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ON THE LINK BETWEEN BINOMIAL THEOREM AND DISCRETE

CONVOLUTION OF POWER FUNCTION

PETRO KOLOSOV

Abstract. In this manuscript we introduce and discuss the 2m+ 1-degree integer valued
polynomials Pm

b
(n). These polynomials are in strong relation with discrete convolution of

power function. It is also shown that odd binomial expansion is partial case of Pm

b
(n). Basis

on above, we show the relation between Binomial theorem and discrete convolution of power
function.
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1. Introduction

The polynomials Pm
b (n) are 2m + 1-degree integer valued polynomials, which connect

discrete convolution [BDM11] of power with Binomial theorem [AS72]. Basically, Binomial
expansion is a partial case of Pm

b (n), while polynomials Pm
b (n) is in relation with discrete

convolution of power function.

1.1. Definitions, Notations and Conventions. We now set the following notation, which
remains fixed for the remainder of this paper:
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• Am,r, m ∈ N is a real coefficient defined recursively

Am,r :=







(2r + 1)
(
2r
r

)
, if r = m;

(2r + 1)
(
2r
r

)∑m

d=2r+1Am,d

(
d

2r+1

) (−1)d−1

d−r
B2d−2r, if 0 ≤ r < m;

0, if r < 0 or r > m;

(1.1)

where Bt are Bernoulli numbers [Wei]. It is assumed that B1 =
1
2
.

• Lm(n, k), m ∈ N, n, k ∈ R is polynomial of degree 2m in n, k

Lm(n, k) :=

m∑

r=0

Am,rk
r(n− k)r

• Pm
b (n), m, b ∈ N, n ∈ R is polynomial of degree 2m+ 1 in b, n

Pm
b (n) :=

b−1∑

k=0

Lm(n, k)

• Hm,t(b), m, t, b ∈ N is a natural coefficient defined as

Hm,t(b) :=
m∑

j=t

(
j

t

)

Am,j

(−1)j

2j − t + 1

(
2j − t + 1

b

)

B2j−t+1−b

• Xm,t(j), m, t ∈ N, j ∈ R is polynomial of degree 2m+ 1− t in j

Xm,t(j) := (−1)m
2m+1−t∑

k=1

Hm,t(k) · j
k

• [P (k)] is the Iverson’s convention [Ive62], where P (k) is logical sentence on k

[P (k)] =

{

1, P (k) is true

0, otherwise
(1.2)

• 〈x− a〉n is powered Macaulay bracket, [Mac19]

〈x− a〉n :=

{

(x− a)n, x ≥ a

0, otherwise
a ∈ Z (1.3)

• {x− a}n is powered Macaulay bracket

{x− a}n :=

{

(x− a)n, x > a

0, otherwise
a ∈ Z (1.4)

During the manuscript, the variable a is reserved to be only the condition of Macaulay
functions. If the power function 〈x− a〉n or {x− a}n is written without parameter a
e.g 〈x〉n or {x}n means that it is assumed a = 0.
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2. Polynomials Pm
b (n) and their properties

We’d like to begin our discussion from short overview of polynomial Lm(n, k). Polynomial
Lm(n, k), m ∈ N, n, k ∈ R is polynomial of degree 2m in n, k. In extended form, the
polynomial Lm(n, k) is as follows

Lm(n, k) = Am,mk
m(n− k)m +Am,m−1k

m−1(n− k)m−1 + · · ·+Am,0,

where Am,r are real coefficients by definition 1.1. Note that Lm(n, k) implicitly involves
discrete convolution of power function. We’ll back to it soon. The coefficient Am,r is a real
number. Coefficients Am,r are nonzero only for r within the interval r ∈ {m} ∪

[
0, m−1

2

]
.

For example, let’s show an array of Am,r for m = 0, 1, 2, ..7. In order to proceed, let’s type
Column[Table[CoeffA[m, r], {m, 0, 7}, {r, 0, m}], Left] into Mathematica console using
[Kol19], we get

m/r 0 1 2 3 4 5 6 7

0 1
1 1 6
2 1 0 30
3 1 -14 0 140
4 1 -120 0 0 630
5 1 -1386 660 0 0 2772
6 1 -21840 18018 0 0 0 12012
7 1 -450054 491400 -60060 0 0 0 51480

Table 1. Coefficients Am,r. For m ≥ 11 the real values of Am,r are taking place.

