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ABSTRACT

We consider a network model where bandwidth is fairly
shared by a dynamic number of elastic and adaptive stream-
ing flows. Elastic flows correspond to data transfers while
adaptive streaming flows correspond to audio/video appli-
cations with variable rate codecs. In particular, the former
are characterized by a fixed size (in bits) while the latter
are characterized by a fixed duration. This flow-level model
turns out to be intractable in general. In this paper, we give
performance bounds for both elastic and streaming traffic
by means of sample-path arguments. These bounds present
the practical interest of being insensitive to traffic character-
istics like the distributions of elastic flow size and streaming
flow duration.
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Keywords
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1. INTRODUCTION

Despite considerable research and standardization efforts
to define network architectures offering quality of service
(QoS) guarantees [14, 15], IP networks remain largely oper-
ated on a “best effort” basis. This may notably be explained
by the difficulty of defining appropriate service classes, mark-
ing the corresponding packets, controlling the end-to-end
QoS over a multi-provider path, policing traffic and pricing
services accordingly.
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Given the large variety of applications, it is useful to dis-
tinguish between two broad classes of flow:

Elastic flows correspond to the transfer of digital docu-
ments (e.g., Web pages, emails, stored audio/videos).
They are characterized by a fixed size (the volume of
the transferred document) and a variable duration,
which determines user perceived performance. The
duration of an elastic flow depends on its rate which
varies with respect to the level of congestion in the
network, typically under the control of TCP.

Streaming flows correspond to the real-time transfer of
various signals (e.g., voice, streaming audio/video).
They are characterized by a fixed duration (inherent to
the original signal) and a possibly variable size, which
corresponds to the amount of data received within the
admissible delay and therefore determines user per-
ceived performance. The actually transferred size of
a streaming flow depends on packet delays and losses
as well as on the sending rate which may vary with
respect to the level of congestion in the network when
variable rate codecs are used.

A classical approach to offering packet delay and loss guar-
antees to streaming flows is to give them some form of pri-
ority over elastic flows. However, even this simple form of
service differentiation seems difficult to introduce in prac-
tice. It is necessary to mark each packet as belonging to an
elastic or a streaming flow and this marking requires tight
control. Another major problem concerns the performance
of elastic flows that may suffer from long starvation periods.

An alternative approach consists in relying on the self-
adaptation of streaming flows. Streaming flows are then
expected to be “TCP-friendly”, i.e., to mimic elastic flows
so as to get the same rate as if they were themselves elastic
[12]. Assuming fair sharing of network resources between
elastic and streaming flows, both types of flow are then sim-
ilarly affected by congestion periods: while elastic flows last
longer, the quality of streaming applications suffers from re-
duced data rates [1, 2, 11].

A great advantage of this approach is that there is no
need for explicit differentiation between elastic and stream-
ing flows. The service model remains based on the initial
“best effort” paradigm of the Internet. To offer commer-
cially viable services, it remains necessary to predict the
performance resulting from an expected demand in elastic
and adaptive streaming traffic. The question is: how much
capacity is necessary for the network to be transparent to
both elastic and streaming flows? This question is far from



obvious given the inherently random nature of traffic, i.e.,
the fact that the number of ongoing flows randomly varies
as new flows are initiated and other cease.

In this paper, we partially answer this question by ana-
lyzing the stochastic flow-level dynamics of a network inte-
grating elastic and adaptive streaming flows. Specifically,
we provide performance bounds for both types of flow using
an idealized model where the flow rate adaptation is perfect
and instantaneous. These bounds have the great practical
interest of being insensitive to traffic characteristics like the
distributions of elastic flow size and streaming flow duration.

Flow-level models have only recently been introduced for
evaluating Internet performance. Massoulié and Roberts
used the processor sharing queue to represent a single link
whose capacity is fairly shared by a dynamic number of elas-
tic flows [19]. Various extensions of this model have been
proposed to account for the way TCP actually shares band-
width [3, 18], the presence of rate limits and multiple bot-
tlenecks [4, 6, 16] and the impact of user behaviour [8, 13].

Most studies on the integration of elastic and streaming
flows concern systems where priority is given to streaming
traffic. Nufiez Queija [20] and Delcoigne et. al. [10] have
shown the extreme sensitivity of this system to traffic char-
acteristics and the severe degradation of elastic traffic per-
formance in the absence of any mechanism like admission
control that prevents streaming traffic from grabbing the
whole link capacity. To our knowledge, the issue of the in-
tegration of elastic and adaptive streaming flows in realistic
dynamical scenarios with random flow arrivals and depar-
tures has only recently been addressed by Key et. al. [17].
They notably proved for exponentially distributed elastic
flow sizes and streaming flow durations that streaming traf-
fic does not affect the stability condition, i.e., the number of
ongoing flows remains finite provided the elastic traffic load
is less than 1. In this paper we focus rather on performance
bounds, valid for any traffic characteristics. The stability of
the system follows directly from that of the lower bound in
all considered scenarios.

