective if and only if I(V ) = I(f(U)), which holds if and only if VI (f(U)) = V .
But f is continuous for the twisted Zariski topology, so f(U) is irreducible, and the Zariski closure
of f(U) is precisely VI (f(U)). For point (2) if f is a closed immersion, then there is a θ-morphism
f−1 : f(U)→ U with f−1 ◦ f = idU . But f−1 is the restriction of some θ-morphism g : V → Dn, so
Γ(f) is surjective. Conversely, if Γ(f) is surjective, let f̄ denote the restriction f̄ : U → f(U). Then
also Γ(f̄) is surjective. By point (1), Γ(f̄) is bijective, and by Corollary 3.7, f̄ is a θ-isomorphism,
so f is a closed immersion. �

4. Linearly surjective θ-division rings

In classical algebraic geometry, over an algebraically closed field k, Hilbert’s Nullstellensatz makes
the duality between affine algebraic sets and reduced finitely generated k-algebras an equivalence
of categories, where irreducible algebraic sets correspond to integral finitely generated k-algebras.
In our case, the analogue of irreducible sets is the one of radical sets, and analogue of algebraically
closed fields seem to be linearly surjective division rings, over which the category of radical θ-affine
sets is equivalent to the category of torsion-free finitely generated D[θ ]-modules.

Extending the definition in [2, p. 215] given for differential fields, although the terminology
linearly-closed exists for difference fields (see e.g. [34, Lemma 9.1 p. 17] or [33, Definition 4.3
p. 15]), we suggest

Definition 4.1. We call a θ-division ringD linearly surjective if every nonzero γ ∈ D[θ ] is surjective,
or equivalently if D, as a D[θ ]-module, is divisible.

Remark 4.2. If D is linearly surjective, then θa − a · id is surjective but not injective. By the
Rank-Nullity Theorem, D must be strict.

4.1. Linearly surjective extensions. Following [14, p. 58],

Definition 4.3 (θ-extension). Given a θ-division ring (D,σ, δ) considered with a pseudo linear
transformation θa = σ · a+ δ, we call θ-extension of D any division ring (E, σ′, δ′) extending D and
equipped with a ring morphism σ′ : E → E extending σ : D → D and with σ′-derivation δ′ : E → E

extending δ : D → D, and considered with the pseudo-linear σ′ · a+ δ′ that extends θa.

In the case of a commutative field, by [7, Lemma 1], a pseudo-linear map is either a linear
difference operator, or a linear differential operator for a usual derivation, so the two cases of the
following Lemma exhaust all the possible pseudo-derivations.

Lemma 4.4. If k is a commutative field, any difference field (k, σ) or differential field (k, δ) has a
linearly surjective commutative extension.

Proof. In the difference case, this is observed in [8, Lemma 2.11]. In the differential case, we proceed
similarly: as the theory of differential fields extending k has ∀∃ axioms (or equivalently is closed
under chains of models), it has an existentially closed modelK. Now let γ = 1+a0id+a1δ+· · ·+anδn
with ai ∈ k, an ∈ k× and n > 0. We consider the domain R = k[x0, . . . , xn−1], and extend δ to R
letting δ(xi) = xi+1 for i < n − 1 and δ(xn−1) = γ(x0) + δn(x0), so that γ(x0) = 0. Then δ

extends to a unique derivation of the fraction field k(x0, . . . , xn−1) by [23, 4 p.10 and Theorem 1.1].
This shows that K is linearly surjective. Another point of view is to consider the domain k{x} of
differential polynomials in one variable x, which is a differential extension of k, and the differential
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ideal {γ} generated by γ. One can show that 1 /∈ {γ}, so {γ} is contained in a maximal differential
proper ideal I. By [2, Corollary 4.6.7], k{x}/I is a differential domain, where x+ I is a solution of
the equation γ = 0, and the field of fraction of k{x}/I is a differential extension of k. �

We write σb for the inner automorphism x 7→ b−1xb induced by b ∈ D×, and δc for the inner
σ-derivation x 7→ σ(x)c− cx induced by c ∈ D.

Theorem 4.5. Any θ-division ring has a linearly surjective θ-extension provided that either δ and
σ commute, or σ be inner, or δ be inner.

Proof. We split the proof into several cases, beginning with the most elementary one.
Case 1. δ = 0 and σ = id, so that θa = id · a, and a is transcendental over Z(D). As a

referee says, the theory of division rings with centre Z(D) extending D has ∀∃ axioms, hence has
an existentially closed model D. So a is transcendental over Z(D) = Z(D). By [9, Theorem 2], for
all (b, c) ∈ D2, the equation xa − bx = c has a solution in D. To finish the first case, it is enough
to show that, in D, any γ ∈ D[θ ] factorises in products of 1-twists of degree 1.

Claim 1. Let D be a division ring. Assume that every polynomial xn + xn−1r1 + · · ·+ xrn + rn+1
with (r1, . . . , rn+1) ∈ Dn+1 has a root in D. Denote by

ei(x1, . . . , xn) =
∑

16j1<···<ji6n
xji · · ·xj1

the ith elementary (non) symmetric polynomial. For any (a1, . . . , an) ∈ Dn, the polynomial system

Σn(ā) = {e1(x1, . . . , xn) = a1, . . . , en(x1, . . . , xn) = an}

has a solution (x1, . . . , xn) in D.

