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ABSTRACT 

 

The discrete ordinates method (DOM) is widely used to solve the radiative transfer equation, 

often yielding satisfactory results. However, in the presence of strongly forward scattering 

media, this method does not generally conserve the scattering energy and the phase function 

asymmetry factor. Because of this, the normalization of the phase function has been proposed 

to guarantee that the scattering energy and the asymmetry factor are conserved. Various 

authors have used different normalization techniques. Three of these are compared in the 

present work, along with two other methods, one based on the finite volume method (FVM) 

and another one based on the spherical harmonics discrete ordinates method (SHDOM). In 

addition, the approximation of the Henyey-Greenstein phase function by a different one is 

investigated as an alternative to the phase function normalization. The approximate phase 

function is given by the sum of a Dirac delta function, which accounts for the forward 

scattering peak, and a smoother scaled phase function. In this study, these techniques are 

applied to three scalar radiative transfer test cases, namely a three-dimensional cubic domain 

with a purely scattering medium, an axisymmetric cylindrical enclosure containing an 

emitting-absorbing-scattering medium, and a three-dimensional transient problem with 

collimated irradiation. The present results show that accurate predictions are achieved for 

strongly forward scattering media when the phase function is normalized in such a way that 

both the scattered energy and the phase function asymmetry factor are conserved. The 

normalization of the phase function may be avoided using the FVM or the SHDOM to 

evaluate the in-scattering term of the radiative transfer equation. Both methods yield results 

whose accuracy is similar to that obtained using the DOM along with normalization of the 

phase function. Very satisfactory predictions were also achieved using the delta-M phase 

function, while the delta-Eddington phase function and the transport approximation may 

perform poorly. 
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1.  INTRODUCTION 

 

The discrete ordinates method (DOM) was initially developed by Chandrasekhar [1] in his 

work about interstellar radiation. A few years later, Carlson and Lathrop [2] applied the 

method to the neutron transport theory. There were some early attempts to use the method to 

solve thermal radiation problems, but it did not become popular until the last quarter of the 

20th century, with the pioneering work of Fiveland [3]. Subsequent developments include 

improved spatial and angular discretization schemes, generalization to more complex grid 

structures and to complex enclosures, extensions to non-grey media, media with variable 

refractive index, and transient problems, as well as parallel implementation [4]. Although the 

accuracy achieved using the DOM is often satisfactory and the computational requirements 

moderate, it is well known that errors due to ray effects and false scattering are generally 

present [57]. Another source of error arises in strongly anisotropic media, as a result of lack 

of conservation of scattered energy [89] and/or asymmetry factor of the phase function [10]. 

This is the subject of the present work, which is concentrated on scalar radiative transfer. 

Although the focus is on thermal radiation the methods discussed here may be applied to 

other fields, for example atmospheric radiation, astrophysics, neutron transport, etc. 

 

When the DOM is used, the in-scattering term of the radiative transfer equation (RTE) is 

approximated by a quadrature over all discrete directions, and there is no guarantee that the 

integral of the scattering phase function over a spherical surface of unity radius yields 4π, as it 

should if there were no approximation. A simple normalization of the scattering phase 

function to enforce conservation of the scattering energy has been proposed a long time ago 

by Kim and Lee [9] and implemented by Liu et al. [11]. However, it was found that this 

method only yields accurate results for small or moderate asymmetry factors of the phase 

function [10]. When the asymmetry factor increases, the normalization method changes the 



 

 

 

 

 

 

overall shape of the scattering phase function. As a consequence, even though the scattered 

energy is conserved, the asymmetry factor is not, and this may yield large errors in the case of 

highly anisotropic phase functions, which become larger in the case of optically thick media. 

Boulet et al. [12] found that this problem is largely overcome using the finite volume method 

(FVM) instead of the DOM. The effectiveness of the FVM to surmount this problem has also 

been found in problems with collimated irradiation [13]. 

 

A different normalization procedure, which conserves both the scattered energy and the 

asymmetry factor for the Henyey-Greenstein phase function, was proposed by Hunter and 

Guo [10]. This method produced results that closely agree with FVM predictions in an 

axisymmetric cylindrical enclosure [10], and Monte Carlo benchmark solutions in a cubic 

enclosure [14]. The application to a Legendre scattering phase function in ultrafast radiative 

transfer is reported in [15]. A drawback of this normalization procedure is the need to 

predetermine a normalization matrix. This may be avoided using a simpler normalization 

technique [16], which simultaneously conserves the scattered energy and the asymmetry 

factor of the phase function, and maintains most of the phase-function shape. The method was 

applied to the Henyey–Greenstein phase function, yielding results similar to those obtained 

using the previous normalization technique, but with a lower computational effort. This 

technique has recently been extended to collimated radiation for Henyey-Greenstein or 

Legendre scattering phase-functions [17].   