In the next section, we present the basic model of a single
link shared fairly by elastic and adaptive streaming flows
in the absence of rate limit. The impact of a common rate
limit is evaluated in the following section. The extension of
these results to several rate limits and network scenarios is
presented in Section 4. Section 5 concludes the paper.

2. A SINGLE BOTTLENECK LINK

The basic model consists of a single unit capacity link
shared by elastic and adaptive streaming flows without any
rate limit. Specifically, we assume that the link capacity is
fairly shared between ongoing flows so that each flow has a
rate:

1

Te + s

where z. and z; are the number of ongoing elastic and
streaming flows, respectively, and z = (x.,zs) denotes the
network state. We first present the traffic assumptions and
performance metrics and then show that the analysis of this
system reduces to that of a processor sharing network with
state-dependent service rates.

v(z) =

2.1 Traffic assumptions

Elastic and streaming flows arrive as independent Pois-
son processes of respective intensities A\ and ;. Elastic

flows have i.i.d. sizes of mean 1/p.. Streaming flows have
ii.d. durations of mean 1/p,. As the link is of unit ca-
pacity, 1/us may be viewed as the mean potential size of a
streaming flow, equal to its actual size in the absence of any
other flow. Thus we define the elastic and streaming traffic
intensities as:

pezﬁ and psz&.

e Ms

The overall traffic intensity is denoted by p = pe + ps-

2.2 Performance metrics

Users of data transfer applications experience quality of
service through the time necessary to transfer a document.
Thus we evaluate the performance of elastic traffic through
the elastic flow throughput ., defined as the ratio of the
mean flow size 1/pe to the mean flow duration 7e:

1
e MeTe '

By Little’s law, we have E[z.] = Ac7e so that:

Pe

Ve E[ xe] - (1)
Users of audio and video applications, on the other hand,
experience quality of service through their instantaneous
rate. Thus we evaluate the performance of streaming traffic
through the streaming flow throughput s, defined as the
mean instantaneous rate conditioned on the fact that there
is at least one ongoing streaming flow:

s = E[y(z)]zs > 0]. (2)

Note that we choose mean performance metrics for the sake
of simplicity. The bounds derived in this paper also apply
to finer metrics like the probability that the instantaneous
rate is less than a given threshold, see the example in §2.5.

2.3 A processor sharing network

The system can be represented as a network of two cou-
pled processor sharing nodes. Customers in one node, node

“e”, correspond to the elastic flows, while customers in the

other node, node “s”, correspond to the streaming flows.
The arrival rates at nodes e and s are A and Ag, respec-
tively. Service requirements are i.i.d. of unit mean at each

node. The service rate of node e is given by:
Pe(x) = He- 3)

This corresponds to the “departure rate” of elastic flows in
state z. Since the duration of a streaming flow is indepen-
dent of its bit rate, the service rate of node s is simply given
by:

Te
Te +Ts

¢8($) = Tslts- (4)

This corresponds to the departure rate of streaming flows in
state .

Absence of streaming traffic. In the absence of streaming
traffic, this queueing system reduces to a single processor
sharing queue, the model originally considered by Massoulié
and Roberts [19]. Under the stability condition p. < 1,
the stationary distribution of the number of ongoing elastic
flows is then:

m(xe) = (1 — pe)pe*,



corresponding to the elastic flow throughput:

Ye =1— pe. (5)

This system is insensitive to the elastic flow size distribution.

Presence of streaming traffic. If this insensitivity prop-
erty were preserved with streaming traffic, one could eas-
ily evaluate the stationary distribution of the network state.
Unfortunately, the presence of streaming traffic breaks down
insensitivity. As explained in Appendix A, a necessary con-
dition for insensitivity is that:

Pe(z—fs) _ ¢s(x— fe) Vo

Pe(x) bs(z)

where fo = (1,0) and fs = (0,1). One can easily verify
that this “balance” property is violated by the service rates
(3), (4). We deduce that the stationary distribution of the
network state z does depend on the distributions of elas-
tic flow size and streaming flow duration. Thus we cannot
expect explicit results without making specific assumptions
about traffic characteristics. This is why we prefer to derive
performance bounds, valid for any traffic characteristics.

