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AN ODD-POWER IDENTITY INVOLVING DISCRETE CONVOLUTION

PETRO KOLOSOV

Abstract. Let be a power function fr,M (s) defined for every s within the finite set M as
follows

fr,M (s) =

{

sr, s ∈ M,

0, otherwise.

Let a discrete convolution of fr,M (s) be denoted as follows Convr,M [n] = (fr,M ∗ fr,M )[n].
Let a real coefficients Am,j be given by the following recurrence

Am,j :=







0, if j < 0 or j > m,

(2j + 1)
(
2j
j

)∑m

d=2j+1 Am,d

(
d

2j+1

) (−1)d−1

d−j
B2d−2j, if 0 ≤ j < m,

(2j + 1)
(
2j
j

)
, if j = m.

In this paper we show that for every n > 0 the following odd-power identities involving
coefficients Am,j and convolution transform Convr,M [n] hold

n2m+1 + 1 =

m∑

r=0

Am,rConvr,N[n],

n2m+1 − 1 =
m∑

r=0

Am,rConvr,Z>0
[n],

n2m+1 =

m∑

r=0

Am,r

n∑

k=1

kr(n− k)r

=

m∑

r=0

Am,r

n−1∑

k=0

kr(n− k)r.

1. Definitions

• N - set of natural numbers {0, 1, 2, 3, ...}.
• Z>0 - set of positive integers {1, 2, 3, 4, ...}.
• Convr,M [n] = (fr,M ∗fr,M)[n] =

∑

k fr,M(k)fr,M(n−k) - convolution transform of real
function fr,M(k) to itself.

2. Introduction and Main results

The problem of finding expansions of monomials, binomials etc. is classical and there
are a lot of beautiful solutions have been found, the most prominent examples are Binomial
Theorem [1], Multinomial Theorem [7], Faulhaber’s Formula [2], Worpitzky Identity [3],
Identity in terms of Stirling numbers of the second kind and falling factorial [4]. Also, the
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transforms.
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one good example can be found at [6], so-called MacMillan Double binomial sum. Over
decades mathematicians fight against the problem of polynomial expansions and this fight is
successful, but still can we find some new approaches to solve this problem? This question is
entire motivation of this manuscript. In this paper we solve the classical problem of finding
expansions of monomials using convolution transform of power function, which defined on
the finite set M . Let a power function fr,M be defined as follows

fr,M(s) =

{

sr, s ∈ M,

0, otherwise.

Mainly, we assume that the set M is set of natural numbers N or nonnegative integers Z>0.
By this assumption it follows that convolution of fr,M(s) has a discrete form. Let the discrete
convolution of fr,M(s) be defined as follows

(2.1) Convr,M [n] := (fr,M ∗ fr,M)[n] =
∑

k

fr,M(k)fr,M(n− k).

If M is subset, but not a proper subset of N or Z>0, the formula (2.2) reduces to

(2.2) Convr,M [n] =







n∑

k=0

kr(n− k)r, if M ⊆ N,

n−1∑

k=1

kr(n− k)r, if M ⊆ Z>0.

Property 2.3. For every n, k

fr,M(k)fr,M(n− k) = fr,M(n− k)fr,M(n− (n− k)) = fr,M(n− k)fr,M(k).

Let a real coefficients Am,j be defined by the following recurrence relation

Proposition 2.4.

Am,j :=







0, if j < 0 or j > m,

(2j + 1)
(
2j
j

)∑m

d=2j+1Am,d

(
d

2j+1

)
(−1)d−1

d−j
B2d−2j , if 0 ≤ j < m,

(2j + 1)
(
2j
j

)
, if j = m.

Example of coefficients Am,j arranged in table

m/r 0 1 2 3 4 5

0 1
1 1 6
2 1 0 30
3 1 -14 0 140
4 1 120 0 0 630
5 1 -1386 660 0 0 2772

Table 1. Coefficients Am,r.

Note that the set of Am,j consists fractions for m ≥ 11. As Table 1 shows, for every m,
the Am,0 = 1.
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The following theorem shows the odd-power identity involving coefficients Am,j and con-
volution transform Convr,M [n] = (fr,M ∗ fr,M)[n]

Theorem 2.5. For every n,m ∈ N

n2m+1 + 1 =
m∑

r=0

Am,rConvr,N[n] =
m∑

r=0

Am,r

n∑

k=0

kr(n− k)r, n > 0.

As k approaches n in the sum
∑n

k=0 k
r(n − k)r, the kr(n − k)r takes nonzero value only

in case when r = 0,

(2.6) kr(n− k)r =

{

1, if k = n, r = 0;

0, if k = n, r > 0,

we assume that there is 00 = 1 in (2.6). By the (2.6) and Theorem 2.5,

Corollary 2.7. For every n,m ∈ N

n2m+1 − 1 =
m∑

r=0

Am,rConvr,Z>0
[n] =

m∑

r=0

Am,r

n−1∑

k=1

kr(n− k)r, n > 0.

Corollary 2.8. For every n,m ∈ N

n2m+1 =
m∑

r=0

Am,r

n−1∑

k=0

kr(n− k)r =
n−1∑

k=0

m∑

r=0

Am,rk
r(n− k)r.

