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Abstract

Deformable models are segmentation techniques that adapt a curve with the goal of maximizing its overlap

with the actual contour of an object of interest within an image. Such a process requires that an optimization

framework be defined whose most critical issues include: choosing an optimization method which exhibits

robustness with respect to noisy and highly-multimodal search spaces; selecting the optimization and segmen-

tation algorithms’ parameters; choosing the representation for encoding prior knowledge on the image domain

of interest; initializing the curve in a location which favors its convergence onto the boundary of the object of

interest.

All these problems are extensively discussed within this manuscript, with reference to the family of global

stochastic optimization techniques that are generally termed metaheuristics, and are designed to solve complex

optimization and machine learning problems. In particular, we present a complete study on the application of

metaheuristics to image segmentation based on deformable models. This survey studies, analyzes and contex-

tualizes the most notable and recent works on this topic, proposing an original categorization for these hybrid

approaches. It aims to serve as a reference work which proposes some guidelines for choosing and designing

the most appropriate combination of deformable models and metaheuristics when facing a given segmentation

problem.

After recalling the principles underlying deformable models and metaheuristics, we broadly review the

different metaheuristic-based approaches to image segmentation based on deformable models, and conclude

with a general discussion about methodological and design issues as well as future research and application

trends.
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Continuous Optimization

1. Introduction

Image segmentation is defined as the partitioning of an image into non-overlapping regions that are ho-

mogeneous with respect to some visual feature, such as intensity or texture [1]. Segmentation algorithms are

involved in virtually all computer vision systems, at least in a pre-processing stage, up to practical applications

in which segmentation plays a most central role: they range from medical imaging to object detection, traffic

control system and video surveillance, among many others. The importance of developing automated methods

to accurately perform segmentation is obvious if one is aware about how tedious, time-consuming, subjective

and error-prone manual segmentation can be.

According to the general principle on which the segmentation is based, we can build a taxonomy of the

different segmentation algorithms distinguishing the following categories [2–4]: thresholding techniques (based

on pixel intensity), edge-based methods (boundary localization), region-based approaches (region detection),

and deformable models (shape). This paper is focused on deformable models and, in particular, on the role that

stochastic optimization techniques (metaheuristics) play in their application. In fact, the segmentation problems

solved by deformable models are intrinsically optimization problems. As a very general description, one can

say that deformable models start from some initial boundary shape represented as a curve and iteratively modify

it by applying various shrinking/expansion operations. These operations are driven by the goal of minimizing

an associated energy function which, ideally, reaches its optimum when the curve perfectly fits the boundary

of the object one wants to segment. Therefore, segmentation is reformulated as the global optimization of a

multimodal function.

Besides the main global problem of adjusting the deformable model boundaries according to a cost function,

optimization methods are at the core of different critical tasks and can be used to solve many image segmenta-

tion sub-problems, such as the selection of the parameters that regulate the algorithm (e.g., the weights of the

cost function), the initialization of the curve in a location which favors its convergence onto the boundary of

the object of interest, or the parameter configuration of some previous image processing step. Most often, the

optimization task is solved by using classical numerical optimization methods such as Levenberg-Marquardt,

Gauss-Newton or gradient descent, after relaxing the original problem such that the function being optimized

becomes approximately convex [5, 6]. In addition to the selection of a proper relaxation strategy, these tech-

niques imply that the function to be optimized is differentiable and continuous. At the same time, there is com-

monly a relevant probability that such local optimization methods get stuck in local minima. In fact, most local

optimization techniques perform effectively when the problem under consideration satisfies the said tight math-
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ematical constraints. However, when the search space is non-continuous, noisy, high-dimensional, non-convex

or multimodal, those methods are consistently outperformed by stochastic optimization algorithms [7, 8].

Metaheuristics are general-purpose stochastic procedures designed to solve complex optimization prob-

lems [9]. They are approximate and usually non-deterministic algorithms that guide a search process over the

solution space. Unlike methods designed specifically for particular types of optimization tasks, they are general-

purpose algorithms and require no particular knowledge about the problem structure other than the objective

function itself, when defined, or a sampling of it (training set) when the optimization process is based only on

empirical observations. Metaheuristics are characterized by their robustness and ability to exploit the informa-

tion they accumulate about an initially unknown search space in order to bias the subsequent search towards

useful subspaces. They provide an effective approach to manage large, complex and poorly understood search

spaces where enumerative or heuristic search methods are inappropriate.

