
HAL Id: hal-01282694
https://hal.science/hal-01282694v1

Submitted on 5 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Estimation of the gravimetric pole tide by stacking long
time-series of GGP superconducting gravimeters

Yann Ziegler, Jacques Hinderer, Yves Rogister, Séverine Rosat

To cite this version:
Yann Ziegler, Jacques Hinderer, Yves Rogister, Séverine Rosat. Estimation of the gravimetric pole tide
by stacking long time-series of GGP superconducting gravimeters. Geophysical Journal International,
2016, 205, pp.77-88. �10.1093/gji/ggw007�. �hal-01282694�

https://hal.science/hal-01282694v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Geophysical Journal International
Geophys. J. Int. (2016) 205, 77–88 doi: 10.1093/gji/ggw007

GJI Gravity, geodesy and tides

Estimation of the gravimetric pole tide by stacking long time-series
of GGP superconducting gravimeters

Yann Ziegler, Jacques Hinderer, Yves Rogister and Séverine Rosat
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S U M M A R Y
We compute the gravimetric factor at the Chandler wobble (CW) frequency using time-series
from superconducting gravimeters (SG) longer than a decade. We first individually process
the polar motion and data at each individual gravity station to estimate the gravimetric factor
amplitude and phase, then we make a global analysis by applying a stacking method to
different subsets of up to seven SG stations. The stacking is an efficient way of getting rid
of local effects and improving the signal-to-noise ratio of the combined data sets. Using the
stacking method, we find a gravimetric factor amplitude and phase of 1.118 ± 0.016 and
−0.45 ± 0.66 deg, respectively, which is smaller in amplitude than expected. The sources of
error are then carefully considered. For both local and global analyses, the uncertainties on
our results are reliably constrained by computing the standard deviation of the estimates of the
gravimetric factor amplitude and phase for increasing length of the time-series. Constraints
on the CW anelastic dissipation can be set since any departure of the gravimetric factor from
its elastic value may provide some insights into the dissipative processes that occur at the CW
period. In particular, assuming given rheological models for the Earth’s mantle enables us to
make the link between the gravimetric factor phase and the CW quality factor.

Key words: Time variable gravity; Earth rotation variations; Elasticity and anelasticity.

1 I N T RO D U C T I O N

The movement of the Earth rotation axis is made of various compo-
nents. The Chandler wobble (CW) is a rotational eigenmode with a
period around 435 sidereal days, whereas all the other components
are motions forced by external sources with periods ranging from
a few hours to several years and more. Contrary to the frequencies
of the forced polar motions, which are mainly related to astronom-
ical parameters, such as the positions and masses of the Sun and
the Moon, the CW eigenfrequency only depends on Earth param-
eters. Another obvious distinction between the CW and the forced
motions comes from the excitation sources. Although still debated,
the CW excitation is thought to originate mainly from the oceans
and atmosphere (e.g. Wahr 1982, 1983; Gross 2000; Brzeziński &
Nastula 2002; Aoyama et al. 2003) and, maybe, earthquakes (Smylie
et al. 2015). Geomagnetic jerks have also been proposed to explain
phase jumps (Bellanger et al. 2001; Gibert & Le Mouël 2008).

Another important feature of the polar motion is its attenuation
with time due to dissipative processes. Dissipation occurs in dif-
ferent ways: anelastic deformation in the mantle, viscomagnetic
coupling at the core–mantle boundary, friction at the bottom of the
oceans, etc. The quality factor Q is a parameter that quantifies the
dissipation. If dissipation occurring in the mantle is the main source
of attenuation, Q may be related to the rheological parameters of

the mantle. Its determination at the CW frequency can then provide
additional constraints and new insight on the Earth rheology.

Besides, the movement of the Earth rotation axis induces a per-
turbation of the surface gravity field through (1) the variation of the
centrifugal pseudo-force and (2) surface deformation and mass re-
distribution. These changes have been successfully observed thanks
to superconducting gravimeter (SG) measurements. Because cali-
bration changes in SGs are negligible and because their drift rates
are quite small (Hinderer et al. 2007), it has been shown that SGs are
well suited for studies of long-term polar motion (Loyer et al. 1999;
Xu et al. 2004; Ducarme et al. 2006; Hu et al. 2007; Chen et al.
2009). Over the last 15 yr, departures from purely elastic response
to polar motion have been sought in gravimetric signals. Essentially,
within the given uncertainty range, all of the results obtained so far
failed in revealing any anelastic effects, although the possibility of
their existence has not been excluded.

In this study, we similarly address this question of anelasticity
by investigating an alternative method that makes profit of the geo-
graphic coverage of the SG records. As shown in Section 3, the main
difficulties in SG time-series processing are due to local gravimetric
perturbations, in a large sense that encompasses both instrumental
artefacts and local geophysical effects, the key point being that the
needed corrections are both thorny to handle and site-specific. We
endeavour to circumvent this complexity by stacking the gravity
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time-series, as explained in Section 4, to decrease the relative im-
pact of local effects unrelated to the polar motion. Doing so, we aim
at increasing both the accuracy and the precision needed to study
anelasticity at the CW period.

Importantly, this analysis relies on time-series longer than a
decade, as is the common time span used in the stacking. This
long duration of the recordings is one pillar of this kind of work
knowing that the Chandler movement and the annual signal are only
theoretically separable in the Fourier domain for time-series longer
than 6.5 yr approximately, when the frequency resolution (equal to
1/T where T is the length of the time-series) is, at least, equal to the
separation in frequency between the Chandlerian and annual peaks.
Thus, only the longest gravity records will let us distinguish the two
components and provide reliable results.

2 O B S E RVAT I O N O F G R AV I T Y
VA R I AT I O N S

The ground measurement of the time variations of the gravity pro-
vides a multicomponent signal from which we want to extract the
effect of periodic polar motion. We write the total measured gravity
variation �g, either in the time domain or in the frequency domain,
as the sum of the polar motion perturbation �gm, a geophysical
signal �ggeo, a term of instrumental origin �gSG and random noise
n:

�g = �gm + �ggeo + �gSG + n. (1)

�ggeo contains the gravity variations due to the solid Earth tides and
to the atmospheric, hydrological and oceanic perturbations. �gSG

combines the drift, occasional instrumental defects and secular or
periodic artefacts.