 

It is also possible to approximate a strongly forward scattering phase function by another 

approximate phase function where the forward scattering peak is dealt with a Dirac delta 

function, and the remaining scattering contribution is accounted for using an isotropic or a 

moderate anisotropic phase function. In such a case, the lack of conservation of scattered 



 

 

 

 

 

 

energy or asymmetry factor is largely overcome. 

 

In the present work, the normalization methods of Liu et al. [11] and Hunter and Guo [10, 16] 

are applied to three test problems along with two other methods that do not rely on the 

normalization of the phase function. One of these methods is the FVM, which is applied here 

only to the in-scattering term. This means that the DOM is still employed, except in the 

evaluation of that term, in contrast to previous works where the angular discretization of the 

RTE was fully carried out using the FVM. In this sense, the present approach is a DOM-FVM 

hybrid formulation. The other method is based on the spherical harmonics discrete ordinates 

method, which was proposed by Evans in the framework of atmospheric radiation [18]. We 

are not aware of previous application of this method to thermal radiation problems. The 

approximation of a strongly scattering forward phase function by a Dirac delta function plus a 

smooth scattering contribution will be also investigated.  

 

2.  MATHEMATICAL FORMULATION 

 

The transient RTE for an emitting-absorbing-scattering grey medium may be written as 

follows [19]: 
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where  tI ,, sr  is the radiation intensity in direction s, r is the position vector, t is the time, c is 

the speed of light in vacuum, Ib is the blackbody radiation intensity, ,  and s are the 

absorption, extinction and scattering coefficients of the medium, respectively, and  ss ,  is 

the scattering phase function. he boundary condition for a grey surface that emits and 

reflects diffusely is given by[19]: 
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where  tI w ,, sr  and  tI w ,, sr   are the radiation intensities at boundary point rw that leave the 

boundary along s direction and arrive along s   direction, respectively, Ibw is the blackbody 

radiation intensity at the temperature of the boundary surface,  is the surface emissivity,  is 

the surface reflectivity, and n is the unit vector normal to the surface and pointing into the 

medium. When collimated radiation is present, the RTE is decomposed into a diffuse and a 

collimated component, as described in Modest [19]. 

 

In the present work, the DOM was used to solve equation (1). The spatial discretization was 

performed using the CLAM scheme, and the angular discretization was carried out using the 

SN quadrature, except in the cases identified below. In the case of transient problems, the time 

discretization was achieved using a second-order Runge-Kutta method. Details on the 

discretization procedure may be found elsewhere [20]. When the DOM is employed, the 

angular integrals are approximated by quadratures, e.g., the in-scattering term is evaluated as 
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where Nd is the number of discrete directions and wj is the quadrature weight for the jth 

direction. The scattering phase function is defined such that the integral of the phase function 

is equal to 4, but the approximation introduced by the quadrature generally yields an error, 

i.e., the scattered energy is not exactly conserved. The methods used in the present work to 

address this problem are described below.   

 



 

 

 

 

 

 

 

2.1. Normalization of Kim and Lee [9] 

The technique proposed by Kim and Lee [9], which will be referred hereafter as KL, is 

straightforward, and consists in multiplying the phase function by a normalization coefficient, 

so that the new phase function, 
~

, is given by: 
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The scattering phase function  in the in-scattering term of equation (1) is replaced by the 

normalized one,
~

, and this guarantees that the discrete form of the integral on the left side of 

equation (3) is indeed equal to 4when the radiation intensity is equal to unity for all 

directions. 

 

2.2. Normalization of Hunter and Guo[10] 

Boulet et al. [12] noticed that the KL normalization procedure may lead to strong 

modifications in the values of the discretized phase function when the asymmetry factor is 

large, and this compromises the accuracy of the results. Hunter and Guo [10] suggested that 

this may be avoided by enforcing conservation of the asymmetry factor of the phase function, 

g, in addition to conservation of the scattered energy. This is achieved by using a normalized 

phase function, 
~

, such that the following conditions hold: 
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The normalized phase function is defined as follows: 
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There are 2Nd equations (equations 5 and 6) to be satisfied and Nd (Nd+1)/2 unknows 

(equation 7), so that the system of equations has an infinite number of solutions for the 

normalization coefficients Aij. These coefficients were determined using the least norm 

solution via QR factorization [21], where R is an upper triangular nonsingular (2Nd × 2Nd) 

matrix and Q is an orthogonal Nd (Nd+1)/2 × 2Nd matrix, i.e., Q
T
Q is equal to the identity 

matrix of rank 2 Nd. Hereafter, this normalization procedure will be referred to as HG1. 

 

2.3. Normalization of Hunter and Guo[16] 

A simpler normalization procedure has been proposed by Hunter and Guo [16], which will be 

referred to as HG2. In this method, equations (5) and (6) are still enforced, but only the 

forward and the backward terms of the scattering phase function are normalized, while the 

others remain unchanged. Hence, equation (7) is only used when si.sj = 1 or si.sj= -1. This 

leads to a number of equations equal to the number of unknown Aij coefficients, which may be 

easily solved analytically after inserting equation (7) into equations (5) and (6), yielding 

explicit expressions for those coefficients (see [16] for details).  