Proof of Claim 1. We proceed by induction on n, the case n = 1 being trivial. Assume that the
conclusion holds for any system Σn of n such polynomial equations, and consider the system Σn+1(ā).
Putting x̄ = (x1, . . . , xn), one has the following equivalences:



a1 = x1 + · · ·+ xn + xn+1

a2 = xn+1xn + · · ·+ x2x1
...
an+1 = xn+1xn · · ·x1

⇐⇒



a1 − xn+1 = e1(x̄)
a2 = xn+1e1(x̄) + e2(x̄)
a3 = xn+1e2(x̄) + e3(x̄)
...
an = xn+1en−1(x̄) + en(x̄)
an+1 = xn+1en(x̄)

⇐⇒



a1 − xn+1 = e1(x̄)
a2 − xn+1(a1 − xn+1) = e2(x̄)
a3 − xn+1(a2 − xn+1(a1 − xn+1)) = e3(x̄)
...
an − xn+1(an−1 − xn+1(· · ·xn+1(a1 − xn+1) · · · )) = en(x̄)
an+1 = xn+1[an − xn+1(an−1 − xn+1(· · ·xn+1(a1 − xn+1) · · · ))]

The last line is a one variable nontrivial polynomial equation, which reads

an+1 − xn+1an + x2
n+1an−1 + · · ·+ (−xn+1)na1 + (−xn+1)n+1 = 0,
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and has a solution bn+1 ∈ D by assumption. Replacing xn+1 by bn+1 in the n first equations of the
last system gives a subsystem Σn(c̄) for some precise tuple c̄ ∈ Dn. By induction hypothesis, Σn(c̄)
has a solution (b1, . . . , bn) ∈ Dn, so that (b1, . . . , bn+1) is a solution of Σn+1(ā), as desired. �

We continue the proof of Case 1 of Theorem 4.5, claiming that for any γ ∈ D[θ ] of the form
xan + a1xa

n−1 + a2xa
n−2 + · · ·+ anx, there is b̄ ∈ Dn such that the following factorisation holds:

γ(x) = (xa+ bnx) · · · (xa+ b1x).

For every x̄ = (x1, . . . , xn) ∈ Dn, one has

(xa+ xnx) · · · (xa+ x1x) = xan + e1(x̄)xan−1 + e2(x̄)xan−2 + · · ·+ en(x̄)x (4.1)

By [11, Theorem 8.5.1], the polynomial xn + xn−1r1 + · · · + xrn + rn+1 has a root in D for every
(r1, . . . , rn+1) ∈ Dn+1. By Claim 1, the system {e1(x̄) = a1, . . . , en(x̄) = an} has a solution b̄ ∈ Dn.
By (4.1), one has γ(x) = (xa+ bnx) · · · (xa+ b1x), as desired.
Case 2. δ = 0 and σ = id, so that θa = id · a. By Case 1, we may assume that a is algebraic

over Z(D). We first claim that (D, id) has an extension (D2, σt) with centre Z(D2) = Z(D) where t is
transcendental over Z(D2). Consider the division ringD1 = D(x) where x is a central indeterminate,
and the ring morphism τ : g(x) 7→ g(x2). Then no power of τ is inner since τ is not even surjective,
and the division subring fixed by τ is D. Consider the (left) Ore domain D1[t; τ ] with multiplication
rule r ·t = tτ(r). Its division ring of (left) fractions, let’s call it D2, has centre Z(D) by [12, Theorem
7.3.6]. It follows that t is transcendental over Z(D2) = Z(D), and t commutes with D, so that
(D2, σt) extends (D, id). Now, putting b = ta, for each y in (D2, σt), one has

θa(y) = σt(y) · a = t−1xb. (4.2)

If a = 0, there is nothing to show and if a 6= 0, then b is transcendental over Z(D2) (it follows
indeed from Brauer’s Lemma, see e.g. [11, Corollary 3.3.9], that the algebraic elements over Z(D2)
form a division subring of D2). By Case 1, (D2, id, 0, id · b) has a linearly surjective extension
(D3, id, 0, id · b). In particular, from (4.2), (D3, σt, 0, θa) is linearly surjective.
Case 3. Both σ and δ are inner. Then σ = σb and δ = σ · c− c · id for some b ∈ D× and c ∈ D.

One thus has

θa(x) = σ(x)a+ σ(x)c− cx = b−1xb(a+ c)− cx. (4.3)

By Case 2 the division ring (D, id, 0, id · b(a+ c)), has a linearly surjective extension (D1, σt, 0, σt ·
b(a+ c)). It follows that the extension (D1, σtb, σtb · c− c · id, θa) of (D,σ, δ, θa) is linearly surjective.
Case 4. Only σ is inner. Then σ = σb for some b ∈ D×. In the Ore domain D[t;σ, δ], the

multiplication rule σ(r)t = tr+δ(r) shows that δt = σb ·t−t·id extends δ. By [11, Proposition 2.1.2],
δt extends uniquely to the division ring of fractions of D[t;σ, δ], and we are back to Case 3.
Case 5. Only δ is inner. Then δ = σ · c− c · id for some c ∈ D. In the (left) Ore domain D[t;σ],

the multiplication rule r · t = tσ(r) shows that the conjugation σt extends σ, and we extend δ to
D[t;σ] by δ′ = σt · c − c · id. By [11, Proposition 2.1.2], δ′ extends uniquely to the division ring of
(left) fractions of D[t;σ], and we are back to Case 3.
Case 6. The maps σ and δ commute. In D[t;σ] with rule r · t = tσ(r), the conjugation σt

extends σ. Since σ and δ commute, by [40, Theorem 2.3], the map δ extends to a σt-derivation of
D[t;σ] by putting δ(t) = 0 (see also [10, Exercise 2 p.57]), and δ extends uniquely to a σt-derivation
of the division ring of (left) fractions of D[t;σ], so we are back to Case 4. �
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4.2. Constructible subsets and Chevalley’s projection Theorem. Given a θ-division ring D,
we call a subset of Dn constructible if it is a finite boolean combination of closed sets for the twisted
Zariski topology, that is, a boolean combination of θ-affine sets.