The correction for or removal of �ggeo, �gSG and n will be
considered in Section 3.2. It is impossible, by definition, to re-
move random noise from a signal but we can decrease its rela-
tive amplitude by combining different time-series, as explained in
Section 4.

Once we will be able to determine �gm from the observations, say
�gobs

m , we will compare it to the theoretical gravimetric perturbation
�grig

m of a rigid Earth model undergoing the same polar motion
(Wahr 1985):

�grig
m = �2

0r [sin 2θ (m1 cos λ + m2 sin λ) − 2m3 sin2 θ ], (2)

where r, λ and θ are the spherical coordinates of the station, �0 is
the unperturbed angular velocity of the system of reference attached
to the Earth and m1, m2 and m3 are the usual parameters defining
the perturbation of the instantaneous rotation vector of the Earth
ω = �0(m1, m2, 1 + m3). It is often convenient to write the polar
motion in complex notation:

m̃ = m1 + im2, (3)

where i2 = −1.
Any departure of the observed gravity perturbation from the the-

oretical value given by eq. (2) may be interpreted as a manifestation
of the Earth deformation. In the frequency domain, the ratio of the
two perturbations is the gravimetric factor δ̃:

δ̃(ω) = �g̃obs
m (ω)

�g̃rig
m (ω)

, (4)

where ω is the angular frequency. If we write δ̃, �g̃obs
m and �g̃rig

m as

δ̃ = δeiκ (5)

�g̃obs
m = Aobse

iϕobs (6)

�g̃rig
m = Arigeiϕrig , (7)

we have

δ = Aobs

Arig
(8)

and

κ = ϕobs − ϕrig. (9)

If the deformation was purely elastic, κ would be zero for any
Earth model. Whether the deformation is elastic or not, δ depends
on the Earth model. For instance, for the elastic spherical PREM
model (Dziewonski & Anderson 1981), δ = 1.16 if ω is small
and significantly different from any eigenfrequency of the model.
Anelasticity would make κ different from zero and modify δ. If
the polar motion is not corrected for the influence of the oceanic
pole tide, its value should increase up to 1.185 in Western Europe
(Boy et al. 2000) and induce a phase of a few tenths of a degree
(Chen et al. 2008). In several studies devoted to the estimate of the
gravimetric amplitude and phase either at individual stations or in
a global analysis (Loyer et al. 1999; Xu et al. 2004; Ducarme et al.
2006; Chen et al. 2009), departures from the elastic values have been
attributed among other things to either measurements artefacts or
geophysical phenomena that were not properly corrected for (e.g.
hydrology or oceanic pole tide).

It is reasonable to assume that the gravimetric factor is constant
over the duration of the records because it depends on geophysical
parameters that vary on geological timescales. However, both the
amplitude and phase of m̃ at the Chandler frequency, that is the CW,
vary with time (Chao & Chung 2012). For instance, several phase
jumps have been observed during the last century (Gibert et al.
1998; Malkin & Miller 2010). The changes in the amplitude are
due to attenuation and irregular excitation. Even so, these variations
impact both the theoretical and observed gravimetric perturbations
in the same way and should not cause any change in the gravimetric
factor.

Moving to the time domain, the signal can be modeled by a sum
of n sine functions with constant amplitudes Aj, phases ϕj and real
frequencies fj, that is,

�gm(t) =
n∑

j=1

A j sin(2π f j t + ϕ j ). (10)

We can then compute the gravimetric factor amplitude and phase
for a given frequency fj using formulae equivalent to the ones in the
frequency domain:

δ( f j ) = Aobs
j

Arig
j

(11)

and

κ( f j ) = ϕobs
j − ϕ

rig
j . (12)

For harmonic motions, it is obvious that the two definitions (8) and
(11) are identical, whereas for excited, damped, anharmonic or any
slightly more complex motion, the equation in time domain gives
a practical way of calculating the gravimetric factor that may dif-
fer from the first one. Albeit Aj and ϕj are considered constants to
be determined, one knows that they vary with time. The observed
Chandler period is unknown too, because it may be distinct from the
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Figure 1. Pole coordinates (top) and corresponding gravity perturbation of a rigid Earth model given by eq. (2) (bottom) at Strasbourg J9 gravimetric station.

eigenperiod defined by the Earth’s geophysical properties (Bizouard
et al. 2011). Then, the period should just be one of the parameters
that have to be adjusted. Furthermore, doing so, we will fit a hypo-
thetical linear variation of the phase with time, since, for a given
wave, it is equivalent to setting a constant phase with a modified
frequency as shown in the following equality:

sin
[
2π f j t + (ϕ1

j t + ϕ0
j )
] = sin

[
(2π f j + ϕ1

j )t + ϕ0
j

]
. (13)

It is more complicated to take the amplitude variation into ac-
count, even in the case of a simple linear one, for numerical reasons:
it is both very slow and unstable to fit sinusoids and cosinusoids
with varying amplitude. That is why we will assume that all the
waves have constant amplitudes. Based on the obtained misfits, this
assumption will be shown a posteriori to be reasonable. In addition,
as previously noted, even if the amplitudes vary in the two time-
series, they must have identical variations which should not impact
the gravimetric factor estimation.

3 P O L A R M O T I O N A N D G R AV I T Y DATA

3.1 IERS data

The Earth rotation data are provided by the International Earth
Rotation and Reference Systems Service (IERS) as a set of six pa-
rameters with their uncertainties: the five standard Earth orientation
parameters (EOPs), namely the celestial pole offsets dX and dY, the
perturbation of the rotation UT1 − UTC and the pole coordinates xP

and yP, plus the length of day variation �LOD. Details about their
physical meaning and their measurement can be found in Mccarthy
& Petit (2003) and Bizouard (2014). In this work, we use the EOP
08 C04 time-series, started in 1962 and given at a daily frequency.