 

2.4. Finite volume method 

An alternative to the previous normalization techniques of the scattering phase function is to 

replace the quadrature used in the DOM for the calculation of the integral on the left side of 



 

 

 

 

 

 

equation (3) by the integration procedure used in the finite volume method, which may be 

expressed as follows: 
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with ij defined as follows: 
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The integrals on the right hand side may be evaluated analytically if the scattering phase 

function is simple enough. In the general case, however, a numerical integration is required, 

causing a numerical integration error, and preventing the scattering energy from being exactly 

conserved. This error may be greatly reduced by splitting the control angles i and j into 

smaller angles. In the present work, an adaptive integration method [22] was used for the 

quadruple integration in equation 8(b), with a prescribed relative error of 10
-4

. This guarantees 

that the integration error is also negligible for the vast majority of problems. In order to apply 

this method, the boundaries of the control angles must be defined, and therefore the SN 

quadrature cannot be used. Instead, the polar /azimuthal discretization commonly used in the 

FVM has been employed. 

 

2.5. Spherical harmonics discrete ordinates method 

The last method used in the present work to evaluate the in-scattering term of the RTE is 

based on the spherical harmonics discrete ordinates method introduced by Evans [18] in the 

field of atmospheric radiation. It will be referred to below as SHDOM. This method is rather 

different from the standard DOM, but the only feature of the SHDOM that we will retain here 



 

 

 

 

 

 

is in the evaluation of the in-scattering term, while the standard DOM is used elsewhere. This 

term is evaluated using spherical harmonics. Denoting the in-scattering term of the RTE by 

SSH(r,s), where the temporal dependence was omitted for simplicity, the following truncated 

expansion in spherical harmonics is taken: 
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In this equation,  s
m

l
Y  are spherical harmonics,  r

m

l
S  are coefficients that depend only on 

the spatial coordinates, and M ≤ L. Note that terms such that M > l are equal to zero. The real 

spherical harmonics are defined as follows: 
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where m

l
 are associated Legendre functions,  

m

l
P  are associated Legendre polynomials, 

and u(m) = cos(m) if m≥0 and u(m) = sin(m) if m<0. The in-scattering term is 

transformed to discrete ordinates as follows: 

 

       rsr
m

l

L

l

M

Mm

kj
m

ljk Smu,S  
 



0

DOM   (11)  

 

where j=cosj and subscripts j and k identify one among the Nd  directions of the DOM 

angular discretization. The RTE is solved using the in-scattering term given by equation (11) 

to obtain the radiation intensity for every direction, namely Ijk(r)=I(r,sjk).  

 

The radiation intensity at every grid node, evaluated from the DOM, is transformed to 



 

 

 

 

 

 

spherical harmonics space as follows: 
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The coefficients  r
m

l
I are given by [18]: 
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where N and N are the number of cosine polar angles and the number of azimuthal angles, 

respectively, and j and k are the quadrature weights. The values of N and N are related to 

L and M according to the following relations [18], which ensure that the spherical harmonics 

are orthogonal when their product is integrated: 

 

1 NL  (14)  

12  NM  (15)  

 

In addition, since M must be lower or equal than L, the following relation also holds: N≤ 2N. 

A Gauss-Legendre quadrature was used for the integration in the polar angle, i.e., the cosines 

of the polar angles of the discrete directions in the DOM, j, correspond to the roots of the 

Legendre polynomial of order equal to that of the quadrature, i.e., N. The azimuthal angles 

are evenly spaced, and the quadrature weights k are equal to 2/N. 

 

The scattering phase function written in terms of Legendre polynomials may also be 



 

 

 

 

 

 

expressed in terms of truncated spherical harmonics: 
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where ss cos  and Pl is the Legendre polynomial of order l. The Henyey-Greenstein 

phase function may be written in terms of Legendre polynomials by setting l=(2l+1) g
l
. The 

in-scattering term is evaluated in spherical harmonics space as follows: 
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where the orthogonality property of the spherical harmonics has been used. It follows from 

equations (9) and (17) that the coefficients of the spherical harmonics expansion of the in-

scattering term are given by: 
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The solution algorithm may be summarized as follows: 

 

(i) The in-scattering source term evaluated in the spherical harmonics space is 

transformed to discrete ordinates according to equation (11). This step is ignored in the first 

iteration. 

(ii) The RTE is solved using the DOM, with the in-scattering term evaluated in step (i). 



 

 

 

 

 

 

In the first iteration, the in-scattering term is calculated using a quadrature, as in the standard 

DOM. 

(iii) The radiation intensity field calculated in step (ii) is transformed to spherical 

harmonics according to equation (12), with the coefficients given by equation (13). Only these 

coefficients need to be calculated. 