Theorem 4.6 (after Chevalley). Let D be linearly surjective and f a θ-morphism.

(1) The image by f of a closed set is closed.
(2) The image by f of a constructible set is constructible,

Proof. The classical version of Chevalley’s Theorem is an immediate consequence of Tarski’s quan-
tifier elimination in algebraically closed fields, and we proceed similarly by quantifier elimination.

Claim 2. Given a right Euclidean ring R (in the sense of Lemma 2.1.1) and matrices A,B in
Mm,n(R), there is C inMm,n(R) such that for all divisible R-module M and ȳ in Mn, one has

Cȳ = 0 ⇐⇒ ∃x̄ ∈Mn (Ax̄ = Bȳ) .

Proof of Claim 2. Arguing as in [16, Proposition 6.1], one can find invertible square matrices P
and Q (where Q has coefficients in {0, 1}), and an upper triangular matrix

T =
(
T1
0

)
with T1 upper triangular having nonzero diagonal coefficients, such that A = P ·T ·Q. The formula
∃x̄ ∈ Mn (Ax̄ = Bȳ) is equivalent to ∃x̄ ∈ Mn(T x̄ = Cȳ) where C = P−1Q. Writing C = (C1, C2)
by blocks compatible with T = (T1, 0), the formula ∃x̄ ∈Mn(T x̄ = Cȳ) reads

∃x̄ ∈Mn (T1x̄ = C1ȳ) ∧ C2ȳ = 0.

As M is divisible, the formula ∃x̄ ∈ Mn (T1x̄ = C1ȳ) is satisfied by any tuple ȳ in M , so ∃x̄ ∈
Mn (Ax̄ = Bȳ) is equivalent to C2ȳ = 0. �

Fact 4.7 (Baur-Monk [4]). Given a ring R and an R-module M , any formula φ(ȳ) (possibly with
parameters, with |ȳ| = n) in the language LR = (+,−, 0, {r· : r ∈ R}) of R-modules is equivalent
in M to a finite boolean combination of formulas {φi(ȳ) : i ∈ I}, each formula φi(ȳ) being of the
form ∃x̄(Aix̄ = Biȳ + āi) with Ai, Bi inMm,n(R) and āi ∈Mn.

A more recent reference for Baur-Monk Theorem is [29, Corollary 2.6.5]. From Claim 2 and
Fact 4.7 follows immediately:

Claim 3. Given a right Euclidean ring R and a divisible R-module M , any subset of Mn defined
by a formula in the language LR is definable by a quantifier-free formula in LR.

A referee points out the broader class of k-stage Euclidean domains introduced in [15] in the case
of commutative domains, but also considered for noncommutative rings, that could possibly lead
to quantifier elimination. We note that a k-stage Euclidean domain is Bézout [15, Proposition 14],
and that there are domains which are PID and not k-stage Euclidean, or k-stage Euclidean and
not PID (see e.g. [38, Example 1.1.5] and [38, Example 1.1.10]). It is shown in [39, Theorem 3.1],
via a diagonalisation argument, that a divisible torsion-free module over a (commutative) Bézout
domain eliminates quantifiers.

We go back to the proof of Theorem 4.6. For point (1), it suffices to show that the image of
a basic closed F closed. Since translations are bicontinuous, we may also assume that 0 ∈ F and
f(0) = 0. Then F is given by a linear system A′x̄ = 0, and f(x̄) = ȳ by the system A′′x̄ = ȳ for some
matrices A′, A′′ with coefficients in the ring D[θ ]. Putting A = (A′, A′′) and B = (0, id), one has
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ȳ ∈ f(F ) if and only if ∃x̄ ∈ Dn(Ax̄ = Bȳ), and one concludes by Lemma 2.1.1 and Claim 2 applied
to M = D. For point (2), we note that a constructible set is defined by a quantifier-free formula
in the language LD[θ ] and conversely, a quantifier-free formula defines a constructible set. Since a
θ-morphism is definable (with parameters) in the language LD[θ ], the image f(C) of a constructible
set C is definable, hence constructible by Claim 3. From (2), one can also derive (1) by a topological
argument: f(F ) is constructible, and since the topology is Noetherian, f(F ) contains a dense open
set U of its Zariski closure f(F ) by [36, Proposition 1.4.6]. f(F ) is a group, so for any a ∈ f(F ),
the set a − U is open in f(F ), so (a − U) ∩ U is nonempty, from which follows a ∈ U + U and
f(F ) = U + U . Since U ⊂ f(F ), one has f(F ) = f(F ). �

4.3. Weak Nullstellensatz.

Theorem 4.8 (weak Nullstellensatz). Over a linearly surjective θ-division ring, if I is a module
avoiding 1, then V(I) is nonempty.

