ENERGY REDISTRIBUTION IN A CLASS OF NONLINEAR DYNAMICAL SYSTEMS ABSTRACTED FROM FLUID DYNAMICS

Bertrand C. Barrois 1 Nonlinear dynamical systems that conserve both energy and phase-space measure generally show an equipartition of energy, but malpartition after driving and damping terms are added. This paper develops a heuristic picture of the redistribution of energy in such systems, but numerical simulations find the random phase approximation to be inaccurate. The mathematical framework reveals conditions under which directly driven modes may pump weakly damped modes. The phenomenon of "hyperbolic pumping" may be relevant to solar and planetary dynamos, in which fluid flows are driven by convection, but certain privileged magnetic field modes accumulate disproportionate fractions of the total energy.

Turbulent fluid dynamics exemplifies a class of nonlinear systems that specify the time evolution of the field variables in terms of linear and bilinear functions, provided that autonomous forcing terms are replaced by linear terms that promote exponential growth of normal modes. Convective heat transport can be cast into this form (without autonomous heat sources) if the super-adiabatic time-average temperature gradient T  that drives the convective instability is known a-priori.
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Let us set the problem in an abstract and general framework. First consider a

Hamiltonian system of nonlinear ODEs rigged to conserve the sum of squares. Individual variables ("components") correspond to orthonormal modes of actual physical systems.
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If the state variables are complex, then the system should be rigged to conserve X X  * . The Liouville condition is satisfied automatically, as if by magic.
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The trajectories of such systems never leave the hypersphere, and thanks to the Liouville condition, non-periodic trajectories almost always cover the hypersphere fully and uniformly in ergodic fashion. 2 We may say that such systems equipartition, in the sense that
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Since the equal-time correlations and higher moments are known a-priori, we can expand lagging-time correlation functions in Taylor series. Time-derivatives can be rewritten by iterative application of the fundamental ODEs, yielding an explicit diagrammatic expansion. Note that a time average over one solution is equivalent to an ensemble average over many solutions.
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Consider incompressible flow in two dimensions. The Navier-Stokes equation may be reformulated as a complex system in wavenumber (k) space, with basis elements having the form ( ) exp( )
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The pressure gradient term merely serves to enforce incompressibility and drops out when projected onto any divergence-free pattern.
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Although periodic orbits do exist, they constitute a set of measure zero and are generally unstable.

Another exception pertains to 3-component systems, where the topological taboo against self-crossing constrains the orbits to be closed (hence periodic) circles on the 2-sphere.
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It is easy to verify that the coupling coefficients obey the cyclic sum condition that guarantees conservation of kinetic energy until viscosity goes to work. Wavenumbers are conserved, as required by translational invariance.

The fact that velocities are real in position space requires the amplitudes to obey
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 . However, cross-correlations between amplitudes with wavenumbers of unequal magnitude must vanish, thanks to translational invariance. The wavenumber basis serves to diagonalize the covariance matrix
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We should also take note of two scaling rules involving the coefficients:
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The second scaling rule is key to the proof that loop diagrams are UV-convergent when integrated over unbounded internal wavenumbers. It follows from incompressibility and translational invariance, unless boundary conditions disrupt the invariance and invalidate the result: ~exp( ); ~exp( ); ~exp( )
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Quirks of Classical Field Theory

In quantum field theories such as 4  , there is no need to distinguish between lines that enter and lines that leave a vertex. But in classical dynamics, the distinction is critical, because i jk f is not fully symmetric.

Systems that equipartition obey Gertrude Stein's principle: A rose is a rose, and a

propagator is a propagator. When equipartition holds, the stimulus-response function is identical to the correlation function, up to normalization. 3 For time lag
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The important distinction between correlation and stimulus-response is the subject of the classic paper by Martin, Siggia, and Rose [START_REF] Martin | Statistical dynamics of classical systems[END_REF]).
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We now proceed to ask what will happen when we add linear terms to drive some variables and damp others. Experience teaches that the orbits are likely to approach an attractor set with fractal character.
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Such driven systems violate equipartition. One cannot presume the identity of the autocorrelation and stimulus-response functions. The familiar derivation of diagrammatic expansions in field theory starts from a bare propagator, but in driven systems, only the bare stimulus-response function is defined:
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Even if the autocorrelation function were known, higher moments might not factorize.

From Amplitudes to Power Spectra

Lacking a field-theoretic formulation, we will now present a shamelessly heuristic approximation that aims to predict the equilibrium distribution of energy of driven systems of this general type. It relies upon a random phase approximation (RPA) that presumes factorization:
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The key premise is that each amplitude is buffeted by a random "noise process" that represents the contributions of many bilinear terms, which are taken to be independent of the amplitude in question. The amplitude undergoes a random walk, which would cause its variance to grow linearly with time, were it not for a redistributive process that causes exponential drawdown and replacement. It therefore undergoes a reverting random walk.

The redistribution of energy can best be described in a diagonalizing basis. It is usually sufficient to require conservation of wavenumber: , 0
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(Numerical experiments find that if L is too small, such systems are liable to approach an attractor that breaks the expected translational symmetry.)