Thus, the polynomial Lm(n, k) could be written as well as

Lm(n, k) = Am,mk
m(n− k)m +

m−1

2∑

r=0

Am,rk
r(n− k)r

For example, a few of polynomials Lm(n, k) are

L0(n, k) = 1,

L1(n, k) = 6k(n− k) + 1 = −6k2 + 6kn+ 1,

L2(n, k) = 30k2(n− k)2 + 1 = 30k4 − 60k3n + 30k2n2 + 1,

L3(n, k) = 140k3(n− k)3 − 14k(n− k) + 1

= −140k6 + 420k5n− 420k4n2 + 140k3n3 + 14k2 − 14kn+ 1

We’d like to notice that the polynomials Lm(n, k) are symmetrical as follows

Property 2.1. For every n, k ∈ Z

Lm(n, k) = Lm(n− k, k)

Following table displays the symmetry of Lm(n, k)
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n/k 0 1 2 3 4 5 6 7

0 1
1 1 1
2 1 7 1
3 1 13 13 1
4 1 19 25 19 1
5 1 25 37 37 25 1
6 1 31 49 55 49 31 1
7 1 37 61 73 73 61 37 1

Table 2. Triangle generated by L1(n, k), 0 ≤ k ≤ n.

Therefore, we have briefly discussed the polynomials Lm(n, k), which is required step
to be familiarized with the polynomial Pm

b (n) in detailed way. For now, let’s discuss the
polynomial Pm

b (n). Polynomial Pm
b (n) is defined as summation of Lm(n, k) over k such that

0 ≤ k ≤ b− 1. In extended form, the polynomial Pm
b (n) is

Pm
b (n) =

b−1∑

k=0

Lm(n, k) =

b−1∑

k=0

m∑

r=0

Am,rk
r(n− k)r =

m∑

r=0

Am,r

b−1∑

k=0

kr(n− k)r

=

m∑

r=0

Am,r

b−1∑

k=0

kr

r∑

j=0

(−1)j
(
r

j

)

nr−jkj

=
m∑

r=0

r∑

j=0

(−1)jnr−j

(
r

j

)

Am,r

b−1∑

k=0

kr+j

=
m∑

r=0

r∑

j=0

nr−j

(
r

j

)

Am,r

(−1)j

r + j + 1

r+j
∑

s=0

(
r + j + 1

s

)

Bs(b− 1)r+j−s+1

However, by Property (2.1), the Pm
b (n) may be written in the form

Pm
b (n) =

b∑

k=1

Lm(n, k) =
b∑

k=1

m∑

r=0

Am,rk
r(n− k)r

=

b∑

k=1

m∑

r=0

Am,rk
r

r∑

t=0

(−1)r−tnt

(
r

t

)

kr−t

=
m∑

t=0

nt

b∑

k=1

m∑

r=t

(−1)r−t

(
r

t

)

Am,rk
2r−t

︸ ︷︷ ︸

(−1)m−tXm,t(b)

In above formula brace underlines 2m + 1 − t degree polynomial Xm,t(j), m, t ∈ N, j ∈ R

in j, see definition (1.1). From this formula it may be not immediately clear why Xm,t(j)
represent polynomials in j. However, this can be seen if we change the summation order and
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use Faulhaber’s formula
∑n

k=1 k
p = 1

p+1

∑p

j=0

(
p+1
j

)
Bjn

p+1−j to obtain

Xm,t(j) = (−1)m
m∑

r=t

(
r

t

)

Am,r

(−1)r

2r − t + 1

2r−t∑

ℓ=0

(
2r − t+ 1

ℓ

)

Bℓj
2r−t+1−ℓ

Introducing k = 2r − t+ 1− ℓ, we further get the formula

Xm,t(j) = (−1)m
2m−t+1∑

k=1

jk
m∑

r=t

(
r

t

)

Am,r

(−1)r

2r − t + 1

(
2r − t+ 1

k

)

B2r−t+1−k

︸ ︷︷ ︸

Hm,t(k)

To produce examples of Xm,t(j) for m = 3 let’s type Column[Table[X[3, n, j], {n, 0, 3}],
Left] into Mathematica console using [Kol19], we get further

X3,0(j) = 7j2 − 28j3 + 70j5 − 70j6 + 20j7,

X3,1(j) = 7j − 42j2 + 175j4 − 210j5 + 70j6,

X3,2(j) = −14j + 140j3 − 210j4 + 84j5,

X3,3(j) = 35j2 − 70j3 + 35j4

It gives us opportunity to review the Pm
b (n) from different prospective, for instance

