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First paper, not a submission to the JSL.
LINEAR ALGEBRA OVER A DIVISION RING

CÉDRIC MILLIET

Abstract. We consider an analogue of the Zariski topology over a division ring D equipped
with a ring morphism σ : D → D. A basic closed subset of Dn is given by the zero set of a
(finite) family of linear combinations of

{
σi1(x1), . . . , σin(xn) : (i1, . . . , in) ∈ Nn

}
having left

coefficients in D. This enables us to define elementary notions of algebraic geometry: alge-
braic sets, σ-morphisms and comorphisms, a notion of Zariski dimension, a notion of radical
component of an algebraic set. We classify the algebraic sets over D up to σ-isomorphisms
when σ is onto D and [D : Fix(σ)] infinite (and as a by-product, the additive algebraic
groups over a perfect field), and show that any division ring with infinite [D : Fix(σ)] has an
extension in which each affine polynomial r+r0x+r1σ(x)+ · · ·+rnσ

n(x) has a root. In such
an extension, Chevalley’s projection Theorem for constructible sets holds, as well as affine
Nullstellensätze. These results are intended to be applied in a further paper to division rings
that do not have Shelah’s independence property.

The paper is motivated by this question coming from model theory: is a division ring
without the independence property a finite dimensional algebra over its centre? With this
aim, our guiding idea is to mimic I. Kaplan and T. Scanlon’s proof of [KSW11, Theorem 4.3],
where it is shown that if F is an infinite field of characteristic p and without the independence
property, then the Artin-Schreier map Froeb − id is onto F. By mimic we mean consider a
division ring D with infinite [D : Fix(σ)] instead of the infinite field F replacing Froeb with
any ring morphism σ : D → D, and show that σ − id is onto D whenever D does not have
the independence property.

Section 1 presents some basic linear algebra in a module M over a left-Ore domain and
shows that the cardinality of a maximal independent subset of M defines a well-behaved
notion of dimension for M. In Section 2, defining a Euclidean ring to be any ring R endowed
with a Euclidean function φ : R → N ∪ {−∞} for which R is both right- and left-Euclidean,
we derive from a diagonalisation argument that in the language of R-modules, the theory of
divisible modules over a Euclidean ring R eliminates quantifiers, just as in the case where
R is commutative, which will allow transfer arguments. Section 3 presents polynomials that
corresponds to our problem, namely one-variable polynomials r0x+ · · ·+rnσ

n(x) in σ having
left coefficients in D. As they are right Fix(σ)-linear, we call such polynomials linear twists.
The ring of linear twists in one variable is written D(σ), and the set of linear twists in
n variables D(σ, n), namely linear combinations of {σi1(x1), . . . , σin(xn) : (i1, . . . , in) ∈ Nn}
having left coefficients in D; D(σ, n) is a left D(σ)-module, and we point out that D(σ) is
Euclidean when σ is onto D. After introducing elementary notions of algebraic geometry
over Dn in Section 4, we define in Section 5 the Zariski dimension of an algebraic subset
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of Dn and classify the algebraic subsets of Dn up to σ-isomorphisms when σ is onto D and
[D : Fix(σ)] infinite. The last Section is devoted to linearly-closed division rings, that is
division rings in which every affine twist r + r0x+ r1σ(x) + · · ·+ rnσ

n(x) has a root. When
[D : Fix(σ)] is infinite, we deduce from a series of results of P. Cohn that D has a linearly-
closed extension D, in which Chevalley’s projection Theorem on constructible sets holds, as
well as affine Nullstellensätze.

We answer our motivating question positively for division rings of characteristic p in a
further paper.

1. Linear Algebra in a Module over a left-Ore domain

Let R be a domain (associative, with identity, possibly non-commutative). Throughout the
Section, we assume that R satisfies the left Ore condition, that is, for any non-zero elements
(a, b) ∈ R2, one has Ra ∩ Rb 6= (0). Let M be a left R-module. All modules considered in
the paper are left modules.

1.1. Basis and algebraicity. A family v̄ ∈ Mn is dependent if there is a non-zero r̄ ∈ Rn

such that r1v1 + · · · + rnvn = 0, or independent otherwise. It is a basis if it is independent
and maximal with this property.

Lemma 1.1 (incomplete basis). Any independent family extends to a (possibly empty) basis.

Proof. An increasing union of independent families is independent. �

For all S ⊂ M, we write (S) for the R-submodule generated by S. If b̄ is a basis of M,
for every v ∈ M \ b̄, the set b̄ ∪ {v} is dependent, and there is a non-zero r ∈ R such that
rv ∈ (b̄). For any S ⊂ M and v ∈ M, we say that v is algebraic over S if there is a non-zero
r ∈ R such that rv ∈ (S).

Lemma 1.2 (transitivity of algebraicity). Let A, B, C be subsets of M. If A is algebraic
over B and B is algebraic over C, then A is algebraic over C.

Proof. Let a ∈ A. By assumption, there are r, r1, . . . , rn in R\{0}, tuples b̄ ∈ Bn and c̄ ∈ Cm

such that for all i ∈ {1, . . . , n},

ra ∈ (b̄) and ribi ∈ (c̄).

In particular, there is an expression of the form sa ∈ (c̄)+
∑

i∈I
sibi, with s ∈ R\{0}, and one

may assume that the set I ⊂ {1, . . . , n} has minimal cardinality. We claim that I is empty.
Otherwise 1 ∈ I say. Let J = I \ {1}. By Ore’s condition, there are non-zero (u, v) ∈ R2

such that us1 = vr1 hence us1b1 ∈ (c̄), and one has (us)a ∈ (c̄)+
∑

i∈J
usibi with us non-zero

as u and s are non-zero, a contradiction with the minimality of I. �

1.2. Dimension.

Theorem 1.3 (after Steinitz). All basis of M have the same cardinality.
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Proof. Treat the particular case where M has a finite basis b̄ = (b1, . . . , bn). Let (c1, . . . , cm, . . . )
be another basis of M. By maximality of b̄, one can write rc1 =

∑
ribi for some non-zero

r ∈ R. As c1 is free, r1 say is non-zero. So b1 is algebraic over (c1, b2, . . . , bn). As M is alge-
braic over b̄, by Lemma 1.2, M is algebraic over (c1, b2, . . . , bn). One concludes in a similar
way that M is algebraic over (c1, c2, b3, . . . , bn), and iterating, one can add every ci. If m > n,
we conclude that cm is algebraic over its predecessors, a contradiction, so m 6 n, and all
basis of M are finite. By symmetry, one has n = m. �

We write dimRM and call R-dimension of M this number.

Lemma 1.4 (sum). Let N be another R-module. One has

dimRM⊕ N = dimRM + dimRN.

Proof. Let b̄ and c̄ be basis of M and N respectively. Then b̄ ∪ c̄ is an independent family of
M ⊕ N. We claim that it is maximal such. If v + u ∈ M ⊕ N, then v is algebraic over b̄, as
well as u over c̄, so there are non-zero (s, t) ∈ R2 such that sv ∈ (b̄) and tu ∈ (c̄). By Ore’s
condition, there is a non-zero r ∈ R such that r(u+ v) ∈ (b̄, c̄). �

Lemma 1.5 (quotient). Let N ⊂ M be a submodule. One has

dimRM/N + dimRN = dimRM.