(iv) The in-scattering term in spherical harmonics space is calculated from the radiation 

intensity field in spherical harmonics using equation (17). Only the coefficients  r
m

l
S , given 

by equation (18), of the spherical harmonics expansion of the in-scattering term, which is 

expressed by equation (9), need to be evaluated. This involves simple multiplications rather 

than summations that typically appear in quadrature rules. 

 

2.6. Approximate scattering phase function 

In addition to the methods described above, which are applied to the Henyey-Greenstein 

scattering phase function of the problem under consideration, we will further examine the 

approximation of the Henyey-Greenstein phase function using the transport, the delta-

Eddington or the delta-M approximations. In all cases, the approximate scattering phase 

function is defined as follows: 
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In the transport approximation [23], the phase function * is equal to unity and the parameter 

f is set equal to the asymmetry factor. If the transient term of RTE is neglected, then the 

transport approximation is equivalent to replace the anisotropic scattering problem by an 

isotropic one with the following modified scaled parameters: 
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In these equations,  and  stand for the albedo and optical thickness, respectively, and the 

circumflex denotes a scaled parameter. In the delta-Eddington approximation, the phase 

function * is defined as follows [24]: 
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where parameters f and g´ are given by: 
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In both cases, the DOM may be used without normalization of the approximated phase 

function, since the strong forward scattering peak is fully accounted for by the Dirac delta 

function, and the remaining term of the phase function is smooth, no matter the value of the 

asymmetry factor. 

 

The delta-M phase function is defined as follows [25]: 
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where parameter f is given by f = g
2M

. In the case of M=1, the delta-Eddington approximation 

is recovered. When M increases, the delta-M phase function becomes closer to the Henyey-

Greenstein phase function and the contributions of the first and second terms on the right side 



 

 

 

 

 

 

of equation (19) are smaller and larger, respectively. Therefore, the asymmetry factor of * 

increases. If M is small enough, the normalization of the phase function is not needed. 

Otherwise, it becomes necessary. However, in such a case there is no advantage in the 

replacement of the Henyey-Greenstein by the delta-M phase function. 

 

3.  RESULTS AND DISCUSSION 

 

Three test cases are presented in this section. The first two are steady-state radiative transfer problems, 

one in a 3D cubical domain and the other in a 2D axisymmetric enclosure. The last test case addresses 

a transient problem with collimated incident radiation. The methods outlined above are compared. 

Their acronyms are summarized here to allow easier identification: 

MC  Monte Carlo method 

DOM  Discrete ordinates method 

KL  DOM using Kim and Lee [9] normalization method 

HG1  DOM using Hunter and Guo [10] normalization method 

HG2  DOM using Hunter and Guo [16] normalization method 

FVM  DOM using the finite volume method to evaluate the in-scattering term of the RTE 

SHDOM - Spherical harmonics discrete ordinates method  

3.1.  Test case 1 

 

The first test case consists of a cube of unit side length, L, containing a grey and cold (non-

emitting) medium with an optical thickness =L=10. The walls are black and cold, except 

the bottom one (z=0), which has a unit emissive power. The scattering albedo is =s/=1, 

and the Henyey-Greenstein phase function was considered. The calculations were carried out 

using a uniform mesh with 25×25×25 grid nodes and an S12 quadrature for the DOM and the 

KL, HG1 and HG2 normalization methods. A quadrature with 7 polar angles and 3 azimuthal 

angles per octant was used in the case of the FVM, yielding the same number of discrete 



 

 

 

 

 

 

directions as the S12. In the case of the SHDOM, N and N were set to 14 and 12, 

respectively, yielding again the same number of discrete directions.  

 

This test case was also used by Boulet et al. [12] and Hunter and Guo [14, 16]. Boulet et al. 

[12] used the FVM for the spatial and angular discretization of the RTE, along with the STEP 

scheme, a slightly coarser mesh (21×21×21) and a little finer angular discretization with 4 

polar angles and 6 azimuthal angles per octant. Hunter and Guo [14] employed the DOM with 

the same spatial and angular discretizations used in the present work, but employed the 

positive scheme instead of the CLAM scheme. Our results are very similar to those obtained 

in [12] and [14]. The results presented below are compared with a Monte Carlo (MC) solution 

also reported in [12]. 

 

Figure 1 shows the influence of the grid size and quadrature on the incident heat flux, 

normalized by the emissive power of the hot boundary, along a central line on the top 

boundary of the cubical enclosure. The plotted results were calculated using the DOM with 

the HG2 normalization method of the phase function, for an asymmetry factor equal to 0.93. 

It can be seen that the grid size has a small influence on the results. The predictions obtained 

using the S4 quadrature are rather different from all the others, but the S12 and S16 give results 

similar to each other, while the results of the S8 quadrature depart a little from them. 

Therefore, the mesh with 25×25×25 grid nodes and the S12 quadrature are adequate for the 

present test case. 