To compute the gravimetric perturbation for a rigid Earth as given
by eq. (2), we need to express the three parameters (m1, m2, m3)

as a function of the EOPs. Actually, m3 is related to the variation
of the angular velocity of the rotation of the Earth and its coupling
with m1 or m2 compared to the coupling between m1 and m2 makes
it negligible in the study of polar motion, as m3 is two orders of
magnitude smaller as indicated by Loyer et al. (1999).

The relation between m̃ as defined in eq. (3) and the EOPs was
first established by Brzeziński & Capitaine (1993):

m̃ = p − i
ṗ

�0
+ i

Ṗ

�0
ei�0t (14)

using the complex number p = xP − iyP where xP and −yP are the
coordinates of the celestial intermediate pole (CIP) as seen from
the International Terrestrial Reference Frame and P = dX sin ε0 +
idY is the pole offset in obliquity and longitude as seen from the
International Celestial Reference Frame, with ε0 the mean obliquity
of reference. The CIP is always less than a few centimetres apart
from the instantaneous pole of rotation we are interested in.

Eq. (14) fills the gap between a purely geometrical description
of polar motion and dynamic theories of Earth rotation that rely
on the instantaneous rotation vector. For high-frequency motions,
it is necessary to use this rigorous relation as pointed out by Loyer
et al. (1999), but for low-frequency phenomena such as the CW or
annual oscillation, the error in the computation of �grig

m is below
0.5 per cent, that is, below the accuracy we can reasonably achieve.
This assertion has been verified by comparison of our results with
or without using eq. (14), the difference on �grig

m being below
0.01 μGal at mid-latitude. Thus, we simply use the relation

m̃ = p. (15)

Fig. 1 shows the pole coordinates (xp, yp) between 1996 August
and the end of 2009. Also shown is the corresponding gravity per-
turbation of a rigid Earth model given by eq. (2) at the Strasbourg J9
station. A polar motion of a few hundred milliarcseconds causes a
radial gravity variation of at most a few microGals at mid-latitudes.
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The 6.5 yr beating between the annual component and the CW is
clearly visible.

3.2 GGP data

The gravimetric data used in this work come from the Global Geo-
dynamics Project (GGP; Crossley et al. 1999), now disrupted to
be integrated in the newly created International Geodynamics and
Earth Tides Service. Established in 1997, the GGP network was
made of about 35 gravimetric stations that have provided decades of
gravity recordings. Because of the closeness of the CW and annual
signals in the frequency domain, only the uninterrupted time-series
longer than the beating period of the two oscillations are useful for
this study.

The hourly data are prepared by the International Centre for
Earth Tides (ICET) and provided by the Information Systems and
Data Center of the Geo Forschungs Zentrum. The local barometric
changes at each station are also included to allow for local atmo-
spheric pressure correction. All of the gravimetric data sets contain
gaps and offsets that must be carefully managed because of their
strong impact on low-frequency components of the entire signal.
Superimposed on these artefacts and gravity variations, a linear
drift of a few microGals per year is visible on recent time-series,
whereas an exponential drift impacts the oldest and longest record-
ings. The removal of these drifts is included in the data processing
described in the next subsections.

3.2.1 Correction for tides, atmospheric pressure
and surface loadings

The first correction applied to the gravimetric data is the removal
of the tidal signal, which has an amplitude up to several hundreds
of microGals. However, the estimation of the gravimetric factor is
barely modified whether the solid tides are removed or not. Indeed,
the largest tidal components are high-frequency waves that will be
filtered out and the low-frequency waves (semi-annual, annual, etc.)
will be included in the fitting by means of eq. (10).

Second, we correct the gravity data for the local pressure effects
by converting the pressure variations into gravimetric variations
using an admittance factor of −3 nm s−2 hPa−1.

Third, we use the loading data provided by the GGP Loading
Service to correct for various loading effects. The Loading Ser-
vice corrections encompass non-local barometric effects (Boy et al.
2002), local and non-local hydrological loading (Boy & Hinderer
2006) and oceanic loading (Boy et al. 2009).

Fourth, we correct the gravity data for the oceanic pole tide,
this time-series having been added in the Loading Service products
meanwhile (2015 February). The effect of the ocean tide loading
caused by polar motion is computed on the assumption that the
ocean response is static, which is consistent with altimetric obser-
vations (Desai 2002). However, it has been shown that the pole
tide is dynamic and significantly larger in shallow seas such as the
North and Baltic Seas (Miller & Wunsch 1973; Dickman 1979,
1988). Several stations used in this study are located in Europe and
are probably affected by the dynamic oceanic pole tide, leading to
an underestimation of the pole tide correction. Even so, the com-
putation of the dynamic loading due to the pole tide at each GGP
station is far beyond the scope of this study. Rough estimates of
this effect by an artificial multiplication of the pole tide by factors
between 2 and 10 confirmed that the increase of the correction by
a given factor may significantly decrease the value of the estimated

gravimetric factor but no precise computation can be made without
further modeling.

Fig. 2 illustrates the gravimetric corrections that we apply to the
GGP data.

3.2.2 Offsets removal

The next step in the data processing is the proper correction of the
offsets. Their influence on the study of the long-period phenomena
has been pointed out, for example, by Xu et al. (2004). The strategy
we have adopted in this work is to minimize iteratively the misfit
between a model of the main polar motion components and the
gravity residues. In the following order, we

(i) list the offsets: they are supposed to occur when (1) at least
one data point is missing or (2) there is no real interruption but an
obvious offset is apparent,

(ii) make a first rough offset correction using the median value
of a few points on each side of the offset or gap; depending on the
stations, between 8 and 30 points (i.e. hours) are used,

(iii) loop until a chosen criterion is met (stabilization of the rms
or maximum number of iterations is reached, either having been
used here) using the following steps:

(a) Fit of sinusoids with the following periods to the signal (see
Section 3.2.4): 1 yr, half a year and the estimated CW period,
plus a linear trend.