Proof. Again, the classical weak Nullstellensatz has a short proof derived from quantifier elimination,
and we follow this line.

Claim 4. Let R be a right Euclidean ring, M a divisible R-module, and Σ a linear system {Ax̄ = b̄}
with b̄ ∈ Mm and A ∈ Mm,n(R). If Σ has a solution in an R-module extending M , then Σ has a
solution in M .

Proof of Claim 4. If Σ has a solution in an extension ofM , by [25, Theorem 3.20] and [25, Corollary
3.17’], Σ has a solution in a divisible module N extending M . By Claim 2, there is a matrix C such
that Cb̄ = 0 holds in N , hence also in M . By Claim 2 again, Σ has a solution in M . �

We are now ready to prove Theorem 4.8. I has finitely many generators γ1, . . . , γr. We consider
the system Σ = {γ1(x̄) = 0, . . . , γr(x̄) = 0} and the D[θ ]-module D. Since I does not contain 1,
there is an embedding D → D[θ, n]/I of D[θ ]-modules. But Σ has a solution in D[θ, n]/I, namely
(x1 + I, . . . , xn + I). Since D divisible, Σ also has a solution in D by Claim 4. �

Corollary 4.9. Over a linearly surjective θ-division ring D, for any maximal module I avoiding 1,
there is ā ∈ Dn such that

I = (x1 − a1, . . . , xn − an).

Proof. We write Jā = (x1−a1, . . . , xn−an) and first claim that Jā is a maximal module avoiding 1.
Assume Jā is contained in a proper module J . One can write any γ ∈ J \ Jā under the form

γ = γ1(x1 − a1) + · · ·+ γn(xn − an) + b,

for some 1-twists γ1, . . . , γn and b ∈ D. Since γ /∈ Jā, one has b 6= 0, and γ ∈ J yields 1 ∈ J . This
shows the claim. By maximality of Jā, from the inclusion Jā ⊂ I(ā) follows the equality Jā = I(ā).
Now, if I is a maximal module avoiding 1, it contains a point ā by Theorem 4.8. One thus has
I ⊂ I(ā), and equality holds by maximality of I. �

4.4. Closed modules and strong Nullstellensatz. Following Definition 1.2, when D is strict,
we define the closure cl(I) of a module I as the set of algebraic elements over I:

cl(I) = {γ ∈ D[θ, n] : ∃ρ ∈ D[θ ] \ {0}, ργ ∈ I} .

As D is strict, one has cl(0) = D and hence I +D ⊂ cl(I).
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We say that I is a closed module if cl(I) = I+D. It follows from Corollary 1.9 and Lemma 2.1.1
that cl(I) is a closed D[θ ]-module. We say that a θ-affine set U is radical if its module Γ(U) is
closed, equivalently, if the D[θ ]-torsion of Γ(U) is D.

Lemma 4.10. If U , V are θ-isomorphic θ-affine sets, then U is radical if and only if V is radical.

Proof. If f : U → V is a θ-isomorphism, its comorphism Γ(f) : Γ(V )→ Γ(U) is bijective hence maps
the torsion of Γ(V ) onto the torsion of Γ(U), and Γ(f) fixes 1. �

Theorem 4.11 (Nullstellensatz). Over a linearly surjective θ-division ring, for any module J avoid-
ing 1, one has

I(V(J)) ⊂ cl(J).

Proof. Let γ1, . . . , γr be a generating family for J , let γ ∈ IV(J), and let us consider theD[θ ]-module
I = (γ1, . . . , γr, γ + 1). If x̄ ∈ V(I), then x̄ ∈ V(J), so γ(x̄) = 0. But one also has γ(x̄) + 1 = 0, a
contradiction, so V(I) is empty. By Theorem 4.8, the module I contains 1 so there exist ρ1, . . . , ρr, ρ

in D[θ ] such that
1 = ρ(γ + 1) + ρ1γ1 + · · ·+ ρrγr.

The twist ρ is nonzero since J avoids 1. Applying this equality to a point of V(J) (which is nonempty
by Theorem 4.8), we get ρ(1) = 1 hence ργ ∈ J , whence γ ∈ cl(J). �

Corollary 4.12. Over a linearly surjective θ-division ring, for any closed J avoiding 1, one has

I(V(J)) = J.

Proof. By Theorem 4.11, one has J ⊂ IV(J) ⊂ J +D. By Theorem 4.8, the set V(J) is nonempty,
so IV(J) does not contain 1, hence IV(J) ⊂ J . �

Corollary 4.13. Over a linearly surjective θ-division ring D, the functor Γ induces an equivalence
of categories

Γ: {radical θ-affine sets} → {torsion-free finitely generated D[θ ]-modules}.