T xe >0, xs >0,

2.4 Insensitive bounds

As explained in Appendix A, insensitive bounds can be
derived for any processor sharing network provided the fol-
lowing monotonicity property holds: removing a customer
from any node does not decrease the service rate of any other
customer. The monotonicity property clearly holds for the
service rates (3), (4). We deduce that the network state z(t)
at any time ¢ satisfies:

&(t) < z(t) < &(t), (6)

where z < y means z. < ye, zs < ys and £(t), Z(t) are
the states of two “virtual” insensitive processor sharing net-
works at time ¢. Denoting by @ and @ the corresponding
balance functions, the stationary distributions of the net-
work states Z(t), jr(t) are respectively given by:

(z) = 7(0)B(z)AINT,  F(z) = T(0)B(2)AINT*, (7)

provided the following stability condition holds:

D B(@)AEAT < 0. (8)

We shall see that this condition is satisfied if and only if
pe < 1. In view of (6), we deduce that the original system is
stable if and only if p. < 1: streaming traffic does not affect
the stability condition. This is due to the adaptive nature
of the considered streaming flows.

We now derive the balance functions <I> & and the cor-
responding performance metrics using the fact that the fol-
lowing “bias” property holds (refer to Appendix A):

bee—f) o, _de—f)
6@ 21T @ 7

We refer to the network state Z(t) as the “upper” bound
since it leads to a smaller number of ongoing elastic and
streaming flows, corresponding to higher values of the per-
formance metrics. Similarly, we refer to &(t) as the lower
bound.

ke >0, x5 > 0.

Upper bound. Using the bias property, we obtain:

2 1 1
®@) =1 peepse’

This corresponds to “virtual” service rates:

e(@) = pe > de() and  ¢s(z) = ¢s ().

Thus the system behaves as if each type of traffic were in
isolation in the sense that elastic traffic is not affected by
streaming traffic and streaming traffic is not affected by elas-
tic traffic.

If pe < 1, we deduce from (1), (7), (9) that ve < Je, where
4. denotes the elastic flow throughput for the upper bound:

(9)

ﬁezzl__p%

and from (2), (7) and (9) that vs < 4s, where s denotes
the streaming flow throughput for the upper bound:

Ay = 1—pe
_eps_lz Z(l+ x|

k>0 121

Lower bound. Similarly, it follows from the bias property

that:
d(z) = (m ”S)i L (10)

Te Ts! pee s

This corresponds to “virtual” service rates:

ée(x)=¢e($) and ¢VSS(-7")

SS<S
meﬂcsxwu és ().

We deduce that the stability condition (8) holds if and only
if pe < 1, in which case

< 1 _ps
ZQ(a)))\ze)\?S = eTore .

If pe < 1, it follows from (1), (7), (10) that e > J., where
4. denotes the elastic flow throughput for the lower bound:

_ (1_96)2 )
€ 1_‘Pe%‘ps

Similarly, we obtain 7y, > ¥, where 45 denotes the streaming
flow throughput for the lower bound:

. 1—pe k+1 A
Vs = dr Z( )(l+k)xl'

Tk -1 31

All traffic elastic. Another simple lower bound can be ob-
tained by considering that all traffic is elastic. This corre-
sponds to a single processor sharing queue with two cus-
tomer classes of respective mean service requirements 1/
and 1/ps. The “virtual” service rates are:

(f;e () = ¢e(x) and ¢s (x) =

e_l_stS <¢S( )

In particular, the bound is less tight than the above lower
bound. It is stable if and only if p < 1, in which case the
stationary distribution is:

(x) = 7(0)B(T)AENE*,



with

~ Te + Ts 1
[ = .
(x) ( Te ) Ngel"’::s

We obtain v, > 4. and s > 7, with:

= ~ (1—p)(1 —pe) 1—pe
=1- = 1 .
e Py s Ps n\3 P)

2.5 Numerical example

Figure 1 compares the bounds of §2.4 to simulations of the
model described in §2.1 with exponential elastic flow sizes
(pe = 1) and exponential streaming flow durations (us = 1),
when streaming traffic represents a fraction ps/p = 0.2 of the
overall traffic. We observe that elastic traffic is only slightly
penalized by the presence of adaptive streaming traffic. This
is a significant difference with the scenario considered in [10,
20] where streaming traffic is given priority and strongly
penalizes elastic traffic.
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Figure 1: Performance of elastic traffic (upper

graph) and streaming traffic (lower graph) for a unit
capacity link with 20% of streaming traffic.

Figure 2 gives the results obtained for the same scenario

but a different performance metric for streaming traffic, namely

the probability that the instantaneous bit rate is less than
0.1. We observe that when overall traffic intensity p is less
than 1, corresponding to an elastic traffic intensity p. < 0.8,
the instantaneous bit rate is rarely less than 0.1.