(b) Use of Latin Hypercube Sampling (LHS) method from
McKay et al. (1979) to randomly sample new sets of offsets
corrections (the times are fixed and we only look for offsets
amplitudes).

(c) Application of these offsets corrections and computation of
the corresponding rms (misfit to the model), to both the data
and the theoretical perturbation deduced from polar motion
data.

(d) Addition of the two rms for each tested set and search for
the best combined rms to find the best offset correction for
this iteration.

(e) Addition of the best correction to the total offset correction
only if the new best combined rms is smaller than the previous
one.

(f) Exit of this loop if the chosen criterion is met or return to (a).

(iv) application of the best offset correction to the residues.

The fitting procedure being detailed in Section 3.2.4, for now we
just fit a few sinusoids of intermediate frequencies only to avoid an
overfitting of the data at long period: 1, 0.5 yr and the CW period
estimated from the polar motion data. Indeed, if there are many
offsets in the time-series and we try to fit a long-period wave, the
different segments could be artificially shifted to match this low-
frequency oscillation of potentially high amplitude. The tides at
1305 and 205 d were initially fitted too, following Loyer et al.’s
(1999) procedure, but considering their extremely small amplitudes
which did not affect the results, they are not considered anymore.

The LHS method (McKay et al. 1979) used to determine the
successive offsets corrections consists in a random sampling in
the space of parameters, following a given random distribution. In
other words, several complete sets of offset are randomly generated
at each iteration and only the best one—the definition of this ‘best’
is given in the next paragraph—is finally applied. Here we use either
a uniform or a Gaussian distribution for the sampling, depending on
the confidence we have in the first rough correction from the median
computation around offsets. For offsets associated with gaps of a
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Figure 2. Gravimetric corrections applied to the raw gravity time-series at the Strasbourg station. The local atmospheric correction is computed from the
local pressure time-series at each station with an admittance factor of −3.0668 nm s−2 hPa−1. The atmospheric effects along with the local and non-local
hydrological corrections and oceanic loading are computed from the European Centre for Medium Range Weather Forecasts (ECMWF) reanalysis (ERA
interim) surface pressure fields, assuming for the atmospheric loading computation a barotropic ocean model forced by air pressure and winds (MOG2D) when
provided at the time of gravity records, or an inverted barometer ocean response otherwise.

few weeks or more, it is more efficient to consider that all offsets
values are equiprobable within a specific range. Although alternative
algorithms exist, the LHS method is a good option as it is simple
to implement and a fast way of trying a lot of possible corrections
without any prior assumptions.

To determine the best offset correction to be applied, we add the
rms from both the data and theoretical gravity perturbation. The
use of a combined rms is an efficient way of avoiding overfitting of
anomalous signals in the gravity data or introducing artificial non-
reasonable offsets. However, the observed and theoretical signals
have different amplitudes. Thus, they cannot be directly compared
to the same model. Doing so, we would introduce a systematic bias
in the difference between the theoretical gravity time-series and the
model, which is only fitted on the gravity data. To avoid this problem
without making any assumption on the amplitudes difference, we
simply normalize both signals by their maximum amplitude. Then,
we can compute consistent misfits between the fitted model on the
one hand and observed or theoretical gravity perturbation on the
other hand.

3.2.3 Filtering and decimation

After the offset correction, we linearly interpolate the data to fill the
gaps smaller than one month and we do not include in the study the
stations providing data with larger gaps.

To avoid to estimate many high-frequency waves, to eliminate
short-period artefacts and to decrease the number of data points,
we filter the signal using a low-pass finite impulse response (FIR)
filter with no phase shift and decimate it to one day. The absence

of phase shifting is essential to preserve the phase of the signal we
are interested in. With this filter, the same number of data points
both at the beginning and end of the signal are lost. A happy conse-
quence of this loss is the systematic elimination of possible quick
drift at the beginning of some time-series. An ideal filtering would
eliminate any signal above the CW frequency but because most of
the gravimetric time-series do not exceed two decades, it is im-
practicable. An empirical estimation indicates that a filter length of
roughly 30 yr—inducing a loss of 15 yr both at the beginning and
end of the signal—is necessary to fully eliminate the annual signal
without affecting the CW. Synthetic tests have shown that even with
an attenuation as weak as −20 dB at the annual period and no sig-
nificant impact at the CW period, a 10-yr long filter is required with
a rectangular tapering window. Therefore, we have chosen to follow
the filtering procedure used by Loyer et al. (1999), with a cut-off
frequency at 90 d. The length of our filter is 2 yr, which means that
1 yr of signal is lost at the beginning and end.

3.2.4 Fitting

The last step of the data processing is the estimation of the sinusoids
that compose the residual and theoretical signals. Their amplitudes
and phases will be used to compute the gravimetric factor given by
eq. (11). To do so, we fit a sine and a cosine of different ampli-
tudes for each frequency, from which we deduce the corresponding
amplitude and phase of the equivalent shifted sinusoidal wave as
expressed in eq. (10). The periods of the forced oscillations are
18.6, 9.3, 1 and 0.5 yr. We also include in this set the observed
CW period. Apart from the annual, semi-annual and Chandlerian
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period, the others correspond to the waves with largest amplitudes
at long period as indicated in Loyer et al. (1999). As a linear time
variation of the phase of the signal appears as a time variation of the
Chandler frequency, we first estimate the apparent CW frequency
by means of the rotation data of the IERS and use this value in the
fitting procedure for the residual time-series.

Because mantle anelasticity can only produce a negative phase
lag, as reminded by Ducarme et al. (2006), a constraint on the fitting
must be added to force a negative phase for the gravimetric factor
when needed. This constraint is similar to the positivity constraint
of the quality factor introduced by Florsch & Hinderer (2000) in
the case of the Free Core Nutation, which is another free rotational
mode of the Earth. For some of the stations, the fitting actually yields
a positive phase, which does not respect the causality principle and
has no physical meaning. In those cases, we have first estimated
the phase of the Chandlerian oscillation from the polar motion
data, then use it as an upper limit for the phase of the Chandlerian
signal in gravity residuals, in order to keep κ as given by eq. (9)
negative.