Despite their importance and the number of scientific publications on the use of metaheuristics for de-

formable model optimization (see section 4), this is the first manuscript that presents an overview about the

area. This exhaustive survey includes all relevant papers related with the hybridization of metaheuristics and

deformable models. At the same time, it aims at drawing some guidelines to help those who are willing to incor-

porate the advantages, and ease of use, of metaheuristics into the design of new segmentation approaches based

on the same principles. The paper is structured as follows: in sections 2 and 3 we briefly review the theoretical

foundations of deformable models and metaheuristics. Section 4 is the core of this survey, describing the differ-

ent deformable model families into which we have divided the methods under consideration. Finally, section 5

presents some final remarks and recommendations, foreseeing, at the same time, possible future developments.

2. Deformable Models

The term “deformable models” was first used in the late eighties [10, 11] with reference to curves or surfaces,

defined within the image domain, that are deformed under the influence of “internal” and “external” forces. The

former are related with the curve’s own features while the latter refer to the image regions surrounding the

curve. In other words, commonly, in deformable models, internal forces enforce regularity constraints and keep

the model smooth during deformation, while external forces are defined such that the model is attracted toward

an object or other features of interest within the image.

There are basically two main types of deformable models: parametric/explicit and geometric/implicit.

The former represents curves and surfaces explicitly in their parametric forms during deformation, allowing

direct interaction with the model and leading to a compact representation for fast real-time implementation (i.e.

they are implemented by explicitly tracking control points). Alternatively, the latter can handle topological
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changes naturally because these models are based on the theory of curve evolution [12–14], and they represent

curves and surfaces implicitly as a level set of a higher-dimensional scalar function.

The main principles underlying both approaches are essentially similar despite the aforementioned differ-

ences and the diverse terminology found in the field: deformable models [10], deformable templates [15],

active shape models [16], active contour models / deformable contours / snakes [17], deformable surfaces [18–

20], active appearance models [21], or statistical shape models [22]. In the last few years, different deformable

models taxonomies have been presented [15, 20, 23], according to different criteria like the mechanisms used

for carrying out the contour deformation process or the geometric representations used.

Figure 1 shows the deformable models taxonomy used as reference to define the main structure of this

paper. We essentially used two criteria. On the one hand, the type of deformable models representation:

geometric/implicit or parametric/explicit [24]. On the other hand, the major deformable models families for

which a hybridization with metaheuristics has been most frequently described in the literature. Finally, other

approaches with a smaller number of contributions have also been included in section 4.5 (Brownian strings,

adaptive potential active contours, Bayesian dynamic contours, and fuzzy active contours).

The next subsections will be devoted to briefly describe the main types of deformable models that have been

used in combination with metaheuristics and that will be discussed in section 4.

2.1. Parametric Deformable Models

2.1.1. Active Contour Models

One of the first practical examples of parametric deformable models, called “snakes” or active contour mod-

els, was first proposed by Kass, Witkin and Terzopoulos [10, 11, 17]. An active contour model is a variational

method for detecting object boundaries in images. Starting from an initial closed configuration representing

a rough approximation of the shape to be segmented, an elastic model, Cini = {pini
1 , · · · , pini

n }, defined by n

points, is deformed. The deformation procedure is driven by the minimization of an energy function, until the

deformable model coincides with the object boundary.

Let X(p) be a parameterization of contour C and I the image intensity. Then the energy of C is given by:

E(C) = α

∫
|X ′(p)|2 +β

∫
|X ′′(p)|2−λ

∫
|∇I(X(p))|2 (1)

The first two terms represent the internal energy and the third one the external energy. The internal energy

is responsible for contour smoothness while the external energy is proportional to the distance between the

contour and the boundary of the object to be segmented. The third term causes the active contour model to be

attracted by areas with large image gradients. Since the goal is to minimize both the internal and the external

energy, the external energy is defined as the negative of the gradient magnitude. α,β and λ are the system’s free
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Figure 1: Deformable models taxonomy used as reference to design the main structure of this review. The

“classical” and most common approaches, corresponding to the main blocks of this paper, are shown in boxes

drawn in wide rims.

parameters, which are set a priori. Smaller λ ’s reduce noise but cannot capture sharp corners, while larger λ ’s

can effectively capture irregular boundaries but are more sensitive to noise. Besides, α makes the active contour

model more resistant to stretching, while β makes it more resistant to bending. These two parameters prevent

the deformable model from becoming non-continuous or to break during the iterative optimization process. The

first-order derivative makes the active contour model behave as a membrane, while the second-order derivative

makes the snake act like a thin plate.

