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Series Representation of Power Function

Kolosov Petro

July 1, 2016

Abstract

This paper presents the way to make expansion for the next form function: y =
xn, ∀(x, n) ∈ N to the numerical series. The most widely used methods to solve this
problem are Newton’s Binomial Theorem and Fundamental Theorem of Calculus (that
is, derivative and integral are inverse operators). The paper provides the other kind of
solution, except above described theorems.

1 Introduction

Let basically describe Newton’s Binomial Theorem and Fundamental Theorem of Cal-
culus and some their properties. In elementary algebra, the binomial theorem (or
binomial expansion) describes the algebraic expansion of powers of a binomial. The
theorem describes expanding of the power of (x + y)n into a sum involving terms of
the form axbyc where the exponents b and c are nonnegative integers with b + c = n,
and the coefficient a of each term is a specific positive integer depending on n and b.
The coefficient a in the term of axbyc is known as the binomial coefficient. The main
properties of the binominal theorem are next:

I. the powers of x go down until it reaches x0 = 1 starting value is n (the n in (x+y)n)
II. the powers of y go up from 0 (y0 = 1) until it reaches n (also n in (x+ y)n)
III. the n-th row of the Pascal’s Triangle (see [1]) will be the coefficients of the ex-
panded binomial.
IV. for each line, the number of products (i.e. the sum of the coefficients) is equal to
x+ 1
V. for each line, the number of product groups is equal to 2n

According to the theorem, it is possible to expand any power of x + y into a sum of
the form (see [2]):

(x+ y)n =

n∑

k=0

(
n

k

)

xn−kyk (1)

By using binomial theorem for our case we obtain next form function:

xn =
x−1∑

k=0

(

nkn−1 +

(
n

2

)

kn−2 + ...+

(
n

n− 1

)

k + 1

)

(2)
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We can reach the same result by using Fundamental Theorem of Calculus, we have,
respectively:

xn =

x∫

0

ntn−1dt

by means of addition of integrals

=
x−1∑

k=0

∫ k+1

k

ntn−1dt =
x−1∑

k=0

(k + 1)n − kn (3)

For presented in this paper method the properties of binomial theorem are not cor-
responded and the function, which we use with summation operator has the recur-
sive structure of x, basic view is the next: xn =

∑

k θ(x, k). Below is represented
theoretical algorithm deducing such a function, which, when be substituted to the
summation operator, with some k number of iterations, returns the correct value
of the number xi ∈ R to power n = 3. The main idea that the law of basic ele-
ments distribution of the value xi to third power seen in finding the 3-rd rank dif-
ference (note that n-order difference is written as ∆n(xki )) between nearest two items
∆(x3i ) = x3i+1 − x3i , xi = i∆x, i ∈ N, ∆x = xi+1 − xi, ∆x ∈ R. For example, let be a
set of numbers, which xi has constant difference between numbers, constant difference
is a key of this method (example for ∆x = 1, i.e xi = i):

i x3i ∆(x3i ) ∆2(x3i ) ∆3(x3i )
0 0 1 6 6
1 1 7 12 6
2 8 19 18 6
3 27 37 24 6
4 64 61 30 6
5 125 91 36
6 216 127
7 343

(4)

Figure 1: Numbers according third power

Where differences ∆k(x3i ) of orders k ∈ [1, 3], for xi = i ·∆x distribution are defined
as:

∆(x3i )
def
= x3i+1 − x3i = (i+ 1)3 ·∆x3 − i3 ·∆x3

∆2(x3i ) = ∆(x3i+1)−∆(x3i )

∆3(x3i ) = ∆2(x3i+1)−∆2(x3i )

More generally, the n-th difference of sequence {f(xi)}
∞

i=1 could be written as (see
[10]):

∆n(f(xi)) = ∆n−1(f(xi+1))−∆n−1(f(xi)) =

n∑

k=0

(
n

k

)

(−1)k · f(xi+n−k)
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Basically, the n-order difference of the function f(xi) = xmi has the follow view:

∆n(xmi ) =







m! ·∆xm, if n = m

n∑

k=0

(
n

k

)

(−1)k ·
(
i+ n− k

)m
·∆xm, if n < m

(i+ 1)m ·∆xm − im ·∆xm, if n = 1

(5)

According to Figure 1, in case of f(xi) = x3i , ∆x = 1, the first rank difference has next
regularity (sequence A008458 in OEIS):

∆(x30) = x31 − x30 = 1 + 3! · 0

∆(x31) = x32 − x31 = 1 + 3! · 0 + 3! · 1

∆(x32) = x33 − x32 = 1 + 3! · 0 + 3! · 1 + 3! · 2

...