3. ACCOUNTING FOR RATE LIMITS
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Figure 2: Performance of streaming traffic for a unit
capacity link with 20% of streaming traffic.

We now extend the model of Section 2 to account for a
common rate limit ¢ < 1 for both elastic and streaming
flows, due to the speed of the user’s access line for instance.
For streaming flows, the rate limit may also represent the
maximum rate of the audio/video codec. Thus the rate of
each flow is given by:

(r) =min (a L
v - ’$e+$s )

3.1 Traffic assumptions

The traffic assumptions are the same as in §2.1. In view
of the flow rate limit, the mean potential size of a streaming
flow is now equal to a/us. Thus we define the elastic and
streaming traffic intensities as:

€ AS
pe=— and ps=—a.
He Hs

The overall traffic intensity is still denoted by p = pe + ps-

3.2 A processor sharing network

As in §2.3, the system can be represented as a network
of two coupled processor sharing nodes. The corresponding
service rates are:

$e(T) = Tepte X min (a, ! > . (11)

Te + Ts

and

¢s(x) = Tspss. (12)

Again, the balance property is violated so that network per-
formance is sensitive to the distributions of elastic flow size
and streaming flow duration.

3.3 Insensitive bounds

As the monotonicity property and the bias property still
hold for the service rates (11), (12), we can derive insensitive
bounds characterized by balance functions & and ¢ as above.
Let n be the largest integer such that n x a < 1.

Upper bound. We get:

R 11 {% if 2o <,
Ts

®(z) = — e\n
(2) Ts! pec ps % otherwise.



This corresponds to “virtual” service rates:

§e(@) = wepe X min(a, =) > 6u(a) and 4(z) = 4u()

Again, the upper bound corresponds to a system where each
type of traffic is in isolation.

Lower bound. Similarly, it follows from the bias property
that:

—((wle/iie), if zo. + s < m,
> Te + s 1 1 :
d(z) = s X = if s > m,
z He™ [ A—zs .
¢ ° e % otherwise.

This corresponds to “virtual” service rates (Z)e(x) = ¢e(x)
and ¢s(z) < ¢s(z), with:

1 if ze + s < n,
Gs(x) = Tsps ¥ —aﬂff‘h if zs > n,
————  otherwise.
a(zetzs)

As in the absence of rate limits, the stability condition (8)
holds if and only if p. < 1.

All traffic elastic. Another lower bound is obtained by con-
sidering that all traffic is elastic. As the mean potential size
of streaming flows is equal to a/us, we deduce that the “vir-
tual” service rates are

e (2) = de(2)

and

@m=m%xmm@, )5@@>

Te + Ts

It is stable if and only if p < 1, in which case the stationary
distribution is:

() = 7(0)D(z)AENE?,

with
Tetzs
<i>()— Te +Ts 1 y (I(Z)Ts), if e + x5 <mn,
r) = we( / )ms (1/a)™ .
Te pe(ps/a o otherwise.

3.4 Numerical example

Figure 3 illustrates the tightness of the bounds in case of
a single link with a common rate limit equal to 0.1 for all
flows. Again the simulation results are obtained for expo-
nential elastic flow sizes and streaming flow durations with
the same mean (pe = ps). Observe that the bounds are rela-
tively tight when the overall traffic intensity p is less than 1,
corresponding to an elastic traffic intensity pe < 0.8. We de-
duce that performance is approximately insensitive for this
range of traffic loads.

4. MULTICLASS EXTENSION

Finally, we extend the results to account for the fact that
flows may have different rate limits or may be limited by the
capacity of several links. We consider a network of L links
of respective capacities C1i,...,Cr shared by N classes of
flow. Class-i flows are characterized by a rate limit a; and a
fixed route r; consisting of a subset of the links {1,...,L}.
We assume that network resources are shared according to
balanced fairness [6]. This allocation has been shown to
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Figure 3: Performance of elastic traffic (upper

graph) and streaming traffic (lower graph) for a unit
capacity link with a flow rate limit a = 0.1 and 20%
of streaming traffic.

provide insensitive performance and to constitute a good ap-
proximation of usual “fair” allocations like max-min fairness
and proportional fairness [22]. We first recall the definition
and the main properties of balanced fairness and then derive
performance bounds from the analysis of a processor sharing
network.