Pm
b (n) =

m∑

r=0

(−1)m−rXm,r(b) · n
r =

m∑

r=0

2m−r+1∑

ℓ=1

(−1)2m−rHm,r(ℓ) · b
ℓ · nr (2.1)

The last line of (2.1) clearly states why Pm
b (n) are polynomials in b, n. Let’s show a few

examples of polynomials Pm
b (n)

P0
b(n) = b,

P1
b(n) = 3b2 − 2b3 − 3bn+ 3b2n,

P2
b(n) = 10b3 − 15b4 + 6b5

− 15b2n+ 30b3n− 15b4n

+ 5bn2 − 15b2n2 + 10b3n2,

P3
b(n) = −7b2 + 28b3 − 70b5 + 70b6 − 20b7

+ 7bn− 42b2n+ 175b4n− 210b5n + 70b6n

+ 14bn2 − 140b3n2 + 210b4n2 − 84b5n2

+ 35b2n3 − 70b3n3 + 35b4n3

The following property also holds in terms of Pm
b (n)

Property 2.2. For every m, b, n ∈ N

Pm
b+1(n) = Pm

b (n) + Lm(n, b)

We consider the polynomials Pm
b (n) since that basis on them we reveal the main aim of the

work and establish a connection between the Binomial theorem and the discrete convolution
of a power functions 〈x〉n, {x}n. In the next section we show that odd binomial expansion
(x+ y)2m+1, 2m+ 1, m ≥ 0 is a partial case of Pm

b (n).
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3. Odd Binomial expansion as partial case of polynomial Pm
b (n)

An odd power function n2m+1, n,m ∈ N could be expressed in terms of partial case of
polynomial Pm

b (n) as follows

Lemma 3.1. For each n,m ∈ N

Pm
n (n) ≡ n2m+1

By Lemma 3.1 and (2.1) the following identities straightforward

n2m+1 =

m∑

r=0

2m−r+1∑

ℓ=1

(−1)2m−rHm,r(ℓ) · n
ℓ+r =

m∑

r=0

(−1)m−rXm,r(n) · n
r

By Property 2.1 an odd power n2m+1 + 1, m, n ∈ N can also be expressed as

n2m+1 + 1 = [n is even]Lm(n, n/2) + 2

n−1

2∑

k=0

Lm(n, k),

where [n is even] is Iverson’s bracket (1.2). Moreover, the partial case of Lemma 3.1 for
n = x+ y gives binomial expansion

Corollary 3.2. (Partial case of Lemma 3.1 for binomials.) For every x+ y,m ∈ N

Pm
x+y(x+ y) ≡

m∑

r=0

(
2m+ 1

r

)

x2m−ryr

For instance, for m = 2 we have

P2
x+y(x+ y) = (x+ y)(x4 + 4x3y + 6x2y2 + 4xy3 + y4),

which is binomial expansion of fifth power. In addition, the following power identities in
terms of Hm,r(x), Xm,r(x) are taking place

(x+ y)2m+1 =
m∑

r=0

2m−r+1∑

ℓ=1

(−1)2m−rHm,r(ℓ) · (x+ y)ℓ+r

=
m∑

r=0

(−1)m−rXm,r(x+ y) · (x+ y)r

It clearly follows that Multinomial expansion of odd-powered t-fold sum (x1+x2+· · ·+xt)
2m+1

can be reached by Pm
b (x1 + x2 + · · ·+ xt) as well

Corollary 3.3. For all x1 + x2 + · · ·+ xt, m ∈ N

Pm
x1+x2+···+xt

(x1 + x2 + · · ·+ xt) ≡
∑

k1+k2+···+kt=2m+1

(
2m+ 1

k1, k2, . . . , kt

) t∏

s=1

xks
t

Moreover, the following multinomial identities hold

(x1 + x2 + · · ·+ xt)
2m+1 =

m∑

r=0

2m−r+1∑

ℓ=1

(−1)2m−rHm,r(ℓ) · (x1 + x2 + · · ·+ xt)
ℓ+r

=

m∑

r=0

(−1)m−rXm,r(x1 + x2 + · · ·+ xt) · (x1 + x2 + · · ·+ xt)
r
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4. Binomial expansion in terms of Pm
b (n) and Iverson’s convention

In the previous section we have established a connection between the polynomial Pm
b (n)

and an odd power function. To go over to the general case of a power function, we consider
the relationship between an even and an odd powers, namely

xeven = x · xodd

Thus, a generalized power function xs, s ∈ N can be expressed in terms of an odd power
function and the Iverson’s bracket as follows