By the Property 2.3 (symmetry of kr(n− k)r), we also can rewrite Corollary 2.8 as

n2m+1 =

n−1∑

k=0

m∑

r=0

Am,rk
r(n− k)r =

n∑

k=1

m∑

r=0

Am,rk
r(n− k)r.

One another interesting observation concerning the coefficients Am,r, the sum of Am,r over r
gives

(2.9)
m∑

r=0

Am,r = 22m+1 − 1.

Expression (2.9) is partial case of Corollary 2.8 for n = 2, it works since the for every r, the
Convr,Z>0

[2] = 1.
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3. Proof of Theorem 2.5

Proof. By the Corollary 2.8, the coefficients Am,r could be evaluated expanding
∑n−1

k=0 k
r(n−

k)r and using Faulhaber’s formula
∑n

k=1 k
p = 1

p+1

∑p

j=0

(
p+1
j

)
Bjn

p+1−j, we get

n−1∑

k=0

kr(n− k)r

=
n−1∑

k=0

kr
∑

j

(−1)j
(
r

j

)

nr−jkj =
∑

j

(−1)j
(
r

j

)

nr−j

(
n−1∑

k=0

kr+j

)

=
∑

j

(
r

j

)

nr−j (−1)j

r + j + 1

[
∑

s

(
r + j + 1

s

)

Bsn
r+j+1−s − Br+j+1

]

=
∑

j,s

(
r

j

)
(−1)j

r + j + 1

(
r + j + 1

s

)

Bsn
2r+1−s −

∑

j

(
r

j

)
(−1)j

r + j + 1
Br+j+1n

r−j

=
∑

s

∑

j

(
r

j

)
(−1)j

r + j + 1

(
r + j + 1

s

)

︸ ︷︷ ︸

S(r)

Bsn
2r+1−s −

∑

j

(
r

j

)
(−1)j

r + j + 1
Br+j+1n

r−j

(3.1)

where Bs are Bernoulli numbers and B1 =
1
2
. Now, we notice that

S(r) =
∑

j

(
r

j

)
(−1)j

r + j + 1

(
r + j + 1

s

)

=

{
1

(2r+1)(2rr )
, if s = 0;

(−1)r

s

(
r

2r−s+1

)
, if s > 0.

In particular, the last sum is zero for 0 < s ≤ r. Therefore, expression (3.1) takes the form

n−1∑

k=0

kr(n− k)r =
1

(2r + 1)
(
2r
r

)n2r+1 +
∑

s≥1

(−1)r

s

(
r

2r − s + 1

)

Bsn
2r+1−s

︸ ︷︷ ︸

(⋆)

−
∑

j

(
r

j

)
(−1)j

r + j + 1
Br+j+1n

r−j

︸ ︷︷ ︸

(⋄)

Hence, introducing ℓ = 2r + 1− s to (⋆) and ℓ = r − j to (⋄), we get

n−1∑

k=0

kr(n− k)r =
1

(2r + 1)
(
2r
r

)n2r+1 +
∑

ℓ

(−1)r

2r + 1− ℓ

(
r

ℓ

)

B2r+1−ℓn
ℓ

−
∑

ℓ

(
r

ℓ

)
(−1)j−ℓ

2r + 1− ℓ
B2r+1−ℓn

ℓ

=
1

(2r + 1)
(
2r
r

)n2r+1 + 2
∑

odd ℓ

(−1)r

2r + 1− ℓ

(
r

ℓ

)

B2r+1−ℓn
ℓ
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Using the definition of Am,r coefficients, we obtain the following identity for polynomials in
n

(3.2)
∑

r

Am,r

1

(2r + 1)
(
2r
r

)n2r+1 + 2
∑

r, odd ℓ

Am,r

(−1)r

2r + 1− ℓ

(
r

ℓ

)

B2r+1−ℓn
ℓ ≡ n2m+1

Taking the coefficient of n2m+1 in (3.2) we get Am,m = (2m+1)
(
2m
m

)
and taking the coefficient

of n2d+1 for an integer d in the range m/2 ≤ d < m, we get Am,d = 0. Taking the coefficient
of n2d+1 for d in the range m/4 ≤ d < m/2, we get

Am,d

1

(2d+ 1)
(
2d
d

) + 2(2m+ 1)

(
2m

m

)(
m

2d+ 1

)
(−1)m

2m− 2d
B2m−2d = 0,

i.e,

Am,d = (−1)m−1 (2m+ 1)!

d!d!m!(m− 2d− 1)!

1

m− d
B2m−2d.

Continue similarly, we can express Am,d for each integer d in range m/2s+1 ≤ d < m/2s

(iterating consecutively s = 1, 2...) via previously determined values of Am,j as follows

Am,d = (2d+ 1)

(
2d

d

)
∑

j≥2d+1

Am,j

(
j

2d+ 1

)
(−1)j−1

j − d
B2j−2d.

Thus, for every (n,m) ∈ N holds

n2m+1 =
m∑

r=0

Am,r

n−1∑

k=0

kr(n− k)r

By the (2.6), for every k = 0 or k = n in the convolution Convr,N[n] =
∑n

k=0 k
r(n− k)r, the

term kr(n− k)r equals to

kr(n− k)r =

{

1, if k = n, r = 0;

0, if k = n, r > 0,

Thus, Theorem 2.5, holds for every natural n > 0. This completes the proof. �
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