Proof. Let b̄ + N be a basis for M/N and c̄ a basis for N. Let us show that b̄ ∪ c̄ is a basis
for M. If there is a linear combination δ(x̄) + γ(ȳ) vanishing in (b̄, c̄), one has δ(b̄+ N) ∈ N,
so δ = 0 and γ(c̄) = 0, whence γ = 0. The family b̄∪ c̄ is thus independent. Let us show that
M is algebraic over b̄ ∪ c̄. If v ∈ M, by maximality of b̄+ N, there is a non-zero r ∈ R and a
linear combination δ such that rv − δ(b̄) ∈ N. By maximality of c̄, there is a non-zero s ∈ R
such that srv − sδ(b̄) ∈ (c̄). As sr is non-zero, v is algebraic over b̄ ∪ c̄. �

Lemma 1.6 (algebraic closure). For all S ⊂ M, the subset cl(S) ⊂ M of algebraic elements
over S is a submodule and

dimRcl(S) = dimR(S).

Proof. Let a and b be in cl(S). For all r ∈ R, the element a+rb is algebraic over {a, b}, which
is algebraic over S, so a+ rb is algebraic over S by Lemma 1.2, and cl(S) is a submodule. A
base b̄ for (S) is also a base for cl(S) since cl(S) is algebraic over (S), hence over b̄. �

Lemma 1.7. Let f : M→ N be a morphism of R-modules. Then

dimR Kerf + dimR Imf = dimR M.

Proof. Considering the induced bijection M/Kerf → Imf and in view of Lemma 1.5, we
may assume that f is a bijection. In this case, it is straightforward that (b1, . . . , bn) are
independent in M if and only if (f(b1), . . . , f(bn)) are independent in N. �
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2. Quantifier elimination in modules over a Euclidean ring

Modulo the first-order theory of modules over a commutative Euclidean ring, a prime
positive formula is equivalent to a conjunction of prime positive formulas of quantifier com-
plexity 1 (see [Pre88, Theorem 2.Z.1]). It follows that the theory of divisible modules over a
commutative Euclidean ring eliminates the quantifiers of prime positive formulas. We point
out that this also holds when the ring R is non-commutative. In this case, we call R a
Euclidean ring if there is a Euclidean function φ : R → N∪{−∞} for which R is both right-
and left-Euclidean. In the Section, R stands for a Euclidean ring.

Lemma 2.1. Let A ∈ Mn(R). Then A = PDQ where D is diagonal and P,Q ∈ GLn(R).

Proof. We slightly modify the diagonalisation algorithm of [HH70, Theorem 7.10] given for
commutative Euclidean rings. For any i 6= j, let Fij be the matrix obtained from the identity
matrix by interchanging row i and row j, Hij(r) the one obtained from the identity by adding
r times row j to row i and H̄ij(r) by adding column j times r to column i. Since each of
these matrix have coefficients in a commutative ring and have determinant −1 or 1, they are
invertible. The effect of premultiplying a matrix

(a) by Fij is to interchange row i and row j,
(b) by Hij(r) is to add r times row j to row i,

and the effect of postmultiplying a matrix

(c) by Fij is to interchange column i and column j,
(d) by H̄ij(r) is to add column j times r to column i,

Our aim is to reduce the starting matrix A to an equivalent matrix of the form

(£)


r11 0 · · · 0
0
... C
0


If A = (aij) is non-zero, by a suitable exchange of lines and columns, we may assume
a11 6= 0. We describe a finite sequence of elementary row and column operations which,
when performed on A, either yields a matrix of the form (£) or else leads to a matrix
B = (bij) satisfying

(e) φ(b11) < φ(a11)

In the latter case we go back to the beginning and apply the sequence of operations again.
The sequence of operations is as follows.
Case 1. There is an entry aj1 in the first column such that a11 does not right-divide aj1,
hence we can write aj1 = qa11 + r with φ(r) < φ(a11) and r 6= 0. Add −q times row 1 to row
j and interchange row 1 and j replaces the leading entry a11 by r and so achieves (e).
Case 2. There is an entry a1j in the first row such that a11 does not left-divide a1j, hence we
can write a1j = a11q + r with φ(r) < φ(a11) and r 6= 0. Add column 1 times −q to column j
and interchange column 1 and j replaces the leading entry a11 by r and so achieves (e).
Case 3. a11 right-divides every entry in the first column, and left-divides every entry in the
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first row. Adding suitable left multiples of the first row to the other rows, we can replace all
the entries in the first column, other than a11, by zeros. Adding suitable right multiples of
the first column to the other columns, we can replace all the entries in the first row, other
than a11, by zeros. This brings us to (£). �

We consider the first-order language LR = (+,−, 0, r̂ : r ∈ R) of left R-modules where r̂
is a unary function symbol. We write DM(R) for the LR-theory of divisible R-modules
axiomatised by

(D) the axioms ∀y∃x(r̂x = y) for all non-zero r ∈ R,
(M) the axioms of left R-modules.

A formula is an equation if it is given by equality of two terms. A formula is prime positive
(p.p. for short) if of the form ∃x̄ϕ(x̄, ȳ) for some finite conjunction ϕ of equations.

Theorem 2.2 (quantifier elimination for p.p.-formulas). For all p.p.-formula ∃x̄ϕ(x̄, ȳ), there
is a finite conjunction ∧ϕi(ȳ) of equations such that

DM(R) |= ∀ȳ
(∧

ϕi(ȳ)↔ ∃x̄ϕ(x̄, ȳ)
)
.

Proof. Same proof as in [Pre88, Theorem 2.Z.1]. Write ϕ(x̄, ȳ) in the form Ax̄ = Bȳ, where
A and B are square matrices over R. By Lemma 2.1, ∃x̄(Ax̄ = Bȳ) is equivalent modulo the
theory of R-modules, to ∃x̄(Dx̄ = Cȳ) for some diagonal matrix D and matrix C over R,
hence to a finite conjunction of formulas of the form ∃xi(dixi = ci(ȳ)) where di is the ith
diagonal term of D and ci(ȳ) the ith entry of Cȳ. But in a divisible module, ∃xi(dixi = ci(ȳ))
is always true if di 6= 0 or it is equivalent to ci(ȳ) = 0 if di = 0. �

Corollary 2.3 (p.p.-completeness). For any boolean combination ϕ of p.p.-sentences, one
either has DM(R) |= ϕ or DM(R) |= ¬ϕ.

Proof. Let M,N |= DM(R). By Theorem 2.2, if ϕ holds in M, it is equivalent modulo
DM(R) to the sentence 0 = 0, which holds in N . So ϕ holds in N . �

Corollary 2.4 (p.p.-closeness). Let M |= DM(R) and Σ a finite set of equations. If Σ has
a solution in a left R-module N extendingM, it has a solution inM.

Proof. By [Lam99, Theorem 3.20], there is a divisible left R-module N extending N . Having
a solution for Σ is expressible by a p.p.-sentence ∃x̄ϕ(x̄). But N |= ∃x̄ϕ(x̄) soM |= ∃x̄ϕ(x̄)
by Corollary 2.3. �

3. Twists over division rings

3.1. Linear twists. Let D be a division ring, σ a unary function symbol and σD : D→ D a
ring morphism. We consider the ring of linear twists

D(σ) =
{

n∑
i=0

riσ
i : r̄ ∈ Dn+1, n ∈ N

}
,

equipped with the sum
n∑
i=0

riσ
i +

n∑
j=0

sjσ
j =

n∑
k=0

(rk + sk)σk
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and composition law (
n∑
i=0

riσ
i

) n∑
j=0

sjσ
j

 =
n∑
i=0

 n∑
j=0

riσ
i
D(sj)σi+j

 .
It is a unitary (we also write id for σ0) associative integral domain. The degree of a linear
twist is the greatest power of σ appearing with a non-zero coefficient, or −∞ for the zero
twist.

Lemma 3.1 (Euclidean division). Let (δ, γ) ∈ D(σ)×
(
D(σ) \ {0}

)
.