Property 4.1. For every x ∈ R, s ∈ Z

xs = x[s is even] · x2⌊
s−1
2

⌋+1

Hereof, it is easy to obtain a power xs by means of partial case of Pm
b (n) for all s ≥ 1 ∈ N

Corollary 4.2. By Lemma 3.1 and Property 4.1, for every x, s ≥ 1 ∈ N

xs = x[s is even]P
s−1
2

x (x)

Therefore, for every x, s ≥ 1 ∈ N as well true

xs =

h∑

k=0

2h−k+1∑

ℓ=1

(−1)2h−kHh,k(ℓ) · x
[s is even]+ℓ+k

=
h∑

k=0

(−1)h−kXh,k(x) · x
[s is even]+k,

where h = s−1
2

and [s is even] is Iverson’s bracket. The binomial expansion of (x + y)s for
every s ≥ 1 ∈ N is

Corollary 4.3. By Corollary 3.2 and Property 4.1, for each s ≥ 1, x, y ∈ N

(x+ y)[s is even]Ph
x+y(x+ y) ≡

∑

k≥0

(
s

k

)

xs−kyk,

where h = s−1
2
.

By Corollary 4.3

(x+ y)s =

h∑

k=0

2h−k+1∑

ℓ=1

(−1)2h−kHh,k(ℓ) · (x+ y)[s is even]+ℓ+k

=
h∑

k=0

(−1)h−kXh,k(x+ y) · (x+ y)[s is even]+k,

where h = s−1
2
. Now we are able to express the corollary 4.3 in terms of multinomials. For

the t-fold s-powered sum (x1+x2+ · · ·+xt)
s we have following relation between Multinomial

expansion and Ph
x(x)

Corollary 4.4. For all s ≥ 1, x1 + x2 + · · ·+ xt, s ∈ N

(x1+x2+· · ·+xt)
[s is even]Ph

x1+x2+···+xt
(x1+x2+· · ·+xt) ≡

∑

k1+k2+···+kt=s

(
s

k1, k2, . . . , kt

) t∏

ℓ=1

xkℓ
ℓ ,
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where h = s−1
2
.

Therefore, the following expression holds as well

(x1 + x2 + · · ·+ xt)
s =

h∑

k=0

2h−k+1∑

ℓ=1

(−1)2h−kHh,k(ℓ) · (x1 + x2 + · · ·+ xt)
[s is even]+ℓ+t

=

h∑

k=0

(−1)h−kXh,k(x1 + x2 + · · ·+ xt) · (x1 + x2 + · · ·+ xt)
[s is even]+k,

where h = s−1
2
.

5. Relation between Pm
b (n) and discrete convolution of power functions

〈x〉n, {x}n

Previously we have established the relations between polynomial Pm
b (n), Binomial and

Multinomial theorems. In this section we establish and discuss a relation between Pm
b (n)

and convolution of the power functions 〈x〉n, {x}n. To show that Pm
b (n) implicitly involves

the discrete convolution of the power function 〈x〉n let’s remind that

Pm
b (n) =

m∑

r=0

Am,r

b−1∑

k=0

kr(n− k)r

A discrete convolution of defined over set of integers Z function f is following

(f ∗ f)[n] =
∑

k

f(k)f(n− k)

Now a general formula of discrete convolution 〈x〉n ∗ 〈x〉n could be derived immediately

〈x− a〉n ∗ 〈x− a〉n =
∑

k

〈k − a〉n〈x− k − a〉n

=
∑

k

(k − a)n(x− k − a)n[k ≥ a][x− k ≥ a]

=
∑

k

(k − a)n(x− k − a)n[k ≥ a][k ≤ x− a]

=
∑

k

(k − a)n(x− k − a)n[a ≤ k ≤ x− a]

=
x−a∑

k=a

(k − a)n(x− k − a)n,

where [a ≤ k ≤ x − a] is Iverson’s bracket of k. Note that a is parameter of 〈x − a〉r

by definition (1.3). In above equation we have applied a Knuth’s recommendation [Knu92]
concerning the sigma notation of sums. Thus, we have a general expression of discrete
convolution 〈x〉n ∗ 〈x〉n. For now, let’s notice that