∆(x3m) = x3m+1 − x3m = 1 + 3! · 0 + 3! · 1 + 3! · 2 + · · ·+ 3! ·m

Theorem 1. For each function f(xi) = xni , xi = i∆x, ∆x = const, ∆x ∈ R, ∀(i, n) ∈

N, xi 6= x, holds the following equality: dn(xn)
dxn =

∆n(xn

i
)

(∆x)n = n!, i.e for any power
function with natural number as exponent holds the equality between finite difference
and derivative with order respectively to exponent and equals to exponent under factorial
sign.

Proof. Since, the (xn)
′

x = nxn−1 (see [3]), we can say: dk

dxk · f(x)

∣
∣
∣
∣
∣
f(x)=xn

= n · (n− 1)×

· · · × (n− k + 1) · xn−k, n ∈ N. Using limit notation, we have:

lim
m→n−




dm(ϑ(x))

dxm

∣
∣
∣
∣
∣
ϑ(x)=xn





︸ ︷︷ ︸

φ(m)

=
dn−0(ϑ(x))

dxn−0
= n!

By means of expression (5), in case of m < n, n ∈ N, we have the limit:

lim
m→n−

(
∆m(xni )

(∆x)m

)

= lim
m→n−

(
m∑

k=0

(
m

k

)

(−1)k ·
(
i+m− k

)m

)

︸ ︷︷ ︸

ω(m)

=

n∑

k=0

(
n

k

)

(−1)k ·
(
i+ n− k

)n−0
= n!
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Obviously, if φ(m) = n!, ω(m) = n! −→ φ(m) = ω(m), so we have right to equal

dn(xn)

dxn
=

∆n(xni )

(∆x)n
= n!

This completes the proof.

As we can see, according to Figure 1, the values of third rank differences of x3i ,
when ∆x = 1 are equal to 3! (see [6], [7]) and constant for each index i. According to
the values from Figure 1, the ”delta” functions are corresponding to next recursively
defined expressions:

∆3(x3i ) = j · (∆x)3, ∆2(x3i ) =

i−1∑

m=0

∆3(x3i ) ·m

∆(x3i ) = (∆x)3 +

i−1∑

k=0

(

∆2(x3k)

)

Where j, according to theorem 1 and ([6], [7]), equals to 3! and hence we have follow
expansion for natural cube numbers (also the sum of sequences A008458 over x from
0 to x− 1):

x3 = (1 + 3! · 0) + (1 + 3! · 0 + 3! · 1) + (1 + 3! · 0 + 3! · 1 + 3! · 2) + · · ·

· · ·+ (1 + 3! · 0 + 3! · 1 + 3! · 2 + · · ·+ 3! · (x− 1)) (6)

x3 = x+ (x− 0) · 3! · 0 + (x− 1) · 3! · 1 + (x− 2) · 3! · 2 + · · ·

· · ·+ (x− (x− 1)) · 3! · (x− 1)

Note that step ∆x from equation (6) is set as ∆x = 1 and not displayed. Using
summation notation over k from 0 to x− 1 with (6), we obtain:

x3 = x+ j
x−1∑

m=0

mx−m2 (7)

Or

x3 =

x−1∑

m=0

(

1 + j

m∑

u=0

u

)

= j

x−1∑

m=1

(

mx−m2 +
x

j(x− 1)

)
∣
∣
∣
∣
∣
x>1

, x ∈ N (8)