(1) There is a unique (q, r) ∈ D(σ)×D(σ) such that δ = qγ + r and deg r < deg γ.
(2) If σD is onto, there is a unique (q, r) such that δ = γq + r and deg r < deg γ.

Proof. By induction on deg δ. Let rn+1σ
n+1 and sdσd be the leading terms of δ and γ. For

n+ 1 < d, we put q = 0 and r = δ. Assume n+ 1 > d.
(1) Let q1 = (rn+1σ

n+1−d)(s−1
d id). As deg(δ − q1γ) < n + 1, by induction hypothesis, there

are (q2, r) such that deg r < d and δ − q1γ = q2γ + r. We put q = q1 + q2.
(2) Let q1 = σ−dD (s−1

d rn+1)σn+1−d, such that one has deg(δ − γq1) < n+ 1. �

By Lemma 3.1.(1), D(σ) is a left-principal, left-Noetherian and left-Ore ring.

3.2. Evaluating and factorising in D. Given a linear twist δ = r0id+ · · ·+rnσn, we define
the map δD : D → D by putting δD(r) = r0r + · · · + rnσ

n
D(r). We also write rδ for δD(r).

For all linear twists δ and γ one has (δ + γ)D = δD + γD and (δγ)D = δD ◦ γD, so that the
evaluation operator eval : D(σ)→ DD, δ 7→ δD is a ring morphism.

Lemma 3.2 (factorisation). Let δ be a linear twist of degree n + 1. If a is a non-zero root
of δD, there is a twist γ of degree n such that

δ = γ(σ − aσa−1id).

Proof. There is γ ∈ D(σ) and r ∈ D such that δ = γ(σ − aσa−1id) + rid. As δD and
σD − aσa−1idD vanish in a, and as eval is a ring morphism, r must be zero. �

Lemma 3.3 (structure of the zero set). Let δ be a twist of degree n. The zero set of δD is a
right Fix(σD)-vector space having dimension at most n.

Proof. Let us assume δ = r1σ+r0id and r1 6= 0. If a and b are non-zero roots of δD, one must
have aσa−1 = bσb−1. It follows that a−1b ∈ Fix(σD) so a and b are right Fix(σD)-bound. One
concludes by induction on n thanks to Lemma 3.2 knowing that δD is right Fix(σD)-linear;
indeed, if δ = αβ then dim KerδD cannot exceed dim KerαD + dim KerβD. �

3.3. n-Linear twists. Define the left D(σ)-module D(σ, n) by putting D(σ, 1) = D(σ) and

D(σ, n+ 1) = D(σ, n)⊕D(σ).

D(σ, n) is a finitely generated left module over a left-Noetherian ring, hence a left-Noetherian
D(σ)-module by [Bou58, Proposition 7 p. 26]. Given δ = δ1 + · · · + δn ∈ D(σ, n), we define
its evaluation by δD(r̄) = δ1D(r1)+ · · ·+δnD(rn). The map eval : D(σ, n)→ DDn

, δ 7→ δD is a
morphism of left D(σ)-modules, injective as soon as [D : Fix(σD)] is infinite, by Lemma 3.3.
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3.4. Twisted Zariski topology over Dn.

Definition 3.4. We define the twisted Zariski topology on Dn, whose basic closed sets are
zero-sets of linear twists. This defines a Noetherian topology.

Lemma 3.5. A right Fix(σD)-vector subspace of D of finite dimension is a basic closed
subset.

Proof. A basic closed subset of D has finite left Fix(σD)-dimension by Lemma 3.3. Conversely,
let Cn = r1Fix(σD)⊕ · · · ⊕ rnFix(σD). Define δr1,...,rn ∈ D(σ) inductively by putting δ∅ = id
and

δr1,...,ri+1 = δr1,...,ri
D (ri+1)−σ(δr1,...,ri)σ − δr1,...,ri

D (ri+1)−1δr1,...,ri .

An immediate induction shows that δr1,...,ri has degree i and vanishes in Ci, so Ci is precisely
the zero-set of δr1,...,ri

D by Lemma 3.3 hence δr1,...,ri
D (ri+1) 6= 0 and δr1,...,ri+1 is well-defined. �

Lemma 3.6. A closed subset of Dn meets a right D-line trivially or in a finite union of right
Fix(σD)-vector spaces of finite dimension.

Proof. Let V = {x̄ ∈ Dn : δD(x̄) = 0} be a basic closed set with δ ∈ D(σ, n), and L a right
D-line given by {x1 = s1xj, . . . , xn = snxj} for some j ∈ {1, . . . , n} and s̄ ∈ Dn. Replacing
xi by sixj in the equation δD(x̄) = 0, we get an equation of the form γD(xj) = 0 for some
γ ∈ D(σ), which either is the trivial equation (hence L ⊂ V ) or shows that L ∩ V has finite
right Fix(σD)-dimension by Lemma 3.3. �

4. Elementary algebraic geometry over Dn

4.1. Algebraic set, module of a set.

Definition 4.1. An algebraic set is the zero set in Dn of a family S of n-linear twists, written

V(S) =
{
x̄ ∈ Dn : δD(x̄) = 0 for all δ ∈ S

}
.

Definition 4.2. Given V ⊂ Dn, we call module of V and write I(V ) the set of n-linear twists
that vanish on V ,

I(V ) =
{
δ ∈ D(σ, n) : δD(x̄) = 0 for all x ∈ V }.

Lemma 4.3. If Fix(σD) is infinite, the irreducible closed subsets of Dn are precisely the
algebraic sets.

Proof. Let V(S) be an algebraic set. If V(S) = V(S1) ∪ · · · ∪ V(Sm), as V(Si) are Fix(σD)-
vector spaces, V(S) is a subset of some V(Si) so V(S) is irreducible. �

Definition 4.4. We define the closure of a module I of D(σ, n) by

cl(I) =
{
δ ∈ D(σ, n) : ∃γ ∈ D(σ) \ {0} γδ ∈ I

}
.

One has I ⊂ cl(I). We say that I is closed if cl(I) = I and that V(I) is radical if I is closed.

Lemma 4.5. For every D(σ)-module I, its closure cl(I) is a closed D(σ)-module.

Proof. Follows from Corollary 1.6. �
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4.2. σ-morphisms and comorphisms. Let V ⊂ Dm an algebraic set. We define the D(σ)-
module

Γ(V ) = D(σ,m)/I(V ).

Definition 4.6. Given algebraic sets U ⊂ Dn and V ⊂ Dm, a map f : U → V whose
coordinate maps are n-linear twists is a σ-morphism.

A bijective σ-morphism f : U → V such that f−1 : V → U is a σ-morphism is called a
σ-isomorphism, in which case we write U 'σ V .

Definition 4.7. The comorphism of f is the morphism of D(σ)-modules f ∗ : Γ(V )→ Γ(U)

f ∗ : δ + I(V ) 7→ δ ◦ f + I(U)

A σ-morphism f : U → V is dominant if f(U) is dense in V for the Zariski topology.

Lemma 4.8. If U is irreducible, f is dominant if and only if its comorphism is injective.

Proof. If f : U → V is a σ-morphism with U ⊂ Dn and V ⊂ Dm algebraic, one has

I
(
f(U)

)
=
{
γ ∈ D(σ,m) : γD(f(U)) = 0

}
=
{
γ ∈ D(σ,m) : γ ◦ f ∈ I(U)

}
,

hence Kerf ∗ = I
(
f(U)

)
/I(V ). It follows that f ∗ is injective if and only if I

(
f(U)

)
⊂ I(V ), if

and only if VI (f(U)) = V . But f(U) = VI (f(U)) since f(U) is irreducible. �

5. Zariski dimension

We assume [D : Fix(σD)] infinite throughout the section.