Notation. We denote by e; the unit vector with 1 in compo-
nent i and 0 elsewhere, fori =1,...,N. Forany y < z € NV
and any a € RY, we use the vectorial notation:

P N 2 N N
()EH(1>, y!Equ;! and ayEHaﬁ”.
Y =1 \Yi i=1 i=1
4.1 Balanced fairness

Let y = (y1,...,yn) be the network state, where y; is the
number of class-i flows. We denote by ;(y) the overall rate
of class-i flows in state y. The rate constraints are:

Vi: 1,...,N, ’lj)l(y) Syiai, (13)
and
:ler;
Balanced fairness refers to the allocation:
U(y —e;
dily) = LW &) (15)

T(y)



where ¥ is the function recursively defined by ¥(0) = 1 and:

¥(y) = max{ max M, max 1

bi>0 yia; =1L G i:2;>0,l€r;
This is the unique insensitive allocation such that at least
one rate constraint is attained in any state y # 0. Such
an allocation has been considered in the context of elastic
traffic only [6].

In the following, class-i flows may be either elastic or
streaming. We denote by z.,; the number of class-i elastic
flows, xs,; the number of class-i streaming flows. The net-
work state is now & = (xe,Zs), with ze = (Te,1,...,Te,N)
and zs = (®s,1,...,%s,~). The rate of an elastic class-i flow
is the same as that of a streaming class-i flow and is given
by:

A particular example is a single unit capacity link with a
common rate limit a as considered in Section 3. This implies
the state-dependent rate:

(y) = min(y x a, 1).

The corresponding balance function ¥ is:

U(y) =

ify<n, ¥(y)= —

— otherwise,
n!l a

y! av

where n is the largest integer such that n x a < 1.

4.2 Traffic assumptions

Class-7 elastic and streaming flows arrive as independent
Poisson processes of respective intensities Ae,; and Ag ;. Class-
1 elastic flows have i.i.d. sizes of mean 1/pu. ;. Class-i stream-
ing flows have i.i.d. durations of mean 1/p, ;. The mean
potential size of a class-i streaming flow is equal to a;/ps,;.
Thus we define the class-i elastic and streaming traffic in-
tensities as:

)\e,z and Pei = )\s,z

€.t 8,1

Pe,i = ai.

The overall class-i traffic intensity is p; = pe,i + ps,i-

4.3 A processor sharing network

The system can be viewed as a network of 2NV coupled
processor sharing nodes. Customers in nodes (e, ) corre-
spond to class-i elastic flows, while customers in nodes (s, ¢)
correspond to class-i streaming flows. The respective service
rates are:

Ge,i(T) = Te,ifle,i X Yi(T), ¢s,i(T) = Ts,ifts,i- (17)

The balance property holds per type of traffic in the sense
that, in view of (15), (16) and (17),

Ge,i(® — fej) _ dei(® — fe.i)

, Vr:ize; >0, ze,; >0,

Ge,i(x) e.; ()
and
¢s,i($_fs,j) _ ¢S,j(m_fs,i) ) . .
bsi(x)  ¢si(z) Vo :zs: >0, z55 >0,

where f.; = (e;,0) and f,,; = (0, e;), but in general,

be,i( — fs,5) _ bs,i(® = fei)
boi@) T G

Y. Ty—e)

‘We conclude that network performance is sensitive to the
distributions of elastic flow size and streaming flow duration.

- 44 Insensitive bounds

In the following, we assume that the monotonicity prop-
erty holds. We give examples in §4.5 where this property is
indeed satisfied. Note that the bias property then follows,
as:

Ge,i(x — fs.5) _ ¢s,i(®— fei)
bei@) 2T bes@

The balance functions ¢ and & that characterize the upper
and lower bounds can then easily be derived. We have:

(@) = 7(0)2(@)AT°NS*,  #(xz) = 7(0)B(2)AI°A",  (18)

Ve :xe; >0, 255 > 0.

provided the stability condition holds:

Zé(w))\fe)\?s < 0. (19)

Upper bound. Using the bias property, we get:

2 W(xe 1
@(z) = é!) o

This corresponds to “virtual” service rates:

ée,i(w) = ple,iti(ze) and ‘ng,i(x) = ¢s,i(®).

The upper bound corresponds to a system where each type
of traffic is in isolation.

Lower bound. Similarly, it follows from the bias property
that:

5 Te+Zs |\ U(re +xs) 1 1
d(z) = — .
(@) ( e ) U(zs) ! piepte

4

This corresponds to “virtual” service rates ¢e () = de,i(x)

and:

Ts,i 'l/)i(me +$s)
Te,; + Ts,i 1/)1(373)
A key result is that the stability condition does not depend
on streaming traffic. Let pey = ) ;,¢,, pe,i be the overall

elastic traffic intensity on link /. The proof of Theorem 1 is
given in Appendix B.

st,i(x) =

Ts,ifls,i-

THEOREM 1. The stability condition (19) holds if and only
if pey < Cp for all links 1.