 

A comparison of the various methods used to handle the strong anisotropy of the phase 

function is displayed in figure 2. When the asymmetry factor is equal to 0.20, all methods 

yield similar results, which closely match the Monte Carlo reference solution. In fact, 



 

 

 

 

 

 

normalization of the scattering phase function is not needed in this case. If the asymmetry 

factor is equal to 0.80, the KL method overestimates by up to 7% the predictions of all other 

methods, which are in good agreement with each other and with the Monte Carlo reference 

solution. In the case of an asymmetry factor of 0.93, the KL results are rather poor. This is 

consistent with previous works [12, 14], and is explained by the change of shape of the 

scattering phase function, due to the normalization introduced to enforce conservation of the 

scattered energy. The asymmetry factor is modified due to this normalization, leading to the 

poor predictions observed. This problem is enhanced with the increase of the asymmetry 

factor. The remaining four methods employed here successfully overcome the limitations of 

the KL method, even though their predictions are not as close to the MC solution as for the 

lower values of the asymmetry factor. The HG1 and HG2 normalization methods yield very 

similar results, which underpredict by 8 to 10% the MC benchmark solution, in agreement 

with the results reported in the literature [14, 16]. Both the SHDOM and the FVM perform 

very satisfactorily, and their predictions are even closer to the MC solution than those of the 

HG1 and HG2 methods. The very good performance of the FVM is consistent with the 

findings of Boulet et al. [12].  

 

In general, the computational requirements of the SHDOM are the lowest, even though the 

need to switch between the discrete ordinates and the spherical harmonics spaces might 

suggest the opposite. Note, however, that the calculation of the in-scattering term in the 

spherical harmonics space only requires the evaluation of the coefficients of the spherical 

harmonics expansion by means of equation (18), which involves a straightforward 

multiplication. In the case of g=0.20, the CPU time for SHDOM was about 600 s in a personal 

computer with an Intel
®
 Core

TM
 i7-4700HQ @ 2.4 GHz processor with 8Gb RAM, compared 

with about 950 s for the other methods. When g=0.80, the CPU time for SHDOM was about 



 

 

 

 

 

 

300 s, compared with 370420 s for the other methods. Finally, in the case of g=0.93, the 

CPU time for the SHDOM was about 360 s, exceeding a little the computational requirements 

of the FVM (~300s), but remaining lower than those of KL (~540 s), HG1 (~840 s) and HG2 

(~1030 s). The CPU time for the normalization procedure has not included, but it is marginal 

(less than 10s for HG1, and negligible for KL and HG2). 

 

The decrease of CPU time when g increases from 0.20 to 0.80 is likely to be due to the fact 

that, in the former case, coupling between the different directions is stronger. When the 

asymmetry factor increases, only the directions closer to the direction of propagation play a 

role, while the remaining directions have a negligible contribution to the in-scattering term. 

However, when the asymmetry factor approaches unity, the contribution to the in-scattering 

term of directions close to the direction of propagation becomes increasingly larger, and since 

directions different from that of propagation are treated implicitly, the number of iterations 

required to achieve convergence is likely to increase. This may explain the increase of CPU 

time observed for most methods when g increases from 0.80 to 0.93.  

 

3.2.  Test case 2 

 

In the second test case, an axisymmetric cylindrical enclosure with radius R=1 m and height 

H=2 m is considered. The walls are black and cold, except the cylindrical surface, which has 

an emissive power of unity. The medium is cold, and scatters according to the Henyey-

Greenstein phase-function. The calculations were performed using a uniform mesh with 

25×25 control volumes. The S16 quadrature was used for the DOM and the KL, HG1 and HG2 

normalization methods, while 9 polar and 4 azimuthal angles per octant were used in the 

FVM. In the case of the SHDOM, N and N were set to 18 and 16, respectively. Hence, the 



 

 

 

 

 

 

same number of discrete directions is used for all methods. We first consider a purely 

scattering medium with an optical thickness, based on the radius of the cylinder, equal to 25. 

 

This test case was proposed by Hunter and Guo [10], who compared the FVM and DOM 

using the same grid size and angular discretization considered here. The results obtained using 

the STEP scheme, which are not shown here, closely match those reported in [10] when the 

phase function is normalized according to HG1 method. When the CLAM scheme is 

employed, the predicted net heat fluxes on the hot boundary are lower than those obtained 

using the STEP scheme, particularly for the lowest value of the asymmetry factor (0.8). 

 

Figure 3 shows a comparison between the net heat fluxes on the hot wall, normalized by its 

emissive power, obtained for the mesh and quadrature mentioned above, and for a much finer 

mesh with 100×100 control volumes and angular discretization, with 12 polar angle and 12 

azimuthal angle subdivisions per octant. The DOM was used along with the CLAM scheme 

and the HG1 method. The figure reveals a very low sensitivity of the results obtained to the 

spatial and angular grid refinement. Hence, the results displayed in figure 4, where the 

different methods are compared, were obtained using the coarsest discretization. 