Snakes represent the introduction of the general framework within which a model is matched to an image

by means of energy minimization. Since external forces act in a quite intuitive manner and they can be easily

adapted to track dynamic objects, these methods became very popular within the computer vision community.

However, the basic method described here also presents various limitations (sensitivity to local minima, depen-

dency on initialization, absence of prior shape knowledge, impossibility of managing topological changes) that

can be addressed by alternative models described in the following subsections.
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Figure 2: Topological active net and topological active volume structure representation.

2.1.2. Topological Active Net Models

A topological active net is a discrete implementation of an elastic mesh with interrelated nodes [25], that

integrates region- and boundary-based features. The model includes two kinds of nodes: the external nodes fit

the edges of the objects whereas the internal nodes model their internal topology. The main difference between

topological active nets and active contour models is the capacity of the former to modify its topology: active

contour models usually use only external nodes to fit the edges of the object to segment, thus lacking resources

to manage topology changes. Nevertheless, the model is complex and has limitations regarding topological

changes, local deformations, and the definition of the energy functional.

A topological active net is defined parametrically such that the mesh deformations are controlled by an

energy function also composed by internal and external energies. The internal energy depends on the first- and

second-order derivatives, which control shape contraction and bending, as well as the structure of the mesh.

The external energy represents the external forces governing the adjustment process, following the two types

of criteria corresponding to the internal and external nodes. As a 3-D extension of topological active nets,

topological active volumes were introduced in [25, 26] and later extended in [27, 28].

In opposition to active contour models, topological active nets are able to manage topological changes

that can affect the object to segment. However, this advantageous feature is penalized by the increase in the

complexity of the operators needed to manage those changes.

2.1.3. Active Shape Models

Active shape models [29] add more prior knowledge to active contour models: they can be seen as snakes

trained from examples. These shape models derive a “point distribution model” from sets of labeled points

(landmarks) selected by an expert in a training set of images. In each image, a point, or set of points, is placed

on the part of the object corresponding to its label. The model considers the points’ average positions and
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the main modes of variation found in the training set, so the shape models are parameterized such that they

represent ‘legal’ configurations. This kind of model has problems with unexpected shapes, since an instance of

the model can only take into account deformations which appear in the training set. On the opposite, it is robust

with respect to noise and image artifacts, like missing or damaged parts. In an active shape model, principal

component analysis is commonly used to construct a point distribution model and an allowable shape domain

over a set of landmark points extracted from the training shapes.

2.1.4. Active Appearance Models

Active appearance models [21] extend active shape models by considering not only the shape of the model

but also other image properties, like intensity, texture or color. An appearance model can represent both the

shape and the texture variability observed in a training set. Thus, it differs from an active shape model because,

instead of searching locally about each model point, the model aims to minimize the difference between a new

image and one synthesized by the appearance model [30]. An advantage of active appearance models with

respect to active shape models is that the latter only use shape constraints and do not take advantage of all

the grey-level information available within an object as the appearance models do. In turn, two of the main

disadvantages of active appearance models are the difficulty of defining a training set which reliably represents

the object to segment, as in active shape models, and the additional cost involved in managing a more complex

model that handles more information.

2.1.5. Deformable Templates

Finally, deformable templates [15] represent shapes as deformations of a given prototype or template. Prior

knowledge of an object shape is described by a, usually hand-drawn, prototype template. It consists of the

object’s representative contour/edges and a set of probabilistic transformations on the template. Deformable

templates have been successfully applied to object tracking [31] and object matching [32]. To define a de-

formable template, firstly, one needs to mathematically define a prototype which describes the prior knowledge

about the object shape as the most likely appearance of the object being sought. Secondly, one needs to pro-

vide a mathematical description of the possible relationships between the template and all admissible object

shapes. These descriptions represent the possible transformations which can deform the basic template and turn

it into the target object as appears in the image. Then, deformable templates can be seen as a more rigid and

mathematically constrained active shape model.