Property 1. Let be expression (7) written as ψ(Ω(x)) = x+
∑

m∈Ω(x) χ(m), Ω(x) ⊂

N0. Let be set Ω(x) defined as: Ω(x) = {

Ξ(x)
︷ ︸︸ ︷

{0, {1, 2, 3, 4, . . . , x− 1}, x}}
︸ ︷︷ ︸

Λ(x)

Since the

χ(0) = χ(x) = 0, we can say that ψ(Ω(x)) = ψ(Λ(x)) = ψ(Ξ(x)), (Λ(x),Ξ(x)) ⊂
Ω(x), Λ(x) 6⊂ Ξ(x). It shows that changing iteration sets of expression (7) the function
value is not changed.
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Now we have successful expression, which disperses any natural number x3 to the
numerical series (this example shows only expansion for any number x ∈ N to power
n = 3, but this method works for floats numbers also, it depends of start set of numbers,
function’s form also depends of the chosen set, step ∆x between numbers should be
constant every time). Going from it, in the next section we introduce changing over
the function (7) to power n > 3, n ∈ N.

2 Change over to higher powers expression

In this section are reviewed the ways to change obtained in previous annex expression
(7) to higher powers i.e n > 3. Examples are shown for case ∆x = 1, i = x, x ∈ N.
By means of Fundamental Theorem of Calculus, we know next (3):

xn =

x∫

0

ntn−1dt =

x−1∑

k=0

∫ k+1

k

ntn−1dt =

x−1∑

k=0

(k + 1)n − kn

According to property 1, expression (7) could be written as:

x3 = x+ j
∑

m∈Ω(x)

mx−m2

Next, let derive the relationship between sums of forward and backward differences:

xn =

x−1∑

k=0

(k + 1)n − kn =

x∑

k=1

kn − (k − 1)n (9)

As we can see, iteration sets of (9) are Ξ(x) = {0, 1, . . . , x − 1} and Λ(x) =
{1, 2, . . . , x}, respectively. Consequently, going from forward difference and by means
of property 1, we have right to make the transition to the expansion of the form:

x3 =
x−1∑

k=0

(k + 1)3 − k3 =
∑

k∈Ξ(x)



(k + 1)3 − k − j
∑

m∈Ω(k)

mk −m2



 (10)

=
∑

k∈Ξ(x)



(k + 1)− k3 + j
∑

m∈Ω(k)

(
m(k + 1)−m2

)





Otherwise, let derive the series representation of x3 going from backward difference
from (9), that is:

x3 =
∑

k∈Λ(x)

k3 − (k − 1)3 =
∑

k∈Λ(x)



k − (k − 1)3 + j
∑

m∈Ω(k)

(

mk −m2
)



 (11)

=
∑

k∈Λ(x)



k3 − (k − 1)− j
∑

m∈Ξ(k)

(
m(k − 1)−m2

)
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By means of (10), in case of φ(x) = xn, ∀(x, n) ∈ N follows:

xn =
∑

k∈Ξ(x)



(k + 1)n−2 − kn + j
∑

m∈Ω(k)

(
m(k + 1)n−2 −m2(k + 1)n−3

)





=
∑

k∈Ξ(x)



(k + 1)n − kn−2 − j
∑

m∈Ω(k)

mkn−2 −m2kn−3





By means of main property of the power function xn = xk · xn−k, from equation (11)
for φ(x) = xn we receive:

xn =
∑

k∈Λ(x)



kn−2 − (k − 1)n + j
∑

m∈Ξ(k)

(
mkn−2 −m2kn−3

)



 (12)

=
∑

k∈Λ(x)



kn − (k − 1)n−2 − j
∑

m∈Ξ(k)

(
m(k − 1)n−2 −m2(k − 1)n−3

)





Since the xn = xk · xn−k, from the expression (8) for φ(x) = xn, we derive:

xn = j
∑

k∈Ξ(x)

(

kxn−2 − k2xn−3 +
xn−2

j(x− 1)

)

, 1 < x ∈ N (13)

In case of φ(x) = xn, x ≥ 0, x ∈ N expression (7) could be written as follows:

xn = xn−2 + j
∑

k∈Ξ(x)

kxn−2 − k2xn−3 (14)

3 Binomial Theorem Representation

By means of Binomial theorem (1) expansion of (x+ 1)n will be next (see [4]):