Proof. Given a nonempty radical U , let us show that Γ(U) is isomorphic to M ⊕ D where M is
a torsion-free finitely generated D[θ ]-module. Considering U up to a translation, which preserves
the notion of radicality by Lemma 4.10, we may assume that U contains 0. It follows that I(U) ⊂
(x1, . . . , xn) and one has Γ(U) = (x1, . . . , xn)/I(U) ⊕ D, and M = (x1, . . . , xn)/I(U) is torsion-
free. Conversely, given a torsion-free finitely generated D[θ ]-module M , let us show that M ⊕D is
isomorphic to some Γ(U) for a θ-affine set. Since M is finitely generated, it is isomorphic to some
(x1, . . . , xn)/N where N is a submodule of the free D[θ ]-module (x1, . . . , xn). Since M is torsion-
free, one has cl(N) = N . If we set U = V(N) ⊂ Dn, one has that U is radical, and hence N = IV(N)
by Corollary 4.12, so M ⊕D is isomorphic to (x1, . . . , xn)/I(U) ⊕D = D[θ, n]/I(U) = Γ(U). One
concludes with Lemma 3.6. �

4.5. Examples. Examples of linearly surjective difference fields include (kp, σp) where kp is a field
of characteristic p with no finite algebraic extension divisible by p (such as

⋃
Fppn or Falg

p ) and σp the
Frobenius map. By Łos Theorem, given nonprincipal ultrafilters U on N and V on the set of prime
numbers, the field

∏
n→U

(
kp, σ

n
p

)
of characteristic p, and the field

∏
p→V (kp, σp) of characteristic 0

are also linearly surjective. By [5, Corollary 2.10], the field W(kp) of Witt vectors over kp with the
Witt Frobenius is linearly surjective, and so is the field kp((t)) of formal Laurent series over kp with
the ring morphism σt :

∑
rit

i 7→
∑

rpi t
i. It is also noticed in [3, Lemma 4.6] that a contractive
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and σ-henselian valued difference field is linearly surjective. From these examples, one can build
noncommutative examples using:

Lemma 4.14. If (D,σ) is a linearly surjective difference division ring, and τ : D → D a nonzero
ring morphism that commutes with σ, then

(1) the division ring of fractions of D[t; τ ] with σt :
∑

rit
i 7→

∑
σ(ri)ti is linearly surjective,

(2) the division ring of Laurent series D((t, τ)) with σt :
∑

rit
i 7→

∑
σ(ri)ti is lin. surjective.

We leave the proof of Lemma 4.14 as an exercise. Possible references for twisted Laurent series
are [11, Section 2.3 p. 66] and [21, Section 1.10 p 37]. We note that the division ring of fractions
of D[t;σ] is a proper subring of D((t, σ)) since series

∑
tf(i) where f : N → N has a positive

acceleration, are not rational (see also the rationality criterion in [11, Proposition 2.3.3]). When D
is countable, the fraction field of D[t;σ] is countable, whereas D((t, σ)) is uncountable.

5. Zariski dimension

We consider a strict θ-division ring D, and assume in addition that σ is surjective. Since D[θ ]
is a left Ore domain, from Section 1, any D[θ ]-module M has a well-defined dimension which we
write dimD[θ ]M .

Definition 5.1. We define the Zariski dimension of a θ-affine set V by

dimV = dimD[θ ] Γ(V ).

Examples 5.2. From Lemma 1.7, if V ⊂ Dn, one has dimV = n− dimD[θ ] I(V ).

• The whole space Dn has dimension n since I(Dn) is zero.
• The empty set has dimension zero since I(∅) equals D[θ, n].
• A single point ā = (a1, . . . , an) has dimension zero since I(ā) = (x1 − a1, . . . , xn − an).
• The division ring Cσ,δ(θ) has dimension zero since I(Cσ,δ(θ)) = (θ − θ(1) · id).

Lemma 5.3. Two θ-isomorphic θ-affine sets have the same Zariski dimension

Proof. If f : U → V is a θ-isomorphism, by Corollary 3.7, its comorphism Γ(f) : Γ(V )→ Γ(U) is an
isomorphism, hence dimU equals dimV by Lemma 1.10. �

5.1. Main result.

Theorem 5.4. Let V ⊂ Dn be a nonempty θ-affine set. Then V is θ-isomorphic to

Dd × Fd+1 × · · · × Fn,

where Fd+1, . . . , Fn are right Cσ,δ(θ)-vector subspaces of D of finite dimension, and d = dimV .

Proof. Let I(V ) = (γ1, . . . , γm). Translating V , we may assume that V contains zero. We write
γi = γi1(x1) + · · ·+ γin(xn) with γij ∈ D[θ ], and consider the m× n matrix

A =


γ11 . . . γ1n
...

...
γm1 . . . γmn


Since σ is surjective, by Lemma 2.1, D[θ ] is a left and right Euclidean ring. By [42, Theorem 10.1]
(see also [13, Theorem 1.4.7]), one has A = P · B · Q for some invertible matrices P and Q with
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coefficients in D[θ ] and a diagonal B = diag(0, . . . , 0, βd+1, . . . , βn) where βd+1, . . . , βn ∈ D[θ ] are
nonzero. Writing x̄ = (x1, . . . , xn), one has

x̄ ∈ V(γ1, . . . , γm) ⇐⇒ Ax̄ = 0 ⇐⇒ BQx̄ = 0.

One also has, via x̄ 7→ Qx̄, the θ-isomorphism

V ' {ȳ ∈ Dn : Bȳ = 0} = Dd ×V(βd+1)× · · · ×V(βn),

where d is the number of zero entries on the diagonal of B, hence independent of any θ-extension
of D. One concludes by Lemma 2.4 that each V(βi) has finite right Cσ,δ(θ)-dimension.

Putting U = Dd×V(βd+1)×· · ·×V(βn), and choosing βd+1, . . . , βn having minimal degrees, one
can show using the right Euclidean division that I(U) = (βd+1(xd+1), . . . , βn(xn)). One thus has
d = dimU , and by Lemma 5.3, also d = dimV . �

In the case of an infinite perfect field k of characteristic p equipped with the Frobenius θ(x) = xp,
one recovers from Theorem 5.4 the classical counterpart that a connected algebraic subgroup of kn
defined by p-polynomials is θ-isomorphic to kd (see e.g. [37, Corollary 3.3.15]).