Definition 5.1. We define the Zariski dimension of an algebraic set V(S) ⊂ Dn by

dim V(S) = n− dimD(σ)(S).

Note that the dimension of V(S) à priori depends on the set S of twists chosen to define it.
We shall see that is does not when D is perfect, that is σD is onto D. The following generalises
[Hum75, Theorem 20.5] and provides in particular a classification of additive algebraic groups
over a perfect field.

Theorem 5.2. Assume that D is perfect. Let V(S) ⊂ Dn be an algebraic set. One has

V 'σ DdimV × F1 × · · · × Fn−dimV ,

where F1, . . . , Fn−dimV are Fix(σD)-vector subspaces of D of finite dimension. In particular,
dim V does not depend on S.

Proof. The first assertion follows from Lemma 2.1. For the second assertion, a σ-isomorphism
Dp×F1×· · ·×Fn−p 'σ Dq×F1×· · ·×Fn−q induces, via its comorphism, an isomorphism of
D(σ)-modules D(σ, n)/I ' D(σ, n)/J with dimD(σ) D(σ, n)/I = p and dimD(σ) D(σ, n)/J = q.
By Lemma 1.7, one has p = q. �
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Corollary 5.3 (vectorial Nullstellensatz). Assume that D is perfect. For any module I,

IV(I) ⊂ cl(I).

Proof. Since V(I) = V(IV(I)), one has dimD(σ) I = dimD(σ) IV(I) by Theorem 5.2. It follows
that IV(I) ⊂ cl(I). �

Lemma 5.4 (cut by a hypersurface). Let V(S) ⊂ Dn be an algebraic set and δ ∈ D(σ, n).

(1) If δ ∈ cl(S), one has dim V(S, δ) = dim V.

(2) If δ /∈ cl(S), one has dim V(S, δ) = dim V − 1.
(3) If δ 6= 0, then dim V(δ) = n− 1.

Proof. (1) If δ ∈ cl(S), then dimD(σ)(S, δ) = dimD(σ)(S) by Lemma 1.6. (2) If δ /∈ cl(S),
then dimD(σ)(S, δ) = dimD(σ)(S) + 1. (3) As [D : Fix(σD)] is infinite, one has I(Dn) = (0) by
Lemma 3.3, and cl(0) = (0). One concludes applying point (2) to V = Dn. �

Corollary 5.5. Assume that D is perfect. Let U ( V be algebraic subsets of Dn. If V is
radical, one has dimU < dim V .

Proof. Since U ⊂ V is proper, the inclusion I(V ) ⊂ I(U) is proper. Since I(V ) is closed, one
has dimU < dim VI(V ) by Lemma 5.4.2, whence dimU < dim V . �

Theorem 5.6. The Zariski dimension of an algebraic set V(S) ⊂ Dn is equal to

(1) the maximal length d of a chain S ⊂ I0 ( I1 ( · · · ( Id of closed modules,
(2) the minimal number of twists δ1, . . . , δd needed to have dim V (S, δ1, . . . , δd) = 0.

If D is perfect, it is equal to

(3) the maximal length d of a chain V0 ( V1 ( · · · ( Vd ⊂ V of radical algebraic sets.

Proof. (1) We first build a chain of length m = dimV . Let (δ1, . . . , δn) be a basis for
D(σ, n) where (δ1, . . . , δn−m) is a basis for (S). Put Ii = cl(δ1, . . . , δn−m+i) for i ∈ {0, . . . ,m}.
Conversely, given a maximal chain as in (1), we show inductively on i that dimD(σ) Id−i = n−i.
For i = 0, the module Id is maximal closed so Id = D(σ, n). If dimD(σ) Id−i = n− i, one has
dimD(σ) Id−i−1 6 n− i− 1 since Id−i is closed, and equality holds by maximality of the chain.
This shows dim V (I0) = d, but cl(S) = I0 by maximality of the chain, hence dim V = d.

(2) If V has dimension d, by Theorem 5.4, one needs at least d twists δ1, . . . , δd to have
dim V(S, δ1, . . . , δd) = 0. One can easily find such twists by completing a basis for S. �

Lemma 5.7 (product). Assume that D is perfect. Let U ⊂ Dn and V ⊂ Dm be algebraic
sets. Then U × V ⊂ Dn+m is algebraic and one has dim (U × V ) = dimU + dim V.

Proof. One has = I(U × V ) = I(U) ⊕ I(V ). By Lemma 1.4, one has dimD(σ) I(U × V ) =
dimD(σ) I(U) + dimD(σ) I(V ), which reads

n+m− dim(U × V ) = n− dimU +m− dim V. �
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5.1. Morphisms and dimension.

Theorem 5.8. Assume that D is perfect. Let U ⊂ Dn be an irreducible algebraic set and
f : U → Dm a morphism. Then f(U) is algebraic, given by f(U) = VI(f(U)), and one has

dim f(U) = dimU − dim Kerf.

Proof. Being the continuous image of an irreducible set, f(U) is irreducible, and so is f(U),
so f(U) is algebraic. Consider the comorphism f ∗. One has Kerf ∗ = I(f(U))/I(Dm) and
Imf ∗ = ((f1, . . . , fm) + I(U)) /I(U). One thus has dimD(σ) Kerf ∗ = dim Dm − dim f(U) and
dimD(σ) Imf ∗ = dimU − dim V(f, I(U)), and the result follows from Lemma 1.7. �

5.2. Radical component. Given an algebraic set G = V(S), we write G0 = V(cl(S)) which
we call the radical component of G.

Lemma 5.9. The group G0 is the intersection of every algebraic subsets of G having Zariski
dimension dimG, one has dimG0 = dimG, and G/G0 is a right Fix(σD)-vector space of
finite dimension. If D is perfect, G0 does not depend on S, and one has G0 'σ DdimG.

Proof. The first two assertions follow from Theorem 5.4. For the third assertion, it suffices
to show that for all n-linear twist δ ∈ cl(S), the vector-space V/V ∩V(δ) has finite Fix(σD)-
dimension. Let γ ∈ D(σ) be non-zero of degree ` such that γδ ∈ (S). Let g0, . . . , g` in V . One
has γD(δD(gi)) = 0 for all i ∈ {0, . . . , `}. By Lemma 3.3, there is a non-trivial Fix(σD)-linear
combination δD(g0)λ0 + · · ·+ δD(g`)λ` = 0, so g0λ0 + · · ·+ g`λ` ∈ V ∩V(δ). This shows that
dimFix(σD) V/V ∩ V(δ) is at most `. The last two assertions follow from Corollary 5.3 and
Theorem 5.2. �

6. Linearly-closed division rings

6.1. Definition and examples.

Definition 6.1. A division ring D is linearly-closed if every non-zero δD ∈ D(σD) is onto D.

If D is linearly-closed with non-trivial σD, one must have [D,Fix(σD)] = +∞. Otherwise,
being Fix(σD)-linear with a dimension one Kernel, σD − idD would not be surjective. Ex-
amples include the field

(
Falgp ,Froebnp

)
. By Łos Theorem, given non-principal ultrafilters U

on N and V on the set of prime numbers, the field
(
Falgp

U
,
∏
U Froebnp

)
of characteristic p,

and the field
(∏
VFalgp ,

∏
V Froebp

)
of characteristic 0 are linearly-closed. From these, one can

build non-commutative examples thanks to

Lemma 6.2. If (D, σD) is linearly closed, so is the ring of skew Laurent series D((x, σD)).