All traffic elastic. Using the monotonicity property, we ob-
tain another lower bound by considering that all traffic is
elastic. As the mean potential size of class-i streaming flows
is equal to a;/ps,s, we deduce that the “virtual” service rates

are ¢ei(x) = ¢e,i(x) and:

q‘;s,i(m) =Ts,i Il:;z X Vz(x) < ¢s,i($)'

It is stable if and only if pr = 3=, ,. pi < C; for all links [,
in which case the stationary distribution is:

(x) = 7(0)B(T)AENE*,



with

‘i’(x) — (we;-z's)\ll(l‘e + .’Iis)“ige (/li/a)ms .

4.5 Numerical examples

Tree network. We first consider a 2-branch tree as depicted
Figure 4, in the absence of rate limits. The network consists
of three links, a trunk of normalized capacity 1 and two
branches of respective capacities C1 and Ca, with C1,C> <1
and Ci1 + C2 > 1, and two routes, each route containing the
trunk and one branch. The results apply more generally to
any tree network, with an arbitrary number of multiplexing
stages. Such topologies are practically interesting as they
can represent access networks where bandwidth might be a
scarce resource.

16)

Ci
Figure 4: A 2-branch tree.
For this simple network topology, the function ¥ charac-

terizing balanced fairness is explicit [6]: if y1 and y» denote
the number of flows on route 1 and 2, respectively, we get

1 . 1 .
‘I’(y)zc—lylv ify» =0, ‘I’(y)zc—gy if y1 =0,
and

y1 y2

y1—z+y2—1)\ 1 y1—14y2—2\ 1
' = — 4 Saig
o= (") e S (s
otherwise.

To apply the bounds derived in §4.4, we need the mono-
tonicity property, i.e.,
Yi(y +e;) <vily), Vi#j Vy:yi >0,

and

Yily +ei) _ ¢i(y)
yit+t1l =y
In view of (15), this is equivalent to the inequalities:
U(y+e)¥(y+e;) < U(y)U(y+eite;), Vi#j, Yy, (20)
and
yi¥(y)” < (yit1)T(y—ei)U(y+ei),
We prove the following result in Appendix C.
PROPOSITION 1. The inequalities (20) and (21) hold.

, Vi, Vy:y; >0.

Vi, Yy @y > 0. (21)

Figures 5 and 6 illustrate the tightness of the bounds for
a 2-branch tree of capacities C1 = 1 and C> = 0.5. The
branches are equally loaded and, as in previous examples,
streaming traffic represents 20% of the overall traffic inten-
sity.
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Figure 5: Performance of elastic traffic (upper
graph) and streaming traffic (lower graph) on
branch 1 of a tree network (C1 =1, C2 = 0.5).
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Figure 6: Performance of elastic traffic (upper
graph) and streaming traffic (lower graph) on
branch 2 of a tree network (C; =1, C2 =0.5)



Multirate system. We now consider the case of a single
unit capacity link with two different rate limits a1 and as,
with a1,a2 < 1, as depicted in Figure 7.

ag

Figure 7: A 2-class multirate system.

Again, the function ¥ characterizing balanced fairness is
explicit in this case [6]. The monotonicity property holds if
and only if the corresponding inequalities (20) and (21) are
satisfied, which may be proved in a similar way as Propo-
sition 1. Figures 8 and 9 give the results obtained for the
rate limits a1 = 0.5 and a2 = 0.2. The traffic intensity is
the same for each class and streaming traffic still represents
20% of the overall traffic.
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Figure 8: Performance of elastic traffic (upper
graph) and streaming traffic (lower graph) of class-1
users for a multirate system (a1 = 0.5, az = 0.2).
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Figure 9: Performance of elastic traffic (upper
graph) and streaming traffic (lower graph) of class-2
users for a multirate system (a1 = 0.5, as = 0.2).

5. CONCLUSION

We have derived performance bounds for a network inte-
grating elastic and adaptive streaming flows. These bounds
have the great practical interest of being insensitive to traf-
fic characteristics like the distributions of elastic flow size
and streaming flow duration. Provisioning rules can then
be developed based on forecasts of elastic and streaming
traffic demands only, independently of the complex traf-
fic structure which is continually evolving as new applica-
tions emerge. This requires that both elastic and streaming
flows are truly adaptive, which could be enforced by the im-
plementation of packet-level mechanisms like per-flow fair
queueing in routers.

APPENDIX

We first provide the necessary material on insensitivity re-
sults for networks of processor sharing nodes, then give the
proof of Theorem 1 and Proposition 1.