Lemma 5.1. For every x ≥ 1, x ∈ N

〈x〉n ∗ 〈x〉n ≡

x∑

k=0

kr(n− k)r
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Thus,

Corollary 5.2. By Lemma 5.1, the polynomials Pm
b (n) is in relation with discrete convolu-

tion of power function 〈x〉n ∗ 〈x〉n as follows

Pm
x+1(x) =

m∑

r=0

Am,r〈x〉
r ∗ 〈x〉r

Therefore, another conclusion follows

Theorem 5.3. By Lemma 3.1, Corollary 5.2 and property 2.2, for every x ≥ 1, x,m ∈ N

x2m+1 = −1 +
m∑

r=0

Am,r〈x〉
r ∗ 〈x〉r

As next step, let’s show a relation between discrete convolution of {x}n and power function
of odd exponent. Discrete convolution {x− a}n ∗ {x− a}n is following

{x− a}n ∗ {x− a}n =
∑

k

{k − a}n{x− k − a}n

=
∑

k

(k − a)n(x− k − a)n[k > a][x− k > a]

=
∑

k

(k − a)n(x− k − a)n[a < k < x− a]

=
∑

k

(k − a)n(x− k − a)n[a+ 1 ≤ k ≤ x− a− 1]

=
x−a−1∑

k=a+1

(k − a)n(x− k − a)n

Now we notice the following identity in terms of polynomial Pm
b (n) and discrete convolution

{x}n ∗ {x}n

Proposition 5.4. For every m, b, n ∈ N

Pm
x (x) =

m∑

r=0

Am,r

(

0rxr +
x−1∑

k=1

kr(x− k)r

)

=
m∑

r=0

Am,r0
rxr +

m∑

r=0

Am,r{x}
r ∗ {x}r

Since that for all r in Am,r0
rxr we have

Am,r0
rxr =

{

1, if r = 0

0, if r > 0

Above is true because Am,0 = 1 for every m ∈ N, it is convinced [GKP94] that x0 = 1 for
every x. Hence, the following identity between Pm

b (n) and discrete convolution {x}n ∗ {x}n

holds
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Theorem 5.5. By Lemma 3.1 and Proposition 5.4, for every x ≥ 1, x,m ∈ N

x2m+1 = 1 +
m∑

r=0

Am,r{x}
r ∗ {x}r

Corollary 5.6. By Theorem 5.5, for all m ∈ N

m∑

r=0

Am,r = 22m+1 − 1

Corollary 5.6 holds since that convolution {x}r ∗{x}r = 1 for each r when x = 2. Further-
more, we are able to find a relation between the Binomial theorem and discrete convolution
of power function 〈x〉n.

6. Binomial expansion in terms of discrete convolutions of power function

〈x〉n, {x}n

The equivalence (4.3) states the relation between Binomial theorem and partial case of
Pm

b (n). As it is stated previously in Corollary 5.2 and Proposition 5.4, the polynomialsPm
b (n)

are able to be expressed in terms of discrete convolutions 〈x〉n ∗ 〈x〉n, {x}n ∗ {x}n. In this
section we generalize these results in order to show relation between Binomial, Multinomial
theorems and discrete convolutions 〈x〉n ∗ 〈x〉n, {x}n ∗ {x}n

Corollary 6.1. (Partial case of Theorem 5.3 for Binomials.) For each x+y ≥ 1, x, y,m ∈ N

m∑

r=0

Am,r〈x+ y〉r ∗ 〈x+ y〉r ≡ 1 +

2m+1∑

r=0

(
2m+ 1

r

)

x2m+1−ryr

For example, for m = 0, 1, 2 the Corollary 6.1 gives

0∑

r=0

A0,r〈x+ y〉r ∗ 〈x+ y〉r = 1 + x+ y

1∑

r=0

A1,r〈x+ y〉r ∗ 〈x+ y〉r = 1 + x+ y + (−1 + x+ 3y − 2y)(x+ y)(1 + x+ y)

= x3 + 3x2y + 3xy2 + y3 + 1

2∑

r=0

A2,r〈x+ y〉r ∗ 〈x+ y〉r = 1 + x+ y + (x+ y)(1 + x+ y)
(
−1 + x+ 5x2 + y + 10xy + 5y2

− 15x(x+ y) + 10x2(x+ y)− 15y(x+ y) + 20xy(x+ y)

+ 10y2(x+ y) + 9(x+ y)2 − 15x(x+ y)2

−15y(x+ y)2 + 6(x+ y)3
)