Another component to fit is the instrumental drift. Although the
time-series of the old SG (Metsahovi (ME) station) had an expo-
nential drift, recent SG recordings (all of the other series used in
this study) have a linear drift, except for a transient initial drift
eliminated by the FIR low-pass filter.

For the fitting, we used the routines included in the lmfit Python
package (Newville et al. 2014) with the least-squares method. They
provide uncertainties estimates for each parameter we use with other
methods described in Section 3.2.5 to estimate the reliability of our
results.

3.2.5 Convergence and uncertainties estimate

To estimate the uncertainties associated to our results, we apply the
fitting method to time-series whose length is progressively increased
until they contain the whole data sets and we plot the amplitude and
phase of the gravimetric factor as a function of the time span of
the data. They should theoretically converge toward constant values
for time-series that are longer than the beating period of 6.5 yr,
although most of them do not completely as discussed in Section 6.
This method is qualitatively used by Loyer et al. (1999). We use
the variance of the amplitude and phase values after the 6.5 yr limit
to estimate the uncertainties of the gravimetric factor. We denote
the standard deviation obtained from the convergence by σ CV, as
opposed to the uncertainty σ fit obtained from the fitting, which is
the formal least-squares error.

For the stations where the phase had to be constrained to be neg-
ative, the formal error is frequently equal to the phase itself, which
means that the fitting could not provide the best solution without
exceeding the imposed limit. In other words, the best estimate for
the gravimetric factor phase could be zero for these stations, consid-
ering the physical constraint. In Tables 2 and 3, the affected stations
are indicated with a formal error between parentheses.

When we consider the variability in the results reported in Sec-
tion 5, using the convergence of the computed values obviously
seems to yield a better quantification of the uncertainty than the
usual misfit. Indeed, this method takes advantage of the intrinsic
variability (whatever its origin) of gravity records with time to put
less tight but more realistic constraints on the gravimetric factor es-
timated from GGP data. Of course, this comment only holds when
the phase is negative without the need for any constraint.

4 S TA C K I N G

In the previous section, we have presented a step-by-step processing
to remove the �ggeo (gravimetric corrections) and �gSG (drift and
offsets) terms from eq. (1) for any individual GGP time-series in
order to extract the polar motion effect. None of these steps have
decreased the noise.

A standard approach to increase the signal-to-noise ratio in gravi-
metric data was first used by Cummins et al. (1991) in their
search for oscillatory gravity signals associated with core un-
dertones. The method consists in stacking the data from differ-
ent stations, assigning them a weight in accordance to the spa-
tial pattern of the sought gravimetric signal. The perturbation
of the vertical component of the gravity field associated to the
CW is a degree 2, order −1 spherical harmonic, as depicted in
Fig. 3.

To adapt the stacking method to polar motion study, we select the
GGP stations with time-series longer than 10 yr to ensure a sufficient
separation between the CW and annual signals. Moreover, to apply
optimal offsets correction, we reject stations or time-series with long
interruptions. Last, we need stations with simultaneous records in
order to stack them. We therefore exclude time-series which stopped
before 2008 (see Table 1). Among the nearly 35 stations of the GGP
network, only nine are first retained. They are listed in Table 1 with
the start and end dates of the recordings. The new ST time-series
actually covers the whole time period between 1997 and today but
instrumental problems on the tilts limited the data usability for this
study till 2009.

After having processed the data as described in Sections 3.2.1–
3.2.3, the time-series �gj(t) at station j is the sum of a signal sj(t)
and some uncorrelated noise n:

y j (t) = s j (t) + n(t). (16)

The stacking formula is:

Sm
 (t) =

∑
j Ȳ m

 (θ j , φ j )y j (t)∑
j |Y m

 (θ j , φ j )|2

=
∑

j Ȳ m
 (θ j , φ j )s j (t) + ∑

j Ȳ m
 (θ j , φ j )n j (t)∑

j |Y m
 (θ j , φ j )|2 (17)

where Y m
l (θ j , φ j ) is the spherical harmonics of degree  = 2 and

order m = −1 computed at station j of coordinates (θ j, φj).
In addition to this spatial weighting and to take into account

the variability in the quality of the stations, we similarly weighted
the individual time-series yj(t) using the standard deviation on the
convergence of δ, namely the σ CV

δ appearing in Table 3 for each
station. The weights wj (last column of Table 1) are defined in such
a way that they sum up to 1

w j =
(

σ j

∑
k

1

σk

)−1

, (18)

where σ CV
δ at station j is simply written σ j for the sake of clarity.

Then, we may defined yσ
j (t) as the time-series weighted by the

individual uncertainties:

yσ
j (t) = w j y j (t) (19)

and use it instead of yj(t) in eq. (17).
Xu et al. (2004) made a global estimation of the gravimetric fac-

tor with a different subset of five stations but they did not spatially
weight the time-series. Their weighting was only based on the stan-
dard deviation of the adjusted amplitudes and phases in the time
domain. In addition, they could only work on a common time span
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Figure 3. Polar motion induced elastic gravity perturbation at randomly chosen date. The stations used in this paper are symbolized by white stars. At this
date, the pole position was xp = 0.182947 arcsec and yp = 0.283920 arcsec. In this picture, the degree 2, order −1 spherical harmonic pattern used to weight
the time-series in the stacking clearly appears.

Table 1. First selection of GGP stations exhibiting the longest duration available. Columns Long. and Lat. are
the stations coordinates in decimal degrees in longitude and latitude, respectively. The last column provides the
weights as defined in eq. (18). CA and ST are limited to the new SG time-series (series from older instruments
are available but they do not add any value in the stacking because they are noisier). For the ST station, we have
used a time-series already processed for previous studies, hence the absence of gaps and offsets.