A. INSENSITIVITY RESULTS

We consider a network of N processor sharing nodes. Cus-
tomers arrive as a Poisson process of intensity A; at node
i, require i.i.d. services of unit mean and leave the net-
work once served. Nodes are coupled through their state-
dependent service rates. We denote by ¢;(z) the service rate
of node 7 in state £ = (z1,...,2n~), where z; is the number
of customers at node i. Let e; be the unit vector with 1 in
component ¢ and 0 elsewhere, for i = 1,..., N.



Balanced networks. A particular class of processor shar-
ing networks is characterized by the following balance prop-
erty:
pi(z—ej) _di(w—e) . .
= , Vi, j, Vx: x; >0, z; > 0.
bi(w) ;(x) ' !
Such networks are known as Whittle networks [21]. They are

characterized by a balance function ® recursively defined by
®(0) =1 and:

D(z — i) S

®(z) = “o@ Vi,Vx : z; > 0.
Note that this definition is unique in view of the balance
property. For any z, ®(z) may be viewed as the weight of
any direct path from state = to state 0, where a direct path is
a set of consecutive states x(0) = z,z(1),z(2),...,z(n) =0
such that z(m) = z(m — 1) — e;(y) for some i(m), m =
1,...,n, with n = |z|, and the weight of such a path is the
inverse of the product of ¢;(,,)(x(m)) for m =1,...,n (refer
to Figure 10).

X2

9
.

0 x|

Figure 10: The balance function ®(z) is equal to the
weight of any direct path from state z to state (.

A Whittle network is stable if and only if:

N
Z d(x) H A < o0,
x i=1
in which case the stationary distribution is:

(z) H AFE.

In particular, this stationary distribution is insensitive to
the distribution of service requirements at any node.

w(z) = w(0)®

Non-balanced networks. It has recently been shown that
the balance property is in fact a necessary condition for in-
sensitivity [5]. Thus for a non-balanced network, the sta-
tionary distribution is sensitive and it proves extremely dif-
ficult to derive explicit expressions. Stochastic bounds on
the network state x(t) can be derived, however, provided
the network is monotonic in the following sense:

§i(z —ej) 2 &i(),

where &(x) = ¢i(z)/z; denotes the per-customer service
rate at node i in state . The proof is based on sample-path
comparisons with two balanced networks [7].

Va,Vi,j:2; >0, x; >0,

Let ) and & Dbe the balance functions recursively defined
by ®(0) = ®(0) =1 and:

¥6) = iy, S5

'i>(a: —e;)
Gilx)

For any z, ®(z) and ®(z) thus correspond to the minimum
weight and the maximum weight of all direct paths from
state x to state 0 (cf. Figure 10). The service rates in these
networks are respectively larger and smaller than in the orig-
inal network:

bi(z) > ¢i(z) and ¢i(x) < ¢i(z), Vi,V :azi > 0.

We deduce from the monotonicity property that the number
of customers at each node of the networks characterized by
the balance functions ® and ® is respectively smaller and
larger than in the original network. Denoting by #(t) and
Z(t) the corresponding network states at time ¢, we deduce
that:

&(z) =

zm>0

&(t) < =(t) < &(t), (22)

where r < y means z; < y; for all i. The stationary dis-
tributions of the network states #(t), Z(t) are respectively
given by:
N N
#(e) = #(0)&(2) [[A]*,  #(2) = #(0)(=) [ A,
i=1 i=1

provided the stability condition holds:

N
Z b(x) H At < oo.
T i=1

Note that, in view of (22), this condition implies that the
original network and that characterized by the balance func-
tion & are stable.

It proves difficult to derive explicit expressions for the
balance functions & and & in general. A particular case is
when the nodes can be numbered in such a way that the
following bias property holds for the original network:

pi(z—ej) _ ¢i(z—ei)
gi(x) —  $i(@)

In this case, we simply have:

Vi<j, Ve: 2; >0, z; >0.

d(z) = M’ d(z) = M’
$i(x) $i(x)
where ¢ is the maximum index and the minimum index such
that z; > 0, respectively. Thus &(x) and ®(z) correspond
to weights of straight paths from state z to state 0. For
N = 2 classes, we obtain:

N 1
(@) = a2(x) ... pa(z1 +ea)r(x1) ... p1(er)
L 1
20) = @) i@ Fe)ga(@a) . palea)”



B. PROOF OF THEOREM 1

Necessary stability condition. Assume that p.,; > C; for
some link [. It follows from (14) and (15) that:

1
Yy, YW 25 D]

:l€r;,y; >0

U(y — ei).