 

Figure 4 shows that all methods perform similarly for g=0.80, as far as the accuracy is 

concerned. When g increases to 0.90, the solutions obtained using HG1, HG2, FVM and 

SHDOM are in good agreement with each other. The KL normalization method overestimates 

the net heat fluxes by about 20% at z=H in comparison with HG1. In the case g=0.95, the 

differences between the HG1, HG2, FVM and SHDOM remain small. The KL predictions are 

about 20% higher than those of the HG1 method in the middle of the cylinder, in agreement 

with previously reported results [10].  



 

 

 

 

 

 

 

Additional calculations were performed for an asymmetry factor of 0.95, an albedo of 0.90, 

and three different values of the optical thickness of the medium. Our predictions obtained 

using HG1 normalization method are in close agreement with those reported in [10]. The 

influence of the grid size and angular discretization is relatively small, as evidenced in figure 

5, obtained using the same normalization procedure, but the presence of ray effects is visible 

when the optical thickness of the medium is equal to unity, despite the fine discretizations 

employed. Figure 6 shows the comparison of the various methods employed for the coarsest 

discretization. The results obtained using KL, HG1 and HG2 are very close to each other for 

=1.0 and =5.0. The FVM and SHDOM yield smooth results for =1.0, i.e., ray effects are 

not visible, and the predictions are in good agreement with those obtained using the DOM for 

both =1.0 and =5.0. When the optical thickness increases to =25.0, the KL method 

overpredicts the DOM solutions for HG1 and HG2 normalization methods by about 5%, 

while the FVM underpredicts those DOM solutions by 1.5%. The SHDOM closely matches 

the DOM predictions. 

 

The CPU times required for the solution of the RTE when the DOM along with HG1 and 

HG2 normalization methods are used are generally close to each other. The FVM and 

SHDOM require more CPU time than the DOM (along with HG1 or HG2 methods) for 

=25.0, no matter the asymmetry factor, but lower CPU time for =1.0 and =5.0, while an 

opposite trend was found for the DOM along with KL method. Regardless of the method 

used, the CPU time required to solve the RTE is typically lower than 25 s for g=0.95, and 

lower than 55 s for other asymmetry factors, but depends on the optical properties of the 

medium. These times are much smaller than in test case 1, because the present problem is 

two-dimensional. 



 

 

 

 

 

 

 

The CPU times required for the KL and HG2 normalization of the scattering phase function 

are negligible, but those of the HG1 normalization procedure (about 110 s) and of the 

evaluation of the average scattering phase function in the FVM (about 170 s), largely exceed 

the CPU time needed to solve the RTE for the present test case. 

 

3.3.  Test case 3 

In the last test case, a three-dimensional cubic domain of side L=1 m, containing a scattering 

and absorbing homogeneous medium, is studied. The medium is subjected to an incident short 

pulse laser source normal to the boundary x=0, while the remaining boundaries are non-

reflecting and cold (non-emitting). The medium is also cold, with an optical thickness of 10 

and a scattering albedo of 0.5. The scattering is described again by the Henyey-Greenstein 

phase function with an asymmetry factor of 0.90. The collimated intensity of the short pulse 

laser, denoted by Ic, is Gaussian in time and uniform in space, according to: 

 

          pppoc tt,tttIt,,z,y,xI 6032ln4exp0
2

 iss   (24) 

 

where  is the Dirac delta function and Io is the maximum radiative intensity of the pulse, 

which occurs at t = 3tp. The dimensionless time parameter, defined as pp tct 
* , with c 

standing for the speed of light, is set equal to 0.5. After t = 6tp the medium is free from 

irradiation. In this test case we are concerned with the transmitted, T, and reflected, R, 

temporal signature of the incident radiation, which are given by: 
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where Id is the diffuse component of the radiation intensity.  

 

The temporal discretization was performed using a second-order Runge-Kutta scheme. The 

domain was discretized using a grid with 200×20×20 control volumes and an S12 quadrature, 

and the time step t was defined as t=.x/c, where the stability parameter  was set equal 

to 0.5. A previously validated Monte Carlo algorithm [26] was used to provide benchmark 

results. 

 

The KL and HG1 normalization methods may be readily extended to account for the 

collimated component [27], as well as the FVM and SHDOM. However, the HG2 

normalization procedure is not directly applicable, since the collimated component does not 

belong to the set of discrete directions, and therefore it is not feasible to normalize the forward 

and backward components of the phase function. However, the original idea underlying this 

method may be maintained by applying the normalization to the discrete directions with the 

scattering angle closest to 0º and 180º, as described in [17]. A drawback of this 

implementation is the possible occurrence of unphysical negative values of the normalized 

scattering phase function for a scattering angle close to 180º, as reported in [17] and 

confirmed in the present test case. Despite this, it was possible to obtain a converged solution, 

due to the minor role played by the backward-scattering terms in the case of a large and 

positive asymmetry factor. 

 

The results obtained are displayed in figure 7. If the DOM is used without any normalization 

method for the phase function, the transmittance is overestimated by more than one order of 



 

 

 

 

 

 

magnitude, while the decay of the reflectance after the peak is also strongly overestimated. 