Geometrically deformable templates [33] are probabilistic deformable models whose degree of deformation

from their equilibrium shape is measured by a penalty function associated with the mapping between the two

images. A geometrically deformable template consists of a set of vertex describing the equilibrium shape (the
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undeformed prototype shape), a set of vertex representing the deformed prototype shape (result of the external

forces over the model), and a penalty function using a Bayesian formulation which measures the amount of

deformation of the template with respect to the equilibrium shape. This penalty function is invariant to scaling,

rotation, and translation of the template. Such a model can incorporate not only information about the mean

shape and the variability of objects, but also information about the mean location, orientation and size of objects,

as well as their variability, since it permits to segment several objects simultaneously.

2.2. Geometric Deformable Models

Geometric deformable models, proposed independently in [34] and [13], provide an elegant solution to ad-

dress the primary limitations of parametric deformable models. These models are based on the curve evolution

theory [35–37] and the level set method [14, 38]. Since the evolution of curves and surfaces do not depend on

the particular way the curve has been parameterized, it is commonly considered that this modality of deformable

models modifies the contour shape based only on geometric measures. In fact, when considering smooth sur-

faces of arbitrary topology, geometric measures are necessary because global parameterizations do not always

exist. Because of this, the evolving curves can be represented implicitly as a level set of a higher-dimensional

function and topological changes can be easily handled.

Amongst geometric models, the level set method for image segmentation [38] rely on an evolving closed

surface defined by a moving interface which expands outwards until it reaches the desired boundary. The

interface Γ(t) can be characterized as a Lipschitz continuous function:
φ(t,x)> 0 for x inside Γ(t)

φ(t,x)< 0 for x outside Γ(t)

φ(t,x) = 0 for x on Γ(t)

(2)

The front, or “evolving boundary”, denoted by Γ, is represented at time t by the zero level Γ(t)= {x|φ(t,x)=

0} of a level set function φ(t,x). The evolution of φ is commonly described by the following differential

equation:
∂φ

∂ t
+F |∇φ |= 0 (3)

known as the level set equation, where F is the speed function normal to the curve (generally dependent on time

and space variables) and ∇ is the spatial gradient operator. Speed can depend on position, time, or geometry of

the interface (e.g. its normal or its mean curvature). Importantly, the speed function of the level set describes the

local movement of the contour and is analogue to the energy function used in parametric deformable models.

One of the main advantages of level set-based methods is the natural ability of a single surface to seemingly

split apart and merge without losing its identity. On the other hand, two of their main disadvantages reside in that
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they are computationally demanding and that they require considerable design effort to construct appropriate

velocity functions for adapting the level set function (i.e., segmentation is the result of the choice of a suitable

speed function F .)

Some hybridizations between geometric and parametric deformable models have already been presented,

like geodesic active contours [39]. This approach is based on the relation between active contours and the

computation of geodesics, or minimal-distance curves, connecting active contour models based on energy min-

imization and geometric active contours following the theory of curve evolution. The technique is based on

active contours which deform in time according to intrinsic geometric measures of the image. The contours

naturally split and merge during the process, making it possible to detect several objects simultaneously, as well

as both interior and exterior boundaries.

3. Metaheuristics

Metaheuristics [9, 40] have been extensively used for continuous optimization due to a number of attractive

features: no requirements for a differentiable or continuous objective function 1, robust and reliable perfor-

mance, global search capability, virtually no need of specific information about the problem to solve, easy

implementation, and implicit parallelism. They explore effectively search spaces about which expert knowl-

edge is scarce or difficult to encode and where traditional optimization techniques fail. Metaheuristics are

non-deterministic and approximate algorithms, i.e., they do not always guarantee they can find the optimal

solution, but a good approximation in reasonable time. They are not problem-specific, permitting an abstract

description level, even if they may make use of domain-specific knowledge to enhance the search process.

The main objective of these optimization/learning procedures is to achieve a trade-off between intensifica-

tion and diversification. Diversification (exploration) implies generating diverse solutions to explore the search

space on a global scale while intensification (exploitation) implies focusing the search onto a local region where

good solutions have been found.

Metaheuristics can be taxonomically divided into:

• Trajectory methods. The search process describes a trajectory in the search space and can be seen as the

evolution in (discrete) time of a discrete dynamical system. Examples of this category are tabu search [41],

simulated annealing [42, 43], iterated local search [44] or variable neighborhood search [45].