(x+ 1)n =
n∑

k=0

(
n

k

)

xk (15)

According expressions (1) and (3), we have the next corresponding:

xn =
x−1∑

k=0

(k + 1)n − kn =
x−1∑

k=0

(
n∑

m=0

(
n

m

)

km − kn

)

(16)

Let, going from expression (7), change the binomial expansion for φ(x) = x3:

x3 = x+ j
∑

m∈Ξ(x)

mx−m2

6



Consequently, for (x+ 1)3 we obtain:

(x+ 1)3 = (x+ 1) + j
∑

m∈Ω(x)

m(x+ 1)−m2 (17)

So, for φ(x) = x3, by means of expressions (17) and (15), binomial expansion is next:

x3 =
x−1∑

k=0

(

−
k−1∑

i=0

(
3∑

t=0

((
3

t

)

it − i3
)

+

[

(k + 1) + j
k∑

m=0

m(k + 1)−m2

]))

(18)

Going from (18), by means of power function property xn = xk · xn−k, we can only to
multiply by x every product of the series, by this way, for φ(x) = xn, from expression
(16), we have next changes in binomial expansion:

xn =
x−1∑

k=0

(
n∑

m=0

(
n

m

)

km − kn

)

=

x−1∑

k=0

({

−

k−1∑

i=0

(
n∑

t=0

(
n

t

)

it − in

)}

+

[

(k + 1)n−2 + j

k∑

m=0

m(k + 1)n−2 −m2kn−3

])

=

x−1∑

k=0

({

−

k−1∑

i=0

(
n∑

t=0

(
n

t

)

it − in

)}

+

[

(k + 1)n−2 + j

k+1∑

m=1

m(k + 1)n−2 −m2kn−3

])

4 e
x Representation

According above method, we have right to present function y = ex by the follow view
(as the exponential function is the infinite sum of powers of x divided by value of
factorial according to iteration step, see [5]):

ex =

∞∑

m=0



j
∑

k∈Λ(x)

(
kxm−2 − k2xm−3 + xm−3

j

m!

)

 (19)

By means of general y = ex determination (see [5]), we have right to represent, also,
next way:

ex =

∞∑

n=0

xn

n!
=

∞∑

n=0

(

1

f (n)(x)

n∑

i=o

∫

f (n−i)(x)dxi

)∣
∣
∣
∣
∣
f(x)=xn

(20)

5 Difference from Binomial Theorem

To show changes from binomial theorem let use other algorithm to reach expansion of
f(µ) = µ3, µ ∈ N, which finally returns the binomial expansion. The algorithm is also
based on ∆-functions from (5). By means of theorem 1:

χ(n)(µ)

∣
∣
∣
∣
∣
χ(µ)=µn

= ∆n(xni )

∣
∣
∣
∣
∣
∆x=1

= n!
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We have right to integrate the f (3)(µ) to f ′(µ) and represent the µ3 as:

µ3 =
∑

τ∈Ξ(µ)
f ′(τ)

For third-order derivative we have next equality:

d3f(µ) = ∆3(x3i ) · dµ
3

Let derive the f ′′(x):

∫

d(f ′′(µ)) = ∆3(x3i ) ·

∫

dµ = ∆3(x3i ) · µ+ C1

Let be C1 = ∆2(x30) , so we have:

f ′′(µ) = ∆3(x3i ) · µ+∆2(x30)

First derivative is next:
∫

d(f ′(µ)) = ∆3(x3i ) ·

∫

µdµ+∆2(x30) ·

∫

dµ +C2(i)

Let calculate the C2(i) function, basic formula is next:

Ck(i) = ∆n−k(xn0 )−
(

∆n−k(xn0 )− (∆n−k(xn1 )− f (n−k)(1))
)

i

And for f(µ) = µ3 equals to:

C2(i) = 1− (1− (7− f ′(1)))i = 1− 3i

In case of i = µ we obtain the first derivative:

f ′(µ) = 3µ2 + 3µ+ 1

So,

µ3 =
∑

τ∈Ξ(µ)
3τ2 + 3τ + 1

and corresponds to binomial expansion. Also, the difference is lay in the iteration
limits of the expression (7), the binomial type expansion has the the summation limit
[0, x − 1] and it’s necessary to provide the x-products summation to calculate the
number to power, while equation (7), according to property 1 , has the lesser products
iteration set [1, x− 1], which shows, that for such type function is necessary lesser by
1 number of iteration steps, than for binomial expansion.