Proof. One has D((x, σD)) =
{+∞∑
k=m

xkrk : rk ∈ D, m ∈ Z
}

with multiplication rule rx = xrσ

for r ∈ D. Consider for σ the conjugation map by x, and let us show that the equation

(1) ynσ
n(y) + · · ·+ y1σ(y) + y0y = y−1
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with yi =
+∞∑
k=vi

xkrk,i and rvi,i 6= 0 for each i ∈ {−1, . . . , n} has a solution y =
+∞∑
k=v

xkrk. For

every i ∈ {0, . . . , n}, one has

yiσ
i(y) =

+∞∑
`=vi

x`r`,i

+∞∑
j=v

xjrσ
i

j

 =
+∞∑

k=v+vi

xk

 ∑
j+`=k

rσ
j

`,ir
σi

j

 .
Let w = min{v1, . . . , vn} and let v = v−1 − w. Let δ(i, k) = 1 if k > v + vi and δ(i, k) = 0
otherwise. Replacing into (1), we get

+∞∑
k=v−1

xk
n∑
i=0

δ(i, k)
 ∑
j+`=k

rσ
j

`,ir
σi

j

 =
+∞∑
k=v−1

xkrk,−1.

For the first coefficient of minimal valuation k = v−1, this yields
n∑
i=0

δ(i, v−1)rσv

w,ir
σi

v = rv−1,−1,

which has a solution rv since there is q ∈ {0, . . . , n} such that δ(q, v−1)rw,q 6= 0 and since D
is linearly closed. For the second coefficient k = v−1 + 1, we get

n∑
i=0

δ(i, v−1 + 1)
(
rσ

v+1

w,i rσ
i

v+1 + rσ
v

w+1,ir
σi

v

)
= rv−1+1,−1,

which also has a solution rv+1 since δ(q, v−1 + 1)rw,q 6= 0, and so on inductively. �

Theorem 6.3. A division ring D with infinite [D : Fix(σD)] has a linearly-closed extension.

Proof. Case 1. σD is inner, say conjugation by a ∈ D. By [Coh95, Corollary 3.3.9], a is
transcendental over Z(D). As the referee notes, the theory of division rings with centre Z(D)
extending D is closed by chains of models, hence has an existentially closed model D. By
[Coh73, Theorem 2], for all (b, c) ∈ D2, the equation xa−bx = c has at least one solution in D.
By [Coh95, Theorem 8.5.1], for every r̄ ∈ Dn, the polynomial xn + xn−1r1 + · · ·+ xrn + rn+1

has a root in D. One concludes with Claim 1 that every twist over D is onto D.

Claim 1. For inner σD, a degree n twist factorises in products of degree 1 twists if every
non-constant polynomial rn+1 + xrn + · · ·+ xn−1r1 + xnr0 with r̄ ∈ Dn+1 has a root in D.

Proof of the Claim. Let xa2 + αxa+ βx be a degree 2 twist. Let c be a root of x2 − xα + β

and put b = α− c so as to have b+ c = α and cb = β. One has

(xa+ cx)(xa+ bx) = xa2 + (b+ c)xa+ cbx.

= xa2 + αxa+ βx

Let xa3 + αxa2 + βxa+ γx a degree 3 twist. Let d be a root of x3− x2α+ xβ − γ, let c be a
root of x2 − x(α− d) + β + dα− d2 and put b = α− c− d, so as to have

dcb = dc(α− c− d) = d(c(α− d)− c2) = d(d2 − dα− β) = γ, and

cb+ db+ dc = d(b+ c) + cb = d(α− d) + cb = dα− d2 + d−1γ = β.
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One has

(xa+ dx)(xa+ cx)(xa+ bx) = xa3 + (b+ c+ d)xa2 + (cb+ db+ dc)xa+ dcbx

= xa3 + αxa2 + βxa+ γx.

The case of higher degree twists is similar. �

Case 2. Consider the division ring D((x, σ)) of skew Laurent series
+∞∑
i=m

rix
i with multipli-

cation rule xr = rσx for all r ∈ D. We take σD((x,σ)) to be the conjugation map by x−1, which
extends σD. As every central Laurent series commutes with x, one has C(x) ⊂ Fix(σD)((x)),
so [D((x, σ)) : Fix(σD((x,σ)))] = +∞ and we may apply Case 1 to

(
D((x, σ)), σD((x,σ))

)
. �

6.2. Constructible subsets and Chevalley Theorem. A subset C ⊂ Dn is constructible
if it is a finite boolean combination of closed sets.

Theorem 6.4. Let D be linearly-closed and f : Dn → Dm a σ-morphism.

(1) If C ⊂ Dn is constructible, then f(C) is constructible.
(2) If F ⊂ Dn is closed, then f(F ) is closed.

Proof. For point (1), one has f(C) = {ȳ ∈ Dm : (∃x̄ ∈ C) f(x̄) = ȳ} which is a subset of Dm

definable by a formula ϕ(ȳ) in the language LD(σ) of D(σ)-modules. By Baur-Monk Theo-
rem, ϕ(ȳ) is equivalent to a boolean combinations of p.p.-formulas. Since D |= DM(D(σ)),
by Corollary 2.2, there is a quantifier-free LD(σ)-formula ψ(ȳ), that is, a finite boolean com-
bination of atomic LD(σ)-fomulas, such that f(C) = {ȳ ∈ Dm : ψ(ȳ)} holds. For point (2),
one may assume that F is irreducible, hence given by a conjunction of equations, so f(F ) is
defined by a p.p.-formula, and the conclusion follows from Corollary 2.2. �

Theorem 6.5 (after Ax-Grothendieck). Let D be linearly-closed and f : Dn → Dn a σ-
morphism. If f has a dimension zero kernel, then f is onto.

Proof. The image f(Dn) is closed by Theorem 6.4, hence an algebraic subset of Dn. It has
dimension n by Theorem 5.8. As Dn is radical, one has f(Dn) = Dn by Corollary 5.5. �

6.3. Example of radical groups. We go on using the properties of linearly-closed division
ring to show that a group is radical. Given n > 2 and b̄ ∈ Dn, we consider the algebraic
subgroup of Dn

Gn
b̄ =

{
x̄ ∈ Dn : b1(xσ1 − x1) = · · · = bn(xσn − xn)

}
,

and we look for conditions on b̄ for Gn
b̄
to be radical.

Lemma 6.6. Let D be an extension of D and r̄ ∈ Dn. One has dimFix(σD) r̄ = dimFix(σD) r̄.

Proof. If r̄ is Fix(σD)-bound, there are i ∈ {1, . . . , n} and {j1, . . . , jm} ⊂ {1, . . . , n}\{i} such
that ri belongs to

⊕m

k=1Fix(σD)rjk . By lemma 3.5, the element ri belongs to V (δrj1 ,...,rjm )∩D.
But rj1 , . . . , rjm are Fix(σD)-free, so V (δrj1 ,...,rjm )∩D equals

⊕m

k=1Fix(σD)rjk by Lemma 3.3.
This shows that r̄ is Fix(σD)-bound. �
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The following Lemma is inspired from [KSW11, Lemma 2.8] and its improvement [Hem15,
Lemme 5.3].

Lemma 6.7. Assume that D is perfect. The group Gn
b̄
is radical if and only if

(
b−1

1 , . . . , b−1
n

)
is left Fix(σD)-free.

Proof. Let us assume that Gn
b̄
is radical and let us put γ = σ − id. If there is a tuple r̄ in

Fix(σD) such that
n∑
i=1

rib
−1
i = 0, one has for every x̄ ∈ Gn

b̄
,

γD(r1x1 + · · ·+ rnxn) =
n∑
i=1

riγD(xi)

=
n∑
i=1

rib
−1
i biγD(xi)

=
(

n∑
i=1

rib
−1
i

)
b1γD(x1)

= 0.