Location (name) Long. Lat. Start End Duration (yr) Offsets Weights

Bad Homburg (BH) 8.6113 50.2285 2001.1 2012.3 11.2 16 0.114
Cantley (CA) 284.1927 45.5850 1997.5 2012.0 14.5 9 0.019
Canberra (CB) 149.0077 −35.321 1997.0 2012.0 14.9 39 0.340
Matsuhiro (MA) 138.2032 36.5439 1997.3 2008.5 11.2 66 0.118
Membach (MB) 6.0066 50.6093 1995.5 2012.0 16.4 27 0.045
Medicina (MC) 11.645 44.5219 1998.0 2012.0 14.1 8 0.118
Metsahovi (ME) 24.3958 60.2172 1994.6 2012.5 18.0 71 0.070
Moxa (MO) 11.6156 50.6447 2000.0 2012.0 12.0 26 0.106
Strasbourg (ST) 7.6850 48.6217 1997.1 2009.0 12.4 – 0.070

of nearly six years for the selected stations. Using a different ap-
proach, Ducarme et al. (2006) provided another global estimation
of the gravimetric factor using a larger subset of nine stations but
their goal was not to directly address the question of the signal-to-
noise ratio or to get rid of local effects. The combination of multiple
stations was rather used to increase the length of the data set they
inverted, with redundancies in time. Here, we have chosen to first
exploit the spatial and temporal dependency between the data by
weighting and stacking them to decrease the influence of spatially
incoherent signals and noise before estimating the global param-
eters. Last but not least and as already noted, another important
feature of this study is the long duration of the time-series used in
the stacking, the time-series sharing a common time span longer
than a decade.

5 R E S U LT S

The main aim of this study being to estimate a global gravimetric
factor from multiple stations, we only focus on the stations listed in
Table 1. The results are summarized in Table 2. The values of the
uncertainties σ fit

δ and σ fit
κ are deduced from the misfit between the

fitted model and the residual filtered gravity, whereas the values of
σ CV

δ and σ CV
κ are estimated from the convergence of the parameters

values for increasing length of the time-series: it is the standard de-
viation of the estimated values for the period ranging from the 6.5 yr
threshold until the end of the time-series. An easy way to estimate
the quality of the convergence is thus to compare the two kinds of
uncertainties in Table 2 for the amplitude δ and phase κ . As an ex-
ample, Fig. 4 illustrates the convergence obtained for one of the best
(MC) and for one of the worst (CA) stations in terms of the stability
of the results. It is noteworthy that an increase of the time-series
length is in any case associated with variations of the gravimetric
factor amplitude and phase and we will discuss this point further in
Section 6.

Because the quality of the hydrology correction is one of the most
difficult to assess, it is only applied when the obtained amplitude
is closer to the expected elastic values. It is notable that both the
amplitude and phase are impacted by the hydrology correction when
applied.

Moving to our multistation analysis, the results for the stacking
method are given in Table 3 for two different subsets of, respectively,
five and seven SG stations. The selection of the stations in these
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Table 2. Gravimetric factors amplitude and phase for the selected stations. The asterisk indicates that the hydrology
correction has been applied.

Location (name) δ σ fit
δ σCV

δ κ(deg) σ fit
κ σCV

κ

Bad Homburg (BH)* 1.165 0.020 0.026 −0.39 (0.39) 0.03
Cantley (CA)* 1.315 0.030 0.177 −21.70 1.09 4.25
Canberra (CB) 1.066 0.013 0.010 −4.83 0.55 1.12
Matsuhiro (MA) 1.042 0.020 0.028 −0.20 (0.20) 0.02
Membach (MB) 1.145 0.022 0.075 −0.66 0.92 1.87
Medicina (MC) 1.103 0.011 0.034 −0.29 (0.29) 0.05
Metsahovi (ME) 0.948 0.021 0.049 −0.26 (0.26) 7.00
Moxa (MO) 0.967 0.016 0.020 −0.38 (0.38) 2.78
Strasbourg (ST)* 1.225 0.017 0.049 −2.32 0.66 2.31

Figure 4. Convergence of the gravimetric factor amplitude and phase for increasing length of the time-series. Part (a) is for Medicina station (MC) and part
(b) is for Cantley (CA). The vertical line indicates the 6.5 yr limit theoretically needed to separate the annual and Chandlerian oscillations; the horizontal red
dashed line is the mean of the values after the 6.5 yr limit has been exceeded.

Table 3. Gravimetric factors amplitude and phase for the stacking and multistation analysis. Seven stations: BH, CA, CB, MB, MC,
ME and MO; five stations: BH, CB, MB, MC and MO. Ducarme et al. (2006) estimated a global amplitude with phases either set to the
individual values or to zero for all of the stations. Their estimated phase is −1 d, which converts to −0.83 deg for a Chandler period of
435 d.

Analysis δ σ fit
δ σCV

δ κ(deg) σ fit
κ σCV

κ

This study
Spatial and uncertainty weighting
Stack 7 stations 1.092 ± 0.010 ± 0.017 −0.32 (± 0.32) ± 0.01
Stack 5 stations 1.118 ± 0.009 ± 0.016 −0.45 ± 0.30 ± 0.66
Spatial weighting only
Stack 7 stations 1.090 ± 0.004 ± 0.019 −0.36 (± 0.36) ± 0.01
Stack 5 stations 1.090 ± 0.010 ± 0.023 −0.34 (± 0.34) ± 0.03
Mean—see eqs (20) and (21)
Mean 7 stations 1.079 ± 0.006 ± 0.008 −1.04 ± 0.15 ± 0.026
Mean 5 stations 1.081 ± 0.007 ± 0.009 −0.85 ± 0.18 ± 0.026

Xu et al. (2004)
STD weighted 1.1613 ± 0.0275 – −1.30 ± 1.33 –

Ducarme et al. (2006)
Ocean pole tide not corrected
Mean 1.1788 ± 0.0040 – −0.83 – –
Global (local phase) 1.1816 ± 0.0047 – local – –
Global (zero phase) 1.1797 ± 0.0047 – 0 – –
Ocean pole tide corrected
Mean 1.1605 ± 0.0040 – −0.83 – –
Global (local phase) 1.1612 ± 0.0047 – local – –
Global (zero phase) 1.1593 ± 0.0047 – 0 – –
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Figure 5. Correlation between the annual and CW sinusoidal fitted ampli-
tudes for increasing length of the time-series at station MB. The vertical line
indicates the 6.5 yr limit. We can clearly see the pseudo-oscillation in the
correlation.