Let X be the set of states « such that s = 0 and z. ; = 0 for
all 7 such that I ¢ r;. We deduce from previous inequality
that:

Vz € X, \I/(xe) Z -:Lle L:
Te,int: ler; C}me‘

where the first term follows from the number of direct paths
from state x to state 0. In particular,
Z (Pe 1)

S R@AENT =) W(xe)pit

TEX TEX

Sufficient stability condition. Assume that p.; < C; for
all links I. As in [6, Theorem 2], we use the fact that:

Yy, ¥(y) <¥'(y), (23)

where¥’ is the balance function associated with the so-called
“store-and-forward” allocation:

! — il€r; 2Ly 1
CORSID VRN | P § (o e
2:2i+Xier; 21,i=Yi = 19 = b ¢ l
with 2 =37, ¢,. 21, This function satisfies for any ¢ € RY

such that g; = EHG” 0; < C; for all I:

’ y_Ne%L 1
S =]] 11;[1(0[_@). (24)

Denoting by C' = max; C; the maximum link capacity, we
also use the inequality:

1
C'lyl?
which simply follows from the fact that, in view of (14),

vy, ¥(y) > (25)
. 1
Vy, Viryi >0, ¥(y) 2 & U(y —ei).

We deduce from (23) and (25) that:

D d@NAT <Y (’”j) (e + )0 pre B

Now let ¢ EM with g; > 0foralli=1,..., N be such that
Pe,i + & < Ci, where & = EME” ei. We have:

3 (x N ”‘) U (ze +2)p2%e™ < W (y)(pe +2)".
Yy

Te
Using (24), we deduce:
pite;

Te \Ts a; 1 I:s
RLCIS <He : H(ﬁ>x Lo,

s

where pj is the vector defined by pj ; = ps,;C’ /e; for all 4.
We conclude that:

Z@(x )\xe)\ms < Heﬂs '+pl+€1 H (ﬁ) .

Pe,l —E€1

The stability condition (19) holds.

C. PROOF OF PROPOSITION 1

Proof of inequality (20). One can readily verify that the
inequality holds when either y; = 0 or y2 = 0. Now it follows
from the Pareto-efficiency of tree networks [9] that the trunk
is saturated in any state y such that y; > 0 and y2 > 0, so
that ¥(y) = ¥(y —e1) + ¥(y — e2). Thus inequality (20) is
equivalent to:

T(y)® > U(y+er—ex)U(y+ez—er). (26)

‘We prove (26) by induction on yi1 + y2. Note that the result
holds for y = (1,1), since 1/Cy + 1/C> > 1/(C1Ca). It
is not difficult to extend the result to any states y such
that y3 = 1 or y2 = 1. Assume the result holds for all y
such that y1 + y2 < n, and let y be any state such that
y1 +y2 = n+ 1. We can assume that y; > 1 and y2 > 1.
Define a = ¥(y +e1 —2e2), b = U(y —e2), c = ¥(y —e1)
and d = U(y + ez — 2e1). We know that b > ac and ¢® >
bd. Using the fact that the trunk is saturated in states y,
y —e1 +e2 and y + e1 — e2, one can easily verify that:

T(y)” — U(y+er —e2)U(y+ez2 —er)
= (b° —ac)+ (" —bd) + bc — ad,
> bc—ad.

The proof then follows from the fact that:

be b? 02
— = x>
ad ac bd L

Proofofinequality (21). We prove the inequality for i = 2.
As before, we can easily check that the result holds when
y1 <lory, <1 Ify >1andy: > 1, inequality (21) is
equivalent to:

T(y) = [(p2+1)T¥(y+e1—e2)¥(y+ex—ei)

+T(y+e1—e2)” +20(y)T(y +e1 —e2)

—(32%(y)*) > 0. (27)

We prove (27) by induction on y1 + y2. Note that the result
holds for y = (1,1). One can also readily extend the result
to any state y such that y; = 1 or y2 = 1. Assume the result
holds for all y such that y1 +y2 < n, and let y bet any state
such that y1 + y2 = n+ 1. We can assume that y; > 1 and
y2 > 1. The trunk is saturated in states y, y + e1 — e2 and
y + e2 — e1 so that, applying the result for y + e; — ez and
y + ez —e1, we get:

T(y) > (y2 + 1)ad + 3ac + 2ab + b> — (y2 — 1)be.



Applying I'(y — e2) > 0 and I'(y — e1) > 0 successively, we
get:

(y2 + 1)ad + 3ac + 2ab + b*

(y2 — 1)be
_a((y2 +1)d+ b+ 2c) + ac + ab + b’
B (y2 — L)be
> y2ac’® /b + ac+ ab + b?
- (y2 — L)be
_ F(yc+2b+a)+bla+b) —ac(l+a/b)
a (yz — l)bC
S @2—Dm+bm+ﬁy—%m+bx
- (yz — l)bc

Now using b> > ac, we obtain T'(y) > 0.
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