It follows that r1x1 + · · · + rnxn belongs to cl(I(Gn
b̄
)) hence to I(Gn

b̄
). This implies that

r1x1 + · · ·+rnxn vanishes on Fix(σD)×· · ·×Fix(σD), hence r̄ = 0, so the family (b−1
1 , . . . , b−1

n )
is left Fix(σD)-free.

For the converse, we proceed by induction on n, beginning with n = 2. If G2
b̄
is not radical,

then G2
b̄
is not radical over D for any LC extension of D by Lemma 6.6. We now look at

varietes over D. There is a 2-variable twist δ1(x1) + δ2(x2) ∈ clD(I(G2)) \ I(G2
b̄
). Since

dim(G2
b̄
)0 = 1, at least one of the two projections, say the second one

(2) π2 : (G2
b̄)

0 � D

must be onto. Replacing inductively xσ1 by x1 + b−1
1 b2γ(x2) in the first equation, the system

{δ1(x1) + δ2(x2) = 0, b1γ(x1) = b2γ(x2)}

is equivalent to one of the form

{r1x1 + δ(x2) = 0, b1γ(x1) = b2γ(x2)},

for some r1 ∈ D with r1x1 + δ(x2) ∈ clD(I(G2)) \ I(G2
b̄
). As dim(G2

b̄
)0 = 1, the twists

r1x1 + δ(x2) and b1γ(x1)− b2γ(x2) must be bound, which implies that r1 and δ are non-zero.
We may assume r1 = 1. Composing by γ, we get the equation

b−1
1 b2γ(x2) + γδ(x2) = 0,

which holds for all x2 ∈ D by (2). This yields δ(x2) = r2x2 for some r2 ∈ D, hence

b−1
1 b2γ(x2) + γ(r2x2) = 0, for all x2 ∈ D,

from which follows r2 = rσ2 = b−1
1 b2, so r2 ∈ D and (b−1

1 , b−1
2 ) are left Fix(σD)-bound.

Now assume that the Lemma is proved for n− 1 and suppose that Gn
b̄
is not radical. Then

it is not radical over D either, and there is some δ1(x1) + · · ·+ δn(xn) ∈ clD(I(Gn
b̄
)) \ I(Gn

n̄).
We may assume that Gn−1

b̄
is radical over D for otherwise the conclusion follows by induction
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hypothesis and Lemma 6.6. As dim(Gn
b̄
)0 = 1, one of the n main projections of (Gn

b̄
)0, say

the one on the first coordinate, is onto D,

(3) π1 : (Gn
b̄ )0 � D.

By Theorem 6.4, the projection on the first n− 1 coordinates πn−1 : Gn
b̄
→ Gn−1

b̄
is onto and

has a Zariski dimension 0 kernel so

(4) πn−1 : (Gn
b̄ )0 � Gn−1

b̄

is onto since Gn−1
b̄

is radical, by Theorem 6.4, Theorem 5.8, and Corollary 5.5. If δn is zero,
then δ1(x1) + · · · + δn−1(xn−1) belongs to I(Gn−1

b̄
) by (4), hence to I(Gn

b̄
), a contradiction.

So δn is non-zero. From the system {δ1(x1) + · · ·+ δn(xn) = 0, bnγ(xn) = · · · = b1γ(x1)}, we
derive one equation of the form

xn = α(x1) + r2x2 + · · ·+ rn−1xn−1.

Composing by γ, we get

b−1
n b1γ(x1) = γα(x1) + γ(r2x2) + · · ·+ γ(xn−1rn−1)

which holds in Gn−1
b̄

by (4). For any j ∈ {2, . . . , n− 1}, taking some non-zero xj ∈ Fix(σD)
and xi = 0 for any i ∈ {2, . . . , n− 1} \ {j} yields rj ∈ Fix(σD), hence

b−1
n b1γ(x1) = γα(x1) + r2b

−1
2 b1γ(x1) + · · ·+ rn−1b

−1
n−1b1γ(x1),

which holds for all x1 ∈ D by (3). It follows that α(x1) = r1x1 for some r1 ∈ D, which yields

rσ1 = r1 = b−1
n b1 +

n−1∑
i=2

rib
−1
i b1,

so (b−1
1 , . . . , b−1

n ) are left Fix(σD)-bound, hence left Fix(σD)-bound by Lemma 6.6, as desired.
�

6.4. Affine Nullstellensätze. (Useless for the next paper) Given a linearly-closed division
ring D, we consider the D(σ)-module Daff(σ, n) of affine twists, and define similarly an affine
algebraic set V(S) for a set S of affine twists, and a module I(V ) for any V ⊂ Dn.

Theorem 6.8 (weak Nullstellensatz). If I is a module with 1 /∈ I, then VD(I) is non-empty.

Proof. Daff(σ, n) is a module of finite type over left-Noetherian D(σ), so I has finitely many
generators δ1, . . . , δm. Let us show that the system

S = {δ1(x̄) = 0, . . . , δm(x̄) = 0}.

has a solution in D. Consider the left D(σ)-module D. Since I does not contain 1, there is
an embedding D→ Daff(σ, n)/I of left D(σ)-modules. But Daff(σ, n)/I has a solution for S.
Since D |= DM(D(σ)) holds, D also has a solution for S by Corollary 2.4. �

Corollary 6.9. For any maximal module I satisfying 1 /∈ I, there is ā ∈ Dn such that

I = (x1 − a1, . . . , xn − an).
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Proof. We first claim that (x1 − a1, . . . , xn − an) is a maximal module avoiding 1. Assume
that I ⊂ J is proper for some module J and let δ ∈ J \ I. One can write δ under the form

δ = δ1(x1 − a1) + · · ·+ δn(xn − an) + b,

for some 1-variable twists δ1, . . . , δn and some b ∈ D. Note that b is non-zero since δ /∈ I, but
δ ∈ J yields b ∈ J . This shows the claim. Now, if I is a maximal module avoiding 1, then
it contains a point ā by Theorem 6.8. Hence I ⊂ I(ā). But (x1 − a1, . . . , xn − an) ⊂ I(ā), so
equality holds by maximality of (x1−a1, . . . , xn−an). This yields I ⊂ (x1−a1, . . . , xn−an),
and equality holds by maximality of I. �

Theorem 6.10 (Nullstellensatz). If J is a module that does not contain 1, one has

IV(J) ⊂ claff(J).

Proof. Let δ1, . . . , δr be a generating family for J . Let δ ∈ IV(J). Consider the module
L = (δ1, . . . , δr, δ + 1). If x̄ ∈ V(L), then x̄ ∈ V(J), so δ(x̄) = 0. But one also has
δ(x̄) + 1 = 0, a contradiction, so V(L) is empty. By Theorem 6.8, the module L contains 1
so there exist h1, . . . , hr and h in D(σ) such that

1 = h(δ + 1) + h1δ1 + · · ·+ hrδr.

h is non-zero since 1 /∈ J . Applying this equality to a point of V(J) (which is non-empty by
Theorem 6.8), we get h(1) = 1 hence hδ ∈ J , whence δ ∈ claff(J). �

This provides that IV(I) = I if I is a closed module (that is claff(I) = I + D) not
containing 1.

End of first paper.
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Second paper.

NIP DIVISION RINGS OF CHARACTERISTIC p

CÉDRIC MILLIET

Abstract. We provide a non-trivial example of NIP division ring of characteristic p
for every prime number p and show that a NIP division ring of characteristic p has
finite dimension over its centre.