= x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5 + 1

To get above examples we were using command Simplify[Sum[CoeffA[1, r] * MacaulayDisc-
Conv[x + y, r, 0], {r, 0, 1}], Element[x, Integers], Assumptions ->x + y >0] in Mathematica
console by [Kol19].
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Corollary 6.2. (Partial case of Theorem 5.5 for Binomials.) For each x+y ≥ 1, x, y,m ∈ N

m∑

r=0

Am,r{x+ y}r ∗ {x+ y}r ≡ −1 +
2m+1∑

r=0

(
2m+ 1

r

)

x2m+1−ryr

For example, for m = 0, 1 the Corollary 6.2 gives

0∑

r=0

A0,r{x+ y}r ∗ {x+ y}r = x+ y − 1

1∑

r=0

A1,r{x+ y}r ∗ {x+ y}r = x+ y − 1− (x+ y − 1)(x+ y)(2(x+ y)− 1− 3x− 3y)

= x3 + 3x2y + 3xy2 + y3 − 1

In case of variations of a in 〈x−a〉n and {x−a}n for each x ≥ 2a, a = const, a ∈ Z, m ∈ N

the following identities hold

(x− 2a)2m+1 + 1 =

m∑

r=0

Am,r〈x− a〉r ∗ 〈x− a〉r

(x− 2a)2m+1 − 1 =

m∑

r=0

Am,r{x− a}r ∗ {x− a}r

Note that a is parameter of 〈x − a〉r, {x − a}r by definitions (1.3), (1.4). By Corollary 6.1
and Property 4.1, for each s, x, y ∈ N

(x+ y)[s is even]

(

−1 +
h∑

r=0

Ah,r〈x+ y〉r ∗ 〈x+ y〉r

)

≡
s∑

k=0

(
s

k

)

xs−kyk,

where h = s−1
2
. In terms of convolution {x}n ∗ {x}n for s ≥ 1, x + y ≥ 2 we also have the

following relation. By Corollary 6.2 and Property 4.1, for each s, x, y ∈ N

(x+ y)[s is even]

(

1 +
h∑

r=0

Ah,r{x+ y}r ∗ {x+ y}r

)

≡
s∑

k=0

(
s

k

)

xs−kyk,

where h = s−1
2
.

6.1. Generalisation for Multinomial case. In this section we’d like to discus the multi-
nomial cases of Theorems 5.3, 5.5. We have the following relation involving Multinomial
expansion and discrete convolution of power function 〈x〉n

Corollary 6.3. (Partial case of Theorem 5.3 for Multinomials.) For each x1+x2+· · ·+xt ≥
1, x1, x2, . . . , xt, m ∈ N

m∑

r=0

Am,r〈x1 + x2 + · · ·+ xt〉
r ∗ 〈x1 + x2 + · · ·+ xt〉

r

≡ 1 +
∑

k1+k2+···+kt=2m+1

(
2m+ 1

k1, k2, . . . , kt

) t∏

ℓ=1

xkℓ
ℓ
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For instance, for m = 1 and trinomials the corollary 6.3 gives

1∑

r=0

A1,r〈x+ y + z〉r ∗ 〈x+ y + z〉r

= 1 + x+ y + z − (x+ y + z)(1 + x+ y + z)(1− 3x− 3y − 3z + 2(x+ y + z))

= 1 + x3 + 3x2y + 3xy2 + y3 + 3x2z + 6xyz + 3y2z + 3xz2 + 3yz2 + z3

Corollary 6.4. (Partial case of Theorem 5.5 for Multinomials.) For each x1+x2+· · ·+xt ≥
1, x1, x2, . . . , xt, m ∈ N

m∑

r=0

Am,r{x1 + x2 + · · ·+ xt}
r ∗ {x1 + x2 + · · ·+ xt}

r

≡ −1 +
∑

k1+k2+···+kt=2m+1

(
2m+ 1

k1, k2, . . . , kt

) t∏

ℓ=1

xkℓ
ℓ

For example, for m = 1 and trinomials the Corollary 6.4 gives

1∑

r=0

A1,r〈x+ y + z〉r ∗ 〈x+ y + z〉r

= x+ y + z − 1− (x+ y + z − 1)(x+ y + z)(2(x+ y + z)− 1− 3x− 3y − 3z)

= x3 + 3x2y + 3xy2 + y3 + 3x2z + 6xyz + 3y2z + 3xz2 + 3yz2 + z3 − 1

By Corollary 6.3, Corollary 6.4 and Property 4.1, for every x1+x2+ · · ·+xt ≥ 1, m ∈ N the
following relation between discrete convolutions and Multinomial expansion holds

(x1 + x2 + · · ·+ xt)
s

= (x1 + x2 + · · ·+ xt)
[s is even]

(

−1 +

h∑

k=0

Ah,k〈x1 + x2 + · · ·+ xt〉
k ∗ 〈x1 + x2 + · · ·+ xt〉

k

)

= (x1 + x2 + · · ·+ xt)
[s is even]

(

1 +
h∑

k=0

Ah,k{x1 + x2 + · · ·+ xt}
k ∗ {x1 + x2 + · · ·+ xt}

k

)

≡
∑

k1+k2+···+kt=s

(
s

k1, k2, . . . , kt

) t∏

ℓ=1

xkℓ
ℓ ,

where h = s−1
2
.