Each independent noise process is characterized by mean-square value (E) and correlation time (T). For any three coupled components, the dynamics that feed energy to k must also draw energy from i and/or j, in the fixed ratio ::
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f f f prescribed by the cyclic sum condition, provided that the coefficients are purely real. (If they were complex, then Re ( )
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, and the ratio would depend on the complex phase of the three amplitudes.) By itself, redistribution does not change total energy:
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Collecting all the terms that affect component m, and including driver-dampers, we get
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Feed-to terms are uniformly positive, but draw-from terms are negative on the average, because 0,
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 although individual draw-from terms can be positive or negative. (We shall soon see that positive terms can promote malpartition by pumping undriven components.) These terms correspond diagrammatically to one-loop insertions in autocorrelation and stimulus-response lines, respectively.

There is no validated formula for correlation times. Numerical simulations of undriven systems show that autocorrelation functions are bell-shaped, whereas the linear driver-damper terms tend to cause exponential growth (or decay) of stimulus-response functions. This observation suggests an approximation:
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The overall correlation time ( , , ) T i j k is a symmetric function of the three indices. Both 2 G and g combine additively: ( , , )
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The intricately coupled equations for E and G cannot be solved explicitly, but the redistribution equation can be tested via numerical simulations that calculate the true equilibrium distribution. Figure 1 plots the redistribution terms against the linear drivingdamping terms, which should ideally balance and follow the 45° line. The correlation tightens as L increases. The slope suggests that correlation times have been slightly overestimated by the approximations discussed above.

For purposes of this test, the coupling coefficients were drawn from a random distribution, subject to the usual cyclic-sum and Liouville constraints. The i i g coefficients were also drawn from a random distribution, but the ratio of driving to damping rates was rescaled as needed to prevent secular growth or decay of total energy.

-6- The redistribution equations are grossly inaccurate when applied to fluid dynamics, in which the equilibrium distribution is known to follow a Kolmogorov spectrum. But for the natural cutoff supplied by the diameter of the system, integrals over wavenumber would be IR-divergent. Moreover, as [START_REF] Kraichnan | Kolmogorov's hypotheses and Eulerian turbulence theory[END_REF]) has argued, the RPA fails because quasiuniform (low-wavenumber) flows sweep along all small-scale eddies in parallel.

Moreover, the two-loop corrections have predictable signs.

Amplification by Hyperbolic Sloshing

Our prior observation that draw-from terms are not necessarily negative suggests that directly driven components may pump up other components that are not directly driven. This sets up a failure of the hidden assumption of statistical independence.

Consider any three components coupled so as to conserve energy:
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Dt is directly driven, it may be considered an autonomous process that is not influenced by donating energy to A and/or B.

If 0   , then ( , )
AB is driven along a hyperbolic path, As a rule, hyperbolic sloshing tends to pump up the most durable component ("Methuselah mode") of a system. Paradoxically, other components must be killed off. (Methuselah's wife had to die, for him to live so long.)

The sine qua non of hyperbolic sloshing is the requirement that 0   . Stellar and planetary dynamos furnish a real-life example [START_REF] Barrois | Bird's-eye view of the solar dynamo[END_REF]. Radial flows driven by buoyancy can induce hyperbolic sloshing that may pump up the main magnetic field.

Rising plumes decelerate and create divergence zones as they approach the surface, thereby squeezing tangential field lines transversely and amplifying the field strength, say by a factor of exp( ) a  . Falling plumes elsewhere do the opposite, but the overall effect amounts to amplification because 11 22 exp( ) exp( ) 1 aa     .

In the jargon of vector spherical harmonics, we may say that the poloidal flow 
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APPENDIX: MULTI-LOOP CORRECTIONS

The two-loop diagram in Figure 3 spawns a of distinct feed-to terms in classical field theory, which distinguishes stimulus-response from autocorrelation lines. The "cross-bar" of present interest arise from vertex corrections, but line corrections are already implicit in correlation times. The following constraints enforce additive conservation of wavenumber, given the reference directions of positive wavenumber indicated: 0; 0; 0 i j k i n p j n q         

Corrections to the redistribution equation may be extracted from the following equation by collecting relevant terms: . Moreover, we assume all couplings to be purely real.

The inner factors are sandwiched between the common factors that pertain to the left-and rightmost vertices: 

, , , , , , , , , , , , , , , 
j q p n E f E f E E f E f E E E f E f f E f E E E E f f E E E f f E E f f E E E f f E E        

Figure 1 .

 1 Figure 1. Test of one-loop redistribution equation
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  Figure 2. Hyperbolic pumping

Figure 3 .

 3 Figure 3. Generic two-loop cross-bar diagram

  This exponential growth trend is in qualitative agreement with the heuristic redistribution equation. The greater eigenvalue approximates the true growth rate.

	We may derive the exponential growth rate of the intercept analytically. If we
	parameterize the hyperbola as	cosh( ),   A E B E 		sinh( ) 	, then the differential
	equations may be rewritten as follows:	
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	then the probability density function for θ may be found explicitly:
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