It is known that a stable division ring of characteristic p is a finite dimensional algebra over
its centre. Whereas the only known stable division rings are fields, Hamilton’s Quaternions
over the real or 2-adic numbers are non-trivial examples of NIP division rings of characteristic
zero. The paper provides a non-trivial example of NIP division ring of characteristic p
(Theorem 1.1), a new simple proof of the particular stable case (Fact 4.1) and shows that
every NIP division ring of characteristic p has finite dimension over its centre (Theorem 4.2).
The proofs of Theorem 4.2 and Fact 4.1 closely follow ideas of and use Kaplan and Scanlon’s
result that an infinite NIP field does not have any proper Artin-Schreier extension [KSW11],
as well as a Zariski dimension theory for subgroups of (Dn,+) defined over a division ring D
by linear equations involving a ring morphism σ : D→ D.

Definition 0.11 (Shelah). An L-structure M is NIP if for every L-formula ϕ(x, ȳ) there are
n ∈ N, tuples (a1, . . . , an) and (b̄J)J⊂{1,...,n} inM such thatM |= ϕ(ai, b̄J) if and only if i ∈ J .

1. Examples

Theorem 1.1. There are non-trivial NIP division rings of every characteristic.

Proof. Let p be a prime number, Γ =
〈

1
pi : i ∈ N

〉
the ordered subgroup of (R,+) and H =

Falgp ((Γ)) the field of formal Hahn series ∑
γ∈Γ

aγt
γ

having a well ordered support in Γ and coefficients aγ ∈ Falgp . With its natural valuation v
maping a series to the minimum of it support, the valued field (H, v) is maximal, i.e. has no
proper valued field extension having both same residue field and same valuation group (see
[Kru32] or [EP05, Exercise 3.5.6]). Its residue field Falgp is infinite, perfect and does not have
the independence property. Its valuation group Γ is p-divisible, so the pure field H does not
have the independence property by [KSW11, Theorem 5.9]. If p 6= 2, the cyclic extension
H(
√
t)/H is Galois, with Galois group generated by the automorphism σ ∈ Aut(H(

√
t)/H)

switching
√
t and −

√
t. Consider the left H(

√
t)-vector space of dimension 2

D = H(
√
t)⊕H(

√
t) · x

with internal multiplication defined by the rules

x2 = t1/p and x · k = σ(k)x for all k ∈ H(
√
t).
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D is an H-algebra of centre H and dimension 4, interpretable in H, so D does not have the
independence property. Since the norm NH(

√
t)/H of the extension H(

√
t)/H is defined by

NH(
√
t)/H(a+ b

√
t) = a2 + b2t,

it is not difficult to verify that one has

t1/p /∈ NH(
√
t)/H(H(

√
t)),

so D is a division ring by [Lam91, Corollary 14.8]. If p = 2, one can do a similar construction
with the cyclic Galois extension H(3√t)/H. �

Note that the above division ring is not stable since its centre is Henselian (see [Efr06,
Corollary 18.4.2]) and has a non-trivial definable valuation (see [KJ15b, Theorem 5.2] or
[KJ15a, Theorem 3.10]).

2. Preliminaries on NIP division rings of characteristic p

2.1. Fields. Little is known on NIP fields. In addition to the Baldwin-Saxl chain condition,
we use the following result (see [KSW11, Theorem 4.3]). If F is a field of characteristic p, a
proper field extension F(a)/F is Artin-Schreier if a is a root of xp − x+ b for some b ∈ F.

Fact 2.1 (Kaplan and Scanlon). An infinite NIP field has no Artin-Schreier extension.

The proof of Fact 2.1 relies on the classification of irreducible closed subgroups of Gn
a having

dimension 1. As an immediate Corollary, using the result of Duret on weakly algebraically
closed non separably closed fields (see [Dur79, Théorème 6.4] and [KSW11, Corollary 4.5]),

Fact 2.2 (Kaplan and Scanlon). An infinite NIP field of characteristic p contains Falgp .

2.2. Metro equation. Let D be a division ring of characteristic p. We refer to [Her96,
Lemma 3.1.1] and [Lam03, Exercises 13.8 and 16.11] for the following results.

Fact 2.3 (Herstein). Let a ∈ D \Z(D) have finite order. There is some b ∈ D and a natural
number i > 0 such that

ab = ai 6= a.

Fact 2.4 (Lam). Let a ∈ D \ Z(D) with apn ∈ Z(D). There is some b ∈ D such that

ba = b+ 1.

Fact 2.5 (Lam). Let a ∈ D be algebraic over Z(D). The equation ax−xa = 1 has a solution
x ∈ D if and only if a is not separable over Z(D).

We assume from now on that D is infinite and does not have the independence property.

Theorem 2.6. The centre of D is infinite.

Proof. If every element of D have finite order, we show that D is commutative, for if
a ∈ D \ Z(D), by Fact 2.3, there is some b ∈ D (having finite order) such that ab = ai 6= a.
It follows that the division ring generated by a et b is finite, a contradiction to Wedderburn
Theorem. So we may assume that there is some c ∈ D having infinite order. The field
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Z (C(c)) is infinite and contains a copy of Falgp by Fact 2.2. We claim that Z(D) contains
every pnth-root of 1. Assume for a contradiction that there is a ∈ D \ Z(D) with apn = 1.
By Fact 2.4 there is b ∈ D such that

(5) ba = b+ 1.

Rising to the power p we get (bp)a = bp + 1. Substracting (5),

(6) (bp − b)a = bp − b.

If (bp − b) has finite order, say (bp − b)pm = bp − b, one has for every q ∈ N,

(bp − b)pqm = bp − b, hence (bpqm)p − bpqm = bp − b.

In the field generated by b, the polynomial xp−x− (bp− b) has finitely many roots, so b must
have finite order. By (5), a and b generate a finite division ring, a contradiction. So (bp − b)
has infinite order and the field Z (C(bp − b)) is infinite. As b commutes with Z (C(bp − b)),
the extension Z (C(bp − b)) (b) is Artin-Schreier. By Fact 2.1, one has b ∈ Z

(
C(bp − b)

)
, so

a and b commute by (6), contradicting (5). �

Theorem 2.7 (metro equation). For a ∈ D, the equation ax− xa = 1 has no solution in D.

Proof. We first claim that for every b ∈ D, one has C(bp − b) = C(b). As b commutes with
Z (C(bp − b)), the field Z (C(bp − b)) (b) is an Artin-Schreier extension. The division ring
C(bp − b) is infinite by [Lam91, Theorem 13.10], so Z (C(bp − b)) is infinite by Theorem 2.6.
By Fact 2.1, one has b ∈ Z (C(bp − b)) and thus C(bp − b) ⊂ C(b). To show the Theorem,
assume for a contradiction that there be some b ∈ D with ba = b+1. We deduce (bp)a = bp+1.
Substracting the identities, we get (bp−b)a = bp−b, a contradiction with the above claim. �

Corollary 2.8. For every a ∈ D, one has C(ap) = C(a).

Proof. The element a is algebraic over the field ZC(ap). Since ax − xa = 1 has no solution
in C(ap), by Fact 2.5, a is separable over ZC(ap) so a ∈ ZC(ap) and C(ap) ⊂ C(a). �

3. Preliminaries on division rings

The results of this Section can be found in ??. Let D be a division ring, σ a unary function
symbol and σD : D→ D a surjective ring morphism with [D : Fix(σD)] infinite.