Corollary 5.5. Given a fixed set S of twists, if V(S) is nonempty, dim V(S) does not depend on
the θ-extension of D in which V(S) is considered.

5.2. Calculation rules. Let D be linearly surjective. As a Corollary of the Nullstellensatz, the
dimension of V(S) does not depend on the set S chosen:

Lemma 5.6. Let V(S) ⊂ Dn be a nonempty θ-affine set. One has

dim V(S) = n− dimD[θ ](S).

Proof. By Theorem 4.11, one has S ⊂ IV(S) ⊂ cl(S). By Lemma 1.9, the modules IV(S) and (S)
have the same D[θ ]-dimension. �

In particular, it is now easy to give the dimension of a cut by a θ-hypersurface:

Theorem 5.7. Let V(S) ⊂ Dn be a θ-affine set and γ ∈ D[θ, n].

(1) If γ ∈ cl(S) and V(S, γ) 6= ∅, one has dim V(S, γ) = dim V(S).
(2) If γ /∈ cl(S) and V(S, γ) 6= ∅, one has dim V(S, γ) = dim V(S)− 1.
(3) If γ is not constant, then dim V(γ) = n− 1.

Proof. For point (1), if γ ∈ cl(S), then (S, γ) and (S) have the same D[θ ]-dimension by Lemma 1.9,
and one concludes with Lemma 5.6. For point (2), if γ /∈ cl(S), then dimD[θ ](S, γ) = dimD[θ ](S)+1.
For point (3), as [D : Cσ,δ(θ)]right is infinite, one has I(Dn) = (0) by Lemma 2.4, and cl(0) = D.
One concludes applying point (2) to V = Dn. �

Corollary 5.8. Let U ( V be nonempty θ-affine sets. If V is radical, then dimU < dimV .

Proof. Since U ⊂ V is proper, the inclusion I(V ) ⊂ I(U) is proper. For any γ ∈ I(U) \ I(V ), since
I(V ) is closed and U nonempty, one has γ /∈ cl(I(V )) hence dimU < dimV by Theorem 5.7.2. �

Theorem 5.9. The Zariski dimension of a nonempty θ-affine set V(S) ⊂ Dn is equal to

(1) the maximal length d of a chain S ⊂ I0 ( · · · ( Id of closed modules avoiding 1,
(2) the maximal length d of a chain V0 ( · · · ( Vd ⊂ V(S) of nonempty radical θ-affine sets,
(3) the minimal number of n-twists γ1, . . . , γd needed for V(S, γ1, . . . , γd) to be nonempty and

have dimension 0.
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Proof. Towards point (1), we first build a chain of submodules of D[θ, n] of length m = dim V(S).
Let (γ1, . . . , γn−m) be a basis for (S). Since V(S) is nonempty, (S) does not contain 1, and one can
build a chain of modules avoiding 1 of the form (γ1, . . . , γi) choosing inductively γi /∈ cl(γ1, . . . , γi−1)
for i > n−m.

Claim 5. Let I a module with cl(I) = I, and J a maximal submodule avoiding 1. Then J is closed.

Proof of Claim 5. Let α ∈ cl(J). Since D is divisible, there is a nonzero γ ∈ D[θ ] of minimal degree
such that there is d ∈ D with γ(α + d) ∈ J . We claim that γ has degree 0, so α ∈ J + D, as
desired. Assume for a contradiction that deg(γ) > 1, then α+ d ∈ I \ J , so (α+ d, J) contains 1 by
maximality of J , and there is ε ∈ D[θ ] such that ε(α+d) ∈ J + 1. Dividing ε by γ by Lemma 2.1.1,
one has ε = qγ+ r with deg(r) < deg(γ), hence r(α+ d) ∈ J + 1. Since 1 /∈ J , one has r 6= 0. Since
r(d′) = 1 for some d′ ∈ D, one has r(α+ d− d′) ∈ J , which contradicts the minimality of γ. �

For each i ∈ {0, . . . ,m}, setting I−1 = (γ1, . . . , γn−m), there is a maximal submodule Ii of
cl(γ1, . . . , γn−m+i) that avoids 1 and contains Ii−1. By Claim 5, the chain I0 ( · · · ( Im has
the desired properties. Conversely, given a maximal chain as in (1), we show inductively that
dimD[θ ] Id−i = n−i. For i = 0, the module Id is maximal so has dimension n. If dimD[θ ] Id−i = n−i,
one has dimD[θ ] Id−i−1 6 n − i − 1 since Id−i is closed, and equality holds by maximality of the
chain. This shows that dim V(I0) is d, but cl(S) = I0 + D by maximality of the chain, hence
d = dimV . For point (2), by Corollary 4.12, there is a one-to-one order reversing correspondence
between closed modules avoiding 1 and nonempty radical θ-affine sets, so that (2) is equivalent to
(1). For point (3), if V(S) has dimension d, by Theorem 5.7, one needs at least d twists γ1, . . . , γd
to have dim V(S, γ1, . . . , γd) = 0. One can find such twists by completing a basis of (S). �

Lemma 5.10 (product). Let U , V be θ-affine sets. Then dim (U × V ) = dimU + dimV.