Even though all other methods yield much better solutions, the discrepancies among them, 

and in comparison with the Monte Carlo reference solution, are larger than for the previous 

test cases. The KL normalization procedure provides a surprisingly good estimation of the 

transmittance, but does not perform well as far as the reflectance calculation is concerned. 

The HG1 and HG2 methods underpredict the peak of the transmittance by about 15%, but 

match well the reference solution for shorter and longer times. The HG1 method further yields 

an accurate prediction of the reflectance, while the HG2 procedure does not, due to the 

problem with the normalization of the collimated radiation component mentioned above. The 

FVM predictions of the transmittance are similar to those of the DOM with HG1 or HG2 

methods. The former method marginally overpredicts the peak of reflectance, in contrast with 

the latter, which slightly underestimates that peak, in comparison with the MC reference 

solution. The SHDOM provides the best estimate of the transmittance, and predicts well the 

reflectance. 

 

Both the DOM with any of the tested normalization methods and the FVM require about 26 h 

of CPU time for this transient problem, while the SHDOM is far more efficient, and needs 

only about 11.5 h.  

 

3.4.  Approximation of the scattering phase function 

We will now examine whether the approximation of the Henyey-Greenstein phase function by 

the phase functions mentioned in section 2.6 is satisfactory or not for the previous test cases. 

Figures 8(a) and 8(b) show the predictions obtained using the DOM for test cases 1 and 2, 

respectively, and corresponding to the set of radiative properties considered in Figs. 2 and 4, 

respectively. In the case of the Henyey-Greenstein phase function, the HG1 normalization 



 

 

 

 

 

 

method was used, while no normalization is required for the transport, delta-Eddington and 

delta-M approximations.  

 

The transport and delta-Eddington approximations perform quite well for asymmetry factors 

up to 0.9 in the two test cases. Therefore, they can be used instead of the normalization 

procedures discussed above. The delta-Eddington approximation performs better than the 

transport approximation, as expected, since * is linearly anisotropic in the former 

approximation and isotropic in the latter. The delta-Eddington and delta-M phase functions 

yield similar results, which are graphically indistinguishable, and therefore only the results 

calculated using the former phase function are presented.  

 

When the asymmetry factor is greater than 0.90, the differences between the results for the 

different phase functions become larger. Although the transport and delta-Eddington 

approximations remain an attractive option for test case 1, improved results are obtained using 

the delta-M with M=2, denoted as delta-M2 in the figure. The results for delta-M 

approximation are not shown for test case 2, since they are almost coincident with those of the 

delta-Eddington approximation. 

 

In test case 3, however, the results obtained using the transport and delta-Eddington 

approximations are rather different from those calculated using the Henyey-Greenstein phase 

function, as illustrated in Figs. 8(c) and 8(d). The transmittance peaks are overestimated by a factor of 

two or more. Moreover, the maximum transmittance occurs earlier, and the subsequent decay is faster 

when those approximate phase functions are used. The reflectance peak calculated using the transport 

approximation is marginally overestimated, and that computed using the delta-Eddington phase 

function is significantly underestimated. Accordingly, these approximate phase functions should not 

be used in the case of transient radiative transfer with collimated irradiation. However, the delta-M 



 

 

 

 

 

 

function provides much better results, particularly for M=6, even though the transmittance peak occurs 

slightly earlier in comparison with the solution computed using the Henyey-Greenstein phase function. 

 

Overall, and since the Henyey-Greenstein phase function is also an approximation of an actual phase 

function, the delta-M may be used instead of the Henyey-Greenstein phase function, allowing the 

DOM to be applied to strongly forward scattering media without any normalization technique. 

However, the value of M in the delta-M approximation needs to be carefully chosen. If it is too small, 

the approximation may be poor, while if it is too large, the weight of the Dirac delta function in Eq. 

(19) is small, and the results may be worst. In fact, even though the delta-M function approximates 

better the Henyey-Greenstein phase function when M increases, the asymmetry factor of * 

increases as well. When this asymmetry factor is large enough and the DOM is used, the error 

in the calculation of the scattered energy and asymmetry factor tends to increase. In such a 

case, the phase function needs to be normalized to avoid poor predictions, but then there 

would be no advantage in replacing the Henyey-Greenstein by the delta-M phase function, as 

pointed out in section 2.6. In test case 3, the results obtained using M=8 (not show in the figure) are 

worst then those computed using M=6, because the asymmetry factor of * for M=8 is large 

(g=0.87). 

 

4.  CONCLUSIONS 

An investigation of different strategies to deal with highly anisotropic scattering media in the 

framework of the DOM was carried out. Different proposals for the normalization of the 

phase function previously reported in the literature were compared with two other approaches 

that do not rely on the phase function normalization. One of them is based on the finite 

volume method for the evaluation of the in-scattering term of the RTE, and the other is based 

on the spherical harmonics discrete ordinates method, formerly used in the field of 

atmospheric radiation. The use of approximate phase functions given by the sum of a Dirac 



 

 

 

 

 

 

delta function and a smoother phase function is also investigated as an alternative to the 

normalization of the strongly forward scattering phase function. 