7. Power function as a product of certain matrices

Let be a matrices

Aj =
[
1, 1, . . . 1

]
∈ N

1×j

Bi,j(n) =







α1,0 α1,0 · · · α1,j

α2,0 α2,0 · · · α2,j
...

αi,0 αi,0 · · · αi,j






∈ N

i×j,
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where αi,j = ij(n− i)j .

Cm =







Am,0

Am,1
...

Am,m






∈ R

m×1

Therefore, by Lemma 3.1, the following identity is true

x2m+1 = Am × Bm,x(x)× Cm

For example,

42·3+1 = [1, 1, 1, 1] ·







30 31 32 33

40 41 42 43

30 31 32 33

00 01 02 03






·







1
−14
0
140







8. Derivation of coefficients Am,r

By Lemma 3.1 for every m ≥ 0 ∈ N

n2m+1 = Pm
n (n) =

m∑

r=0

Am,r

n−1∑

k=0

kr(n− k)r

The coefficients Am,r could be evaluated using the binomial expansion of
∑n−1

k=0 k
r(n− k)r

n−1∑

k=0

kr(n− k)r =

n−1∑

k=0

kr

r∑

j=0

(−1)j
(
r

j

)

nr−jkj =

r∑

j=0

(−1)j
(
r

j

)

nr−j

n−1∑

k=0

kr+j

Using Faulhaber’s formula
∑n

k=1 k
p = 1

p+1

∑p

j=0

(
p+1
j

)
Bjn

p+1−j we get

n−1∑

k=0

kr(n− k)r =
r∑

j=0

(
r

j

)

nr−j (−1)j

r + j + 1

[
∑

s

(
r + j + 1

s

)

Bsn
r+j+1−s − Br+j+1

]

=
∑

j,s

(
r

j

)
(−1)j

r + j + 1

(
r + j + 1

s

)

Bsn
2r+1−s −

∑

j

(
r

j

)
(−1)j

r + j + 1
Br+j+1n

r−j

=
∑

s

∑

j

(
r

j

)
(−1)j

r + j + 1

(
r + j + 1

s

)

︸ ︷︷ ︸

S(r)

Bsn
2r+1−s

−
∑

j

(
r

j

)
(−1)j

r + j + 1
Br+j+1n

r−j

(8.1)

where Bs are Bernoulli numbers and B1 =
1
2
. Now, we notice that

S(r) =
∑

j

(
r

j

)
(−1)j

r + j + 1

(
r + j + 1

s

)

=

{
1

(2r+1)(2rr )
, if s = 0;

(−1)r

s

(
r

2r−s+1

)
, if s > 0.
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In particular, the last sum is zero for 0 < s ≤ r. Therefore, expression (8.1) takes the form

n−1∑

k=0

kr(n− k)r =
1

(2r + 1)
(
2r
r

)n2r+1 +
∑

s≥1

(−1)r

s

(
r

2r − s + 1

)

Bsn
2r+1−s

︸ ︷︷ ︸

(⋆)

−
∑

j

(
r

j

)
(−1)j

r + j + 1
Br+j+1n

r−j

︸ ︷︷ ︸

(⋄)

Hence, introducing ℓ = 2r + 1− s to (⋆) and ℓ = r − j to (⋄), we get

n−1∑

k=0

kr(n− k)r =
1

(2r + 1)
(
2r
r

)n2r+1 +
∑

ℓ=2r+1−s

(−1)r

2r + 1− ℓ

(
r

ℓ

)

B2r+1−ℓn
ℓ

−
∑

ℓ=r−j

(
r

ℓ

)
(−1)j−ℓ

2r + 1− ℓ
B2r+1−ℓn

ℓ

Since that j − ℓ = j − (r − j) = 2j − r

n−1∑

k=0

kr(n− k)r =
1

(2r + 1)
(
2r
r

)n2r+1 + (−1)r
∑

ℓ=2r+1−s

1

2r + 1− ℓ

(
r

ℓ

)

B2r+1−ℓn
ℓ

−
1

(−1)r

∑

ℓ=r−j

(
r

ℓ

)
(−1)2j

2r + 1− ℓ
B2r+1−ℓn

ℓ

=
1

(2r + 1)
(
2r
r

)n2r+1 + 2
r∑

odd ℓ=1,3,...