subsets is discussed in Section 6. The weighted mean E is given
by:

E =
∑

j

w j y j (20)

where the weights wj are given by eq. (18) in which σ is either σ fit

or σ CV for the amplitude or phase. The error e associated with the
mean is

e =
⎛
⎝∑

j

1

σ 2
j

⎞
⎠

− 1
2

. (21)

For increasing time spans, we have plotted the variations of the
correlation between the fitted parameters for the annual and Chan-
dlerian oscillations (Fig. 5). As expected, this correlation quickly
decreases toward zero for time-series longer than the minimum du-
ration needed to theoretically separate the annual signal from the
CW. Even so, this decrease is not monotonic and exhibits oscilla-
tions of pseudo-half-period roughly similar to the 6.5 yr beating.
This value is certainly related to the frequency difference between
the two main signals contained in the data but its emergence in this
case has yet to be explained. Similar fittings on synthetic signals
exhibit this behaviour too, which would therefore be caused by a
numerical artefact.

The main results for the individual stations and the stacking are
summarized in Fig. 6.

6 D I S C U S S I O N

If we first focus on the individual estimates of the gravimetric factor,
the most obvious observation is that none of the amplitude or phase
is easier to constrain and in particular some stations have outliers, for
the amplitude, phase or both. As aforementioned, one of the source
of errors lies in the offsets, especially when they are associated
with other instrumental defects that prevent a simple realignment
of the data points on either side of the offsets. Synthetic tests have
shown that although the phase is actually sensitive to the offset
correction and any long-period phenomenon that affect the trend of
the signal, the amplitude is equally impacted by offsets too. As an

example, when the phase variation due to synthetic offsets reaches a
few tenths of a degree, the amplitude undergoes variations of a few
per cent.

Considering the obvious outliers, the explanations are essentially
assumptions because of the diversity of possible sources of errors.
For ME, the abnormally small amplitude may be due to the large
number of offsets we had to correct taking into account an expo-
nential drift, along with the position of the station at relatively high
latitude where the polar motion effect is less important. The prox-
imity of the ocean is another hint considering the additional noise.
This last suggestion could be an explanation for the abnormally
high amplitude at Cantley (CA) station which is close to the sea
too. For Moxa (MO), the hydrology is probably one of the main
explanation for the small amplitude. This hypothesis is suggested
by the opposite way the amplitude and phase vary when we change
the admittance factor used to compute the local hydrological ef-
fect at this station. Indeed, depending on the correction, an increase
(improvement in this case) in the amplitude is accompanied by an
increase of the phase which was already too large when we did not
constrain it to be negative. Of course, if the Chandlerian and annual
signals could be completely decorrelated—which is not the case
here—the influence of hydrology would not be so strong because
the hydrological effects are quite small at the Chandler frequency.

Amongst the gravimetric corrections we made on the time-series,
the local hydrological correction has a particularly strong impact on
the estimation of both the gravimetric factor amplitude and phase
and on the convergence of their values in our tests. This is a serious
issue because this correction is hard to improve without appro-
priate local hydrological studies and modeling. Actually, a lot of
parameters and phenomena have an influence on the effect of hy-
drology on gravity measurements, the position of the station relative
to the ground, the distribution of underground water masses both
in the vadose and saturated zones being only some of them. For
only some of the stations, the convergence is improved when the
local hydrological correction is not applied (MC, for instance) but
more importantly, both the amplitude and phase of the gravimet-
ric factor are not clearly improved, if not worsened when hydrol-
ogy is taken into account. A systematic determination of the local
hydrological admittances at each GGP station would be the first
step in an attempt to better consider hydrology in the gravimetric
correction.

Another parameter which influences the gravimetric factor phase
is of course the Chandler frequency. Everything else being equal,
an artificial decrease of the Chandler period induces an increase
of the gravimetric factor amplitude, which could be qualitatively
interpreted as a tendency for the fitting to maintain the overall
energetic content of the CW signal. Anyway, contrary to the offsets
correction or local hydrology, the influence of a Chandler frequency
variation is quite predictable, at least at the first order and reasonably
small compared to other sources of error. The observed variations
in polar motion data are indeed smaller than the spectral resolution
we have in gravimetry.

Focusing on the stacking now, it is important to be aware that
combining different stations does not necessarily improve the over-
all analysis quality. Using only a station with very good corrections
clearly provides better results than stacking poorly corrected gravity
time-series. Out of the nine stations we had initially selected, we did
not retain MA and ST because of their usable time-series ending
too early. Thus, we only kept the seven stations BH, CA, CB, MB,
MC, ME and MO. Out of those these stations, we then only kept
BH, CB, MB MC and MO for their reasonably small phase values
and good convergence (small σ CV

κ ).
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Figure 6. Gravimetric factor amplitude and phase for the individual stations and the stacking with five time-series. The stations name preceded by an asterisk
are included in the five stations stacking. The vertical red dashed lines are the elastic values, namely δ = 1.16 and κ = 0 (see Section 6). The error bars are the
uncertainties from the convergence. The red diamonds for the stackings are the results with weights depending on the quality of each data set.

After the stacking of the five best stations we have in the set,
albeit the estimated amplitude is not completely satisfying, its un-
certainty is smaller than for all of the individual estimates with a
better convergence, that is, less sensitivity to the time-series length.
The phase is even better recovered with quite a low uncertainty, con-
sidering the phase disparity in the individual estimates. Amongst
the local effects we had to correct, the stacking could be especially
efficient as for local hydrology. An interesting observation is the
improvement of the gravimetric factor estimate when we select the
five best stations amongst the initial set. It tends to show that we can
take profit of the number of GGP stations to only extract a smaller
subset of valuable data depending on the processes we are interested
in.