Proof. One has I(U × V ) = I(U)⊕ I(V ), and the conclusion follows from Lemma 1.6. �

5.3. θ-Morphisms and dimension. D still denotes a linearly surjective θ-division ring.

Theorem 5.11. Let U be an irreducible θ-affine set and f : U → Dm a θ-morphism. Then im f is
a θ-affine set and one has

dim im f + dim ker f = dimU.

Proof. Being the continuous image of an irreducible set, im f is irreducible hence θ-affine by Theo-
rem 4.6.1. Considering the comorphism Γ(f) : Γ(Dm)→ Γ(U), one has

ker Γ(f) = I(im f) and im Γ(f) = (f1, . . . , fm, I(U)) /I(U).

Putting J = (f1, . . . , fm, I(U)), by Corollary 5.6, the Zariski dimension of V(J) is n − dimD[θ ] J .
Since V(J) equals ker f , one has

dimD[θ ] ker Γ(f) = m− dim im f and dimD[θ ] im Γ(f) = dimU − dim ker f,

and the conclusion follows from the Rank-Nullity Lemma 1.10 applied to Γ(f). �

Theorem 5.12 (after Ax-Grothendieck). Let f : Dn → Dn be a θ-morphism whose fibers have
Zariski dimension zero. Then f is surjective.

Proof. As Dn is irreducible, the image of f is a θ-affine set of Zariski dimension n by Theorem 5.11.
As Dn is radical, f is surjective by Corollary 5.8. �
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6. Radical sets

Throughout this Section, D is a strict θ-division ring.

Lemma 6.1. Let U ⊂ V be nonempty θ-affine sets. Then dimU = dimV if and only if V/U has
finite right Cσ,δ(θ)-dimension.

Proof. Assume that U and V have the same Zariski dimension. By Noetherianity, it suffices to show
that for any γ ∈ I(U), the vector-space V/V ∩V(γ) has finite right Cσ,δ(θ)-dimension. As I(U) and
I(V ) have the same D[θ ]-dimension, γ is algebraic over I(V ). Let ρ ∈ D[θ ] be nonzero of degree n
such that ργ ∈ I(V ). Let ḡ0, . . . , ḡn in V , and let us show that their images in V/V ∩ V(γ) are
right Cσ,δ(θ)-dependent. As γ(ḡ1), . . . , γ(ḡn) are all roots of ρ, by Lemma 2.4, there is a nontrivial
Cσ,δ(θ)-linear combination

γ(ḡ0)λ0 + · · ·+ γ(ḡn)λn = 0,

so ḡ0λ0 + · · · + ḡnλn belongs to V ∩ V(γ). This shows that V/V ∩ V(γ) has Cσ,δ(θ)-dimension at
most n, as desired. Conversely, assume that V/U has finite Cσ,δ(θ)-dimension, and let γ ∈ I(U).
Then V/V ∩ V(γ) has a finite basis (ḡ1, . . . , ḡn) + V ∩ V(γ). By Lemma 2.4, there is ρ ∈ D[θ ] of
degree at most n which vanishes on every γ(ḡi), so in particular ρ is nonzero and ργ ∈ I(V ). This
shows that I(U) is algebraic over I(V ), so U and V have the same dimension. �

6.1. Radical components. Given a θ-affine set V and a point a ∈ V , we define the radical
component of a in V to be the intersection of all θ-affine subsets of V that contain a and have the
same Zariski dimension as V . We write it V 0(a).

Lemma 6.2. For any θ-affine set V and a ∈ V , the sets V and V 0(a) have the same Zariski
dimension d, and V 0(a) is a radical set. If σ is surjective, V 0(a) is θ-isomorphic to Dd.

Proof. The first assertion follows from Lemma 6.1 and the fact that the topology is Noetherian.
To show that V 0(a) is radical, let γ be algebraic over I(V 0(a)). Then also γ′ = γ − γ(a) is
algebraic over I(V 0(a)). By the argument used in the proof of Lemma 6.1, the Cσ,δ(θ)-dimension of
V 0(a)/V 0(a) ∩V(γ′) is finite. By Lemma 6.1, V 0(a) ∩V(γ′) has the same Zariski dimension as V ,
so V 0(a) ⊂ V(γ′). This shows that γ′ belongs to I(V 0(a)), and that I(V 0(a)) is closed. The last
assertion follows from Theorem 5.4 and Lemma 4.10. �

6.2. An example of a radical group. Given a strict difference division ring (D,σ) and a tuple
b̄ = (b1, . . . , bn), we consider the σ-affine set

Gb̄ = {(x1, . . . , xn) ∈ Dn : b1(σx1 − x1) = bi(σxi − xi) for all 1 6 i 6 n} ,

and we look for conditions for Gb̄ to be radical. We shall need the following Lemma.

Lemma 6.3. Given any tuple (r1, . . . , rn) ∈ Dn, the left dimension of (r1, . . . , rn) over Fix(σ) does
not vary when computed in a σ-extension of D.