6 Conclusion

In this paper was reviewed a method of power function f(xi) = xni , ∀(i, n) ∈ N

expanding to the numerical series. The disadvantages of this method are complicated
form of expression and the complexity of calculating the value of these expressions
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of the some variables. Advantage of this method is the possibility of the successful
application of this method in the solution of some problems in number theory, the
theory of series, due to the differences from the common theory, displayed the difference
from binomial expansion, presented example for exponential function representation by
means of method from section 2. The paper doesn’t consist all combinations of binomial
theorem representation (by means of the property 1 and transformation (9)). In the
Application 1 (Section 7) are shown Microsoft Visual Basic 6.0 program codes for the
most important expressions (by authors’ opinion). Future research in this direction
could take as result the success polynomial kind expansion.
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7 Application 1. Visual Basic 6.0 Program codes

Expression (7):
j = 6
x = Val(Text1.Text)
r = 0
For k = 1 To x
r = r + j ∗ (k ∗ x− k2)
Next k
r = r + x

Expression (8) part 1:
j = 6
x = Val(Text1.Text)
r = 0
For k = 0 To x− 1 Step 1
For m = 0 To k Step 1
r = r + j ∗m
Next m
r = r + 1
Next k

Expression (8) part 2:
j = 6
x = Val(Text1.Text)
r = 0
For k = 1 To x− 1
r = r + j ∗ (k ∗ x− k2 + x/(j ∗ (x− 1)))
Next k

Expression (11), part 1:
j = 6
x = Val(Text1.Text)
r = 0
For k = 1 To x Step 1
For m = 0 To k − 1 Step 1
r = r + j ∗ (m ∗ k −m2)
Next m
r = r + k − (k − 1)3

Next k

Expression (11), part 2:
j = 6
x = Val(Text1.Text)
r = 0
For k = 1 To x Step 1

10



For m = 0 To k − 1 Step 1
r = r − j ∗ (m ∗ (k − 1)−m2)
Next m
r = r + k3 − (k − 1)
Next k

Expression (12), part 1:
j = 6
x = Val(Text1.Text)
n = Val(Text2.Text)
r = 0
For k = 1 To x Step 1
For m = 0 To k − 1 Step 1
r = r + j ∗ (m ∗ kn−2 −m2 ∗ kn−3)
Next m
r = r + kn−2 − (k − 1)n

Next k

Expression (12), part 2:
j = 6
x = Val(Text1.Text)
n = Val(Text2.Text)
r = 0
t = 0
For k = 1 To x Step 1
For m = 0 To k − 1 Step 1
r = r + j ∗ (m ∗ (k − 1)n−2 −m2 ∗ (k − 1)n−3)
Next m
t = t+ kn − (k − 1)n−2 − r
Next k

Expression (13):
j = 6
x = Val(Text1.Text)
n = Val(Text2.Text)
r = 0
For k = 1 To x− 1
r = r + j ∗ (k ∗ xn−2 − k2 ∗ xn−3 + xn−2/(j ∗ (x− 1)))
Next k

Expression (14):
j = 6
x = Val(Text1.Text)
n = Val(Text2.Text)
r = 0
For k = 1 To x

11



r = r + j ∗ (k ∗ xn−2 − k2 ∗ xn−3)
Next k
r = r + xn−2

ex Representation (19):
j = 6
e = 0
x = Val(Text1.Text)
r = Val(Text2.Text)
f = 0
For m = 0 To r Step 1
If m = 0 Then
f = 1
Else
f = f ∗m
End If
For k = 1 To x
e = e+ ((j ∗ (k ∗ xm−2 − k2 ∗ xm−3)) + xm−3)/f
Next k
Next m

Templates of all the programs availible online at this link.
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