We have already underlined that for none of the station the con-
vergence of both the amplitude and phase values is totally achieved,
even with the longest time-series. Of course we expected some vari-
ations after the theoretical 6.5 yr limit but the observed variations
are quite significant for most of the stations compared to the sought
accuracy. As far as we know, none of the results provided in the
literature for the gravimetric factor, but Loyer et al. (1999), ex-
plicitly consider the influence of the time span of the gravimetric
time-series. All of the previous works implicitly assumed that the
longest the time-series, the better the estimate. Alternatively and
as mentioned in Section 3.2.5, we consider longer time-series as a
better way of estimating the uncertainties on the gravimetric factor
since one of the biggest source of variations both in the amplitude
and phase lies in the selection of the time span, revealing the need
for even better corrections.

As already stated, the main application of the CW gravimetric
factor estimation is to put some constraints on mantle anelasticity,
especially through the computation of the expected gravimetric fac-
tor phase for classical rheologies of the mantle. Although the actual

computation of this phase for realistic Earth’s models is beyond the
scope of this work, we briefly discuss the method.

First, the complex gravimetric factor as a function of frequency
ω is given by:

δ̃(ω) = 1 − 3

2
k̃2(ω) + h̃2(ω) (22)

with k̃2(ω) and h̃2(ω) being the complex Love numbers. The fre-
quency dependency of k̃2 and h̃2 arises from the mantle anelasticity,
characterized by the viscosity. Then, because the Love numbers are
viscosity-dependent, eq. (22) provides a link between the viscosity
and the gravimetric factor phase. To link these parameters to the
quality factor Q, we may defined the parameter ε as:

k̃2 = k2(1 + iε) (23)

and use the following relation (Bizouard 2014):

ε = 1 − ks/k2

2Q
(24)

where ks is the secular Love number for the chosen Earth’s model.
Using eqs (22) and (24), it is then possible to plot the phase κ

as a function of viscosity (because the Love numbers are functions
of the viscosity) and estimate the corresponding quality factor Q.
Whatever parameter is considered to be known among the phase,
viscosity and quality factor, we can determine the two others for a
given rheological model. Alternatively, if we know both the phase
and viscosity or phase and quality factor, we can investigate the
ability of different rheological models to explain the observations.
In concrete terms, using the phases estimates from Table 1, we may
put some constraints on the rheological behaviour of the mantle,
as Benjamin et al. (2006) did for different geodetic observations,
including the CW.
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Regarding the amplitude of the gravimetric factor, Dickman
(2005) suggested the need to use rotationally consistent Love num-
bers, which are about 10 per cent larger than the accepted values
when the lack of core–mantle coupling is taken into account in the
elastic deformation. It would imply an increase of 1–2 per cent of
the elastic gravimetric factor amplitude, which is related to the Love
numbers through eq. (22). The new elastic value would be closer to
1.18 and the interpretation of our results and those from previous
works should be adapted accordingly.

Using the stacking method, we have obtained smaller uncertain-
ties than previous global estimates (Xu et al. 2004) of the amplitude
and phase of the gravimetric pole tide. However, these uncertainties
are still too large to bring some constraints on the mantle rheo-
logical behaviour as just explained. So we may conclude that the
influence of anelastic effects at the Chandler frequency is still too
small to be proven from such gravity time-series analysis. None of
the departures of the gravimetric factor amplitude and phase from
the theoretical elastic values can be considered relevant, taking into
account reasonable uncertainties on our results. On the contrary,
this work neither excludes the existence of anelasticity even if its
impact is beyond our detection yet.

7 C O N C LU S I O N S

Our estimates of the gravimetric factor at the Chandler frequency
using both local and global analyses have shown the actual interest
of the stacking method. In particular, local hydrological perturba-
tions that may be so harmful in local studies seem to be significantly
reduced when weighting and combining the time-series from sev-
eral stations. Another essential component of this work lies in the
length of the data sets we have used: more than a decade of simul-
taneous gravimetric recordings were included in the stacking, far
more than the theoretical 6.5 yr limit needed to separate the an-
nual and Chandlerian peaks. We have taken advantage of these long
time-series to better estimate the uncertainties which are higher but
more reasonable than the usual formal estimates from the misfit
between gravity residuals and the fitted model.

The gravimetric factor amplitudes and phases we have obtained,
either for individual stations or after the stacking, differ notably
from previous estimates. These differences mainly come from four
specific factors whose influence seems to be underestimated in pre-
vious works. The first one is the presence of offsets and gaps which
are difficult to correct without introducing a bias in the study. Their
effect cannot be easily determined considering the way they may
compensate or cumulate. Synthetic tests have shown that the off-
sets can impact both the amplitude and phase, the latter being more
sensitive to them. The second factor is the lack of proper correction
for local hydrology and dynamic pole tide, both processes being
quite difficult to model at a good level of accuracy. Once again,
they strongly affect both the amplitude and phase. Local hydrology
might be better modeled in the future at each GGP station but for
the moment, it is not well enough known to be routinely and reliably
used without taking the risk of introducing an additional bias. The
third factor is related to the duration of the time-series which was
only considered by Loyer et al. (1999) before this work. Indeed,
the biggest variations still come from the choice of the data sub-
sets or from their duration as shown by the convergence tests. This
comment clearly proves the need to use very long, uninterrupted
time-series to infer the reliability of any method or processing in
the estimation of the gravimetric factor. The last factor is the ge-
ographic distribution of the stations, in relation with the stacking

method. Most of the long time-series being currently recorded in
Europe, the advantages of the stacking are partly canceled by this
highly heterogeneous distribution. However, by ensuring continu-
ous recordings and adding new stations in the GGP network, this
specific problem could be patiently solved.

As for the link between anelastic dissipation and the gravimetric
factor phase, we have shown that our estimates do not exclude
anelastic effect at the CW period although further refinements are
needed to definitely answer this question.
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Brzeziński, A. & Capitaine, N., 1993. The use of the precise observations
of the celestial ephemeris pole in the analysis of geophysical excitation
of Earth rotation, J. geophys. Res., 98(B4), 6667–6675.
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