(−1)r

2r + 1− ℓ

(
r

ℓ

)

B2r+1−ℓn
ℓ

Using the definition of Am,r coefficients, we obtain the following identity for polynomials in
n

m∑

r=0

Am,r

1

(2r + 1)
(
2r
r

)n2r+1 + 2

m∑

r=0

r∑

odd ℓ=1,3,...

Am,r

(−1)r

2r + 1− ℓ

(
r

ℓ

)

B2r+1−ℓn
ℓ ≡ n2m+1 (8.2)

Taking the coefficient of n2r+1 for r = m in (8.2) we get Am,m = (2m + 1)
(
2m
m

)
. Since

that odd ℓ ≤ r in explicit form is 2j + 1 ≤ r, it follows that j ≤ m−1
2

, where j is iterator.
Therefore, taking the coefficient of n2j+1 for an integer j in the range m

2
≤ j ≤ m, we get

Am,j = 0. Taking the coefficient of n2d+1 for d in the range m/4 ≤ d < m/2 we get

Am,d

1

(2d+ 1)
(
2d
d

) + 2(2m+ 1)

(
2m

m

)(
m

2d+ 1

)
(−1)m

2m− 2d
B2m−2d = 0,

i.e

Am,d = (−1)m−1 (2m+ 1)!

d!d!m!(m− 2d− 1)!

1

m− d
B2m−2d
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Continue similarly we can express Am,r for each integer r in range m/2s+1 ≤ r < m/2s

(iterating consecutively s = 1, 2 . . . ) via previously determined values of Am,d as follows

Am,r = (2r + 1)

(
2r

r

) m∑

d=2r+1

Am,d

(
d

2r + 1

)
(−1)d−1

d− r
B2d−2r

9. Verification of the results and examples

To fulfill our study we provide an opportunity to verify its results by means of Wolfram
Mathematica language. It is possible to verify the most important results of the manuscript
using the Mathematica programs available at github repository arXiv1603.02468 Mathematica Implementations

Also, we’d like to show why an odd-power identity, namely Lemma 3.1 holds by a
few examples. We arrange in tables the values of Lm(n, k) to show that Pm

n (n) =
Lm(n, 0) + Lm(n, 1) + · · · + Lm(n, n − 1) = n2m+1. For example, for m = 1 we have
the following values of L1(n, k)

n/k 0 1 2 3 4 5 6 7

0 1
1 1 1
2 1 7 1
3 1 13 13 1
4 1 19 25 19 1
5 1 25 37 37 25 1
6 1 31 49 55 49 31 1
7 1 37 61 73 73 61 37 1

Table 3. Triangle generated by L1(n, k), 0 ≤ k ≤ n.

From Table 3 it is seen that

P1
0(0) = 0 = 03

P1
1(1) = 1 = 13

P1
2(2) = 1 + 7 = 23

P1
3(3) = 1 + 13 + 13 = 33

P1
4(4) = 1 + 19 + 25 + 19 = 43

P1
5(5) = 1 + 25 + 37 + 37 + 25 = 53

Another case, for m = 2 we have the following values of L2(n, k)

https://github.com/kolosovpetro/arXiv1603.02468-Mathematica-Implementations
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n/k 0 1 2 3 4 5 6 7

0 1
1 1 1
2 1 31 1
3 1 121 121 1
4 1 271 481 271 1
5 1 481 1081 1081 481 1
6 1 751 1921 2431 1921 751 1
7 1 1081 3001 4321 4321 3001 1081 1

Table 4. Triangle generated by L2(n, k), 0 ≤ k ≤ n.

Again, an odd-power identity 3.1 holds

P2
0(0) = 0 = 05

P2
1(1) = 1 = 15

P2
2(2) = 1 + 31 = 25

P2
3(3) = 1 + 121 + 121 = 35

P2
4(4) = 1 + 271 + 481 + 271 = 45

P2
5(5) = 1 + 481 + 1081 + 1081 + 481 = 55

Tables 3, 4 are entries A287326, A300656 in [Slo64].
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11. Conclusion

In this manuscript we have discussed and the 2m + 1-degree integer valued polynomials
Pm

b (n). Basing on Pm
b (n) we established a relation between Binomial theorem and discrete

convolution of power function. Also, it is shown that odd binomial expansion is partial case
of Pm

b (n).
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