3.1. Linear twists. Define the ring of linear twists

D(σ) =
{

n∑
i=0

riσ
i : r̄ ∈ Dn+1, n ∈ N

}
,

equipped with the sum
n∑
i=0

riσ
i +

n∑
j=0

sjσ
j =

n∑
k=0

(rk + sk)σk

and composition law (
n∑
i=0

riσ
i

) n∑
j=0

sjσ
j

 =
n∑
i=0

 n∑
j=0

riσ
i
D(sj)σi+j

 .
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D(σ) is a unitary (we also write id for σ0) associative integral domain. Since the map sending
a twist r0id + · · ·+ rnσ

n to the map δD : D→ D, x 7→ r0x+ · · ·+ rnσ
n
D(x) is an injective ring

morphism, we may identify a twist δ and the evaluation map δD induced by δ.

Fact 3.1. Let δ ∈ D(σ) and a ∈ D× a root. There is γ ∈ D(σ) such that δ = γ(σ− aσa−1id).

Fact 3.2. Any division ring with infinite [D : Fix(σD)] has a linearly-closed extension, i.e.
an extension in which every affine twist r + r0x+ · · ·+ rnσ

n(x) has a root.

3.2. Algebraic sets and morphisms. An n-linear twist is a linear combination of{
σi1(x1), . . . , σin(xn) : (i1, . . . , in) ∈ Nn

}
having left coefficients in D. We write D(σ, n) for the D(σ)-module of n-linear twists. Again,
we often identify an n-linear twist δ(x1, . . . , xn) and the induced evaluation map δD : Dn → D.
An algebraic set is the zero set V (S) in Dn of a family S of n-linear twists. A map f : U → V

between algebraic sets U ⊂ Dn and V ⊂ Dm is a σ-morphism if its coordinate maps are n-
linear twists. It is a σ-isomorphism if bijective and if f and f−1 are σ-morphisms.

3.3. Zariski dimension. Given a subset V ⊂ Dn, we write I(V ) for the set of n-linear twists
that vanish on V . This is a D(σ)-submodule of D(σ, n). We define the quotient module

Γ(V ) = D(σ, n)/I(V ),

and the Zariski dimension of V by

dim V = dimD(σ) Γ(V ).

For any submodule I ⊂ D(σ, n), we define its closure cl(I) by

cl(I) = {δ ∈ D(σ, n) : ∃γ ∈ D(σ) \ {0}, γδ ∈ I} .

We say that V is a radical set if cl(I(V )) = I(V ).

Fact 3.3. For any algebraic V ⊂ Dn and δ ∈ D(σ, n), one has dim (V ∩ V(δ)) > dim V − 1.

Fact 3.4. Every algebraic V ⊂ Dn has a radical component V 0 ⊂ V with dim V = dimV 0.

Fact 3.5. Let V ⊂ Dn be a radical algebraic set. Then V is σ-isomorphic to DdimV .

Fact 3.6. Let U ⊂ Dn and V ⊂ Dm be algebraic sets. Then dim (U × V ) = dimU + dim V.

Fact 3.7. Let U ⊂ Dn be an irreducible algebraic set and f : U → Dm a σ-morphism. One
has dim VI(f(U)) = dimU − dim Kerf.

3.4. A particular radical group. The following result uses Fact 3.2 and Chevalley’s pro-
jection Theorem for constructible sets over a linearly-closed division ring.

Fact 3.8. Given n > 2 and b̄ ∈ Dn, we consider the algebraic subgroup of Dn defined by

Gb̄ = {x̄ ∈ Dn : b1γ(x1) = · · · = bnγ(xn)} ,

where γ = σ − id. Then Gb̄ is radical if and only if (b−1
1 , . . . , b−1

n ) are left Fix(σD)-free.
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4. Main result

We begin by proposing an alternative proof of the stable case, that does not use the fact
that iterates of σ − id are uniformly definable in characteristic p (where σ is a conjugation
map). The part of the argument that mimics Scanlon’s result has the advantage to be valid
in any characteristic.

Fact 4.1. A stable division ring of characteristic p has finite dimension over its centre.

Proof. Let D be a stable division ring of characteristic p. By the stable descending chain
condition on centralisers, it suffices to show that [D : CD(a)] is finite for any a ∈ D (this will
imply that D has finite dimension over a commutative subfield, hence over its centre). Let
us assume for a contradiction that there is a ∈ D such that [D : CD(a)] is infinite. Let σD be
the conjugation map by a and γ = σ − id. We shall show that γD is onto D, a contradiction
with Theorem 2.7. We adapt [Sca99]. By the stable descending chain condition, there are a
natural number m and elements b1, . . . , bm in D× such that

I =
⋂
b∈D×

bγD(D) =
m⋂
i=1

biγD(D).

Let Gb̄ the algebraic subgroup of Dm defined by

Gb̄ = {x̄ ∈ Dm : b1γD(x1) = · · · = bmγD(xm)} .

This is an intersection of m−1 hypersurfaces of Dm, so dimGb̄ > 1 by Fact 3.3. By Facts 3.4
and 3.5, one has dimFix(σD) Gb̄ = +∞, so I contains a non-zero element. Since I is a left ideal
of D, one must have I = D, hence γD(D) = D. �

Theorem 4.2. A NIP division ring of characteristic p has finite dimension over its centre.

Proof. It suffices to show that for such a division ring D and any a ∈ D, the index [D : CD(a)]
is finite (for in that case, the set {[D : CD(a)] : a ∈ D} is bounded by the Compactness The-
orem, hence any descending chain of centralisers must stabilise by the NIP chain condition).
Let us assume for a contradiction that [D : CD(a)] is infinite for some a ∈ D. Let σD be the
conjugation map by a and γ = σ− id. We shall show that γD is onto D, a contradiction with
Theorem 2.7.

We adapt [KSW11]. For every natural number m > 1 and tuple b̄ ∈ DN, let us consider
the algebraic subgroup Gm

b̄
of Dm defined by

Gm
b̄ = {x̄ ∈ Dm : b1γD(x1) = · · · = bmγD(xm)} .

One has dimGm
b̄
> 1 by Fact 3.3. The kernel of the first projection π1 : Gm

b̄
→ D equals

{0} × KerγD × · · · × KerγD hence has Zariski dimension 0 by Fact 3.6. It follows that
dimGm

b̄
= 1 by Fact 3.7. Since [D : CD(a)] is infinite, by Fact 3.8, one may chose an infinite

tuple c̄ ∈ DN such that the group Gm
c̄ is radical for every m. By the NIP chain condition,

there are natural numbers n and i such that⋂
j∈{1,...,n+1}

cjγD(D) =
⋂

j∈{1,...,n+1}\{i}
cjγD(D).
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Put b̄ = (c1, . . . , ci−1, cn+1, ci+1, . . . , cn, ci) ∈ Dn+1, so that the projection πD : Gn+1
b̄
→ Gn

b̄
on

the n first coordinates is onto. Since Gn+1
b̄

and Gn
b̄
are radical, by Fact 3.5, there are two

σ-isomorphisms δD : Gn+1
b̄
→ D and εD : Gn

b̄
→ D. The σ-morphism ρ = επδ−1 makes the

following diagram commute.

Gn+1
b̄

Gn
b̄

D D

δ

π

ρ

ε

Let c ∈ KerρD \ {0}, and put ρ̄(x) = ρ(cx). Then ρ̄D is onto and ρ̄, γ have the same kernel
in any extension of D. By Fact 3.1, ρ̄ factorises in ρ̄ = βγ with γ = σ − id. If x ∈ KerβD,
then x = γD(x) for some x in a linearly-closed extension D of D given by Fact 3.2, hence
x ∈ KerρD = KerγD so x = 0. It follows that βD is bijective, so γD is onto, which is the
desired contradiction. �

Elbée has a few lines proof, using mainly computational properties of the dp-rank, that a
strongly NIP division ring has finite dimension over its centre (in any characteristic).
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