Proof. By lemma 2.4, right Fix(σ)-dependence of a tuple (r1, . . . , rn) is expressible by a quantifier-
free formula stating that the ri are all roots of a certain 1-twist of degree less than n with coefficients
in D, so right Fix(σ)-dependence of (r1, . . . , rn) does not depend on the σ-extension of D. The
corresponding ‘left’ statement is obtained considering D with the opposite multiplication a∗b = b ·a
since σ is still a ring morphism of (D,+, ∗). �
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Lemma 6.4 is inspired by [22, Lemma 2.8] and its improved version [19, Lemme 5.3]. It plays
a crucial role in [22] and [19] in the particular case when (D,σ) is an algebraically closed field
(k, σp) of characteristic p equipped with the Frobenius σp. In that particular case, if

{
b−1
1 , . . . , b−1

n

}
are Fp-linearly independent, [19, Lemme 5.3] states that, Gb̄ is connected as an algebraic group,
whereas Lemma 6.4 only states that Gb̄ has no subgroup of finite index defined by p-polynomials.
But one recovers the conclusion of [19, Lemme 5.3] knowing that Gb̄ is σp-isomorphic to (k,+) by
Theorem 5.4, and (k,+) is connected, so that Gb̄ is connected as well.

Lemma 6.4. Given a natural number n > 1 and a tuple b̄ = (b1, . . . , bn) in D×, the set Gb̄ is
radical if and only if

(
b−1
1 , . . . , b−1

n

)
are left Fix(σ)-linearly independent.

Proof. We first assume that Gb̄ is radical and put γ = σ − id. If there are (r1, . . . , rn) in Fix(σ)
such that r1b

−1
1 + · · ·+ rnb

−1
n = 0, one has for every (x1, . . . , xn) ∈ Gb̄,

γ(r1x1 + · · ·+ rnxn) =
n∑
i=1

riγ(xi) =
n∑
i=1

rib
−1
i biγ(xi) =

(
n∑
i=1

rib
−1
i

)
b1γ(x1) = 0.

It follows that r1x1 + · · · + rnxn is algebraic over I (Gb̄), so belongs to I (Gb̄) by assumption. This
implies that r1x1 + · · ·+ rnxn vanishes on Fix(σ)× · · · × Fix(σ), hence (r1, . . . , rn) is zero.

We show the converse by induction on n. If n = 1, then Gb1 equals D, so Gb1 is radical. Let us
assume that the Lemma is proved for n− 1 and that Gb1,...,bn is not radical over D. Then Gb1,...,bn

is not radical over any difference extension (E, σ′) of (D,σ). We chose (E, σ′) linearly surjective by
Theorem 4.5 and we look at σ′-varieties over E. By induction hypothesis and Lemma 6.3, we may
assume that Gb1,...,bn−1 is radical over E. One has dimGb1,...,bn > 1 by Theorem 5.7, and, since the
kernel of the first projection π1 : Gb1,...,bn → E has dimension 0, one also has dimGb1,...,bn 6 1 by The-
orem 5.11. Writing G0

b1,...,bn
for the radical component of 0 in Gb1,...,bn , one has dim

(
G0
b1,...,bn

)
= 1

by Lemma 6.2, so one of the n main projections of G0
b1,...,bn

, say on the first coordinate, is onto,

π1 : G0
b1,...,bn

−� E. (6.1)

Consider the projection on the first n − 1 coordinates π : Gb1,...,bn → Gb1,...,bn−1 . Since kerπ has
dimension 0, the image π

(
G0
b1,...,bn−1

)
is σ′-affine and has dimension 1 by Theorem 5.11. Since

Gb1,...,bn−1 is radical, by Corollary 5.8, the following restriction is onto

π : G0
b1,...,bn

−� Gb1,...,bn−1 . (6.2)

By assumption, there is a linear γ′ ∈ cl (I (Gb1,...,bn)) \ I (Gb1,...,bn) with coefficients in D. Replacing
inductively σ′(xi) by xi + b−1

i b1γ(x1) for all i ∈ {2, . . . , n} in the equation γ′(x̄) = 0, the system
{γ′(x̄) = 0, b1γ(x1) = · · · = bnγ(xn)} is equivalent to one of the form

{α(x1) + r2x2 + · · ·+ rnxn = 0, b1γ(x1) = · · · = bnγ(xn)},

with r2, . . . , rn in D. Since Gb1,...,bn−1 is radical, we may assume rn = 1. Composing by γ, we get

γα(x1) + γ(r2x2) + · · ·+ γ(rn−1xn−1) + b−1
n b1γ(x1) = 0,

which holds for all (x1, . . . , xn−1) ∈ Gb1,...,bn−1 by (6.2). Taking x2 = 1 and else xj = 0 yields
r2 ∈ Fix(σ′) ∩D = Fix(σ), and symmetrically r2, . . . rn−1 ∈ Fix(σ), hence

γα(x1) + r2b
−1
2 b1γ(x1) + · · ·+ rn−1b

−1
n−1b1γ(x1) + b−1

n b1γ(x1) = 0,

which holds for all x1 ∈ E by (6.1). It follows that α(x1) = r1x1 for some r1 ∈ Fix(σ), which yields

r1b
−1
1 + r2b

−1
2 + · · ·+ rn−1b

−1
n−1 + b−1

n = 0,

so (b−1
1 , . . . , b−1

n ) are left Fix(σ)-dependent, and the induction is proved. �
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Given a strict differential division ring (D, δ), since δ is still a derivation on the opposite division
ring (D,+, ∗), one has with a similar proof:

Lemma 6.5. Given a natural number n > 1 and a tuple b̄ = (b1, . . . , bn) in D×, the set

{(x1, . . . , xn) ∈ Dn : b1δ(x1) = biδ(xi) for all 1 6 i 6 n}

is radical if and only if
(
b−1
1 , . . . , b−1

n

)
are left Const(δ)-linearly independent.
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