 

 The KL normalization procedure does not perform well for highly anisotropic scattering, in 

agreement with past work, since it does not preserve the asymmetry factor of the phase 

function. The HG1 method was highly effective for all studied cases, but the computational 

requirements of the normalization procedure may exceed those needed for the solution of the 

RTE. The HG2 technique overcomes that drawback, and provides solutions of similar 

accuracy for diffuse radiation. In the case of collimated radiation, however, this technique 

may yield negative normalization coefficients and physically unrealistic values of the 

normalized scattering phase function. These may lead to negative values of the radiation 

intensity. Even though this did not prevent convergence for the test case selected in this work, 

the predictions of the reflectance for the transient test case were not satisfactory. Therefore, 

this normalization procedure should be used with caution for collimated radiation. 

 

The FVM is an interesting alternative to the normalization procedures, since it does not 

modify the phase function. However, an accurate integration is needed to obtain the average 

phase function for every pair of discrete directions, before and after scattering, and this may 

be time-consuming in the case of acute forward scattering. In the present work, an adaptive 

integration method was employed, which yields satisfactory results for an asymmetry factor 

up to 0.95.  

 

The SHDOM performed quite well for all test cases, and the computational cost was the 

lowest, except in the two-dimensional axi-symmetric problem and for optically thick media. It 

proved to be a very interesting alternative to the DOM anisotropically scattering media, and 

deserves further investigation. 



 

 

 

 

 

 

 

The approximation of the Henyey-Greenstein phase function using the transport or the delta-

Eddington approximation is very satisfactory when the transient term of the RTE is negligible 

and the asymmetry factor does not exceed 0.90, and still performs reasonably for higher 

asymmetry factors, avoiding the normalization of the phase function. In the case of transient 

problems with collimated irradiation, those approximations do not perform well, but the more 

accurate delta-M phase function yielded very satisfactory results. Therefore, it constitutes an 

interesting alternative that relaxes the need to normalize the phase function when the DOM is 

applied to strongly forward scattering media. However, the value of M needs to be carefully 

chosen, and should be as large as possible, provided that the scattered energy and the 

asymmetry factor are accurately evaluated. 
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FIGURE CAPTIONS 

 

 
Figure 1.  Influence of the grid size (a) and quadrature (b) on the incident heat flux, normalized by the 

emissive power of the hot boundary, on the central line of the top surface. 

 

Figure 2.  Incident heat flux, normalized by the emissive power of the hot boundary, along a central 

line on the top surface of the enclosure. 

 

Figure 3. Influence of the spatial and angular discretizations on the net heat flux on the hot 

boundary, normalized by its emissive power. 

 

Figure 4. Net heat flux on the hot boundary, normalized by its emissive power, along the axial 

direction. 

 

Figure 5. Influence of the spatial and angular discretizations on the net heat flux on the hot 

boundary, normalized by its emissive power. 

 

Figure 6. Net heat flux on the hot boundary, normalized by its emissive power, along the 

axial direction. 

 

Figure 7. Time history of the dimensionless transmittance and reflectance for test case 3. 

 

Figure 8. Influence of approxiamted scattering phase functions. 

(a) Incident heat flux for test case 1. 

(b) Net heat flux for test case 2. 

(c) Transmittance for test case 3. 

(d) Reflectance for test case 3. 



 

 

 

 

 

 

 

  

 

Figure 1. Influence of the grid size (a) and quadrature (b) on the incident heat flux, 

normalized by the emissive power of the hot boundary, on the central line of the top surface. 



 

 

 

 

 

 

 
 

Figure 2.  Incident heat flux, normalized by the emissive power of the hot boundary, along a 

central line on the top surface of the enclosure. 

  



 

 

 

 

 

 

 

Figure 3. Influence of the spatial and angular discretizations on the net heat flux on the hot 

boundary, normalized by its emissive power.  



 

 

 

 

 

 

 

 

Figure 4. Net heat flux on the hot boundary, normalized by its emissive power, along the axial 

direction. 

  



 

 

 

 

 

 

 
 

 

Figure 5. Influence of the spatial and angular discretizations on the net heat flux on the hot 

boundary, normalized by its emissive power. 



 

 

 

 

 

 

 

 

Figure 6. Net heat flux on the hot boundary, normalized by its emissive power, along the axial 

direction.  



 

 

 

 

 

 

  
 

Figure 7. Time history of the dimensionless transmittance and reflectance for test case 3. 

  



 

 

 

 

 

 

 
 

  

Figure 8. Influence of approxiamted scattering phase functions. 

(a) Incident heat flux for test case 1. 

(b) Net heat flux for test case 2. 

(c) Transmittance for test case 3. 

(d) Reflectance for test case 3. 
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