• Population-based methods. These techniques deal, in every iteration of the algorithm, with a population

1In this paper we refer to the objective function as ’fitness function’, a term which would rigorously be appropriate only for genetic

algorithms, but which is most frequently adopted when referring to other metaheuristics, with particular regard to bio-inspired ones.
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of solutions. In this case, the search process can be seen as the evolution in (discrete) time of a set of

points in the solution space. Paradigmatic cases in this regard are evolutionary algorithms, such as ge-

netic algorithms [46–50], evolution strategies [51, 52] (within which it is worth mentioning the recent

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [53]), and evolutionary programming [54],

and swarm intelligence techniques [55], such as particle swarm optimization [56]. Evolutionary algo-

rithms are based on a computational paradigm which replicates mechanisms inspired by those of bio-

logical evolution, such as reproduction, mutation, recombination, and selection, to solve optimization

problems. Swarm intelligence methods emulate the collective behavior of decentralized, self-organized

artificial systems,, in which global search is an emergent behavior of a population of “agents”, which are

singularly programmed to perform a same, much simpler task. Differential evolution [57–60] is a more

recent and increasingly popular algorithm for continuous optimization which inherits its features from

both evolutionary algorithms and swarm intelligence methods.

• Memetic algorithms. These techniques [61] are hybrid global/local search methods in which a local

improvement procedure is incorporated into a population-based algorithm. The idea is to imitate the effect

of learning and social interaction during the life span of an individual by some kind of (local) improvement

mechanisms applied to the solutions found by the usual global search operators. While this general

definition allows memetic algorithms to include a virtually infinite variety of possible hybridizations of

existing methods, some of these algorithms originated independently of other previously existing ones and

constitute a specific niche within this class. Among these we would like to mention scatter search [62].

Within each of these classes, a huge number of other methods exist that we have not listed, as we decided

to mention here only those which will be most frequently considered in the approaches to metaheuristics-based

deformable models described in the next section.

A detailed description of metaheuristics is not within the scope of this paper, nor relevant for most of the

usual readers of this journal. Researchers in computer vision and all others who are not familiar with these

methods may refer to the papers cited in the previous list or to one of the many excellent textbooks which exist

on the topic, such as the ones by Eiben and Smith, or the one by Engelbrecht [63, 64].

Despite the impressive empirical evidence of their effectiveness, metaheuristics have been criticized for not

being perfectly defined as a unified and formal paradigm. In many cases, their performance on classes of func-

tions where other methods fail have more than balanced those criticisms [65]. In addition to this, some relevant

mathematical proofs can be found in the literature that study the convergence properties of these algorithms and

demonstrate their power. For instance, Holland’s schema theorem is a quantitative explanation of the optimiza-

tion ability of binary-coded genetic algorithms [46]. In terms of asymptotic convergence, many studies show
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the convergence properties of evolutionary algorithms in which the algorithms are generally limited to muta-

tion operators and elitist replacement [66]. More theory on convergence exists for evolutionary strategies [67]

and swarm intelligence algorithms [68, 69]. A very rigorous theoretical study of genetic algorithms can be

found in [70], which deals mainly with Markov chains and dynamical systems approaches. Moreover, in [71],

an overview of the basic techniques for proving convergence of metaheuristics to optimal solutions is given.

In general, a good combination of the major components of such algorithms (intensification/exploitation and

diversification/exploration) usually ensures that global optimality is achievable [63, 72].

4. Image Segmentation using Deformable Models and Metaheuristics

To understand the growing importance of this research field, the histogram in Figure 3 displays the evolu-

tion of the scientific production in metaheuristics-based image segmentation. The graph has been obtained by

executing the Elsevier ScopusTM query:

"image" AND ("segmentation" OR

"localization" OR "partition")

AND ("differential evolution" OR "swarm"

OR "chc" OR "evolutionary"

OR "genetic algorithm" OR "cma-es"

OR "PSO" OR "annealing" OR "tabu search"

OR "metaheuristic")

In order to know the volume of publications on image segmentation using metaheuristic-based deformable

models, the same query was executed adding a reference to terms related to deformable model (AND (de-

formable model OR template OR topological OR statistical shape OR active models OR active nets)). The

result included 165 publications and an h-index of 16 related to this topic since 1995 (see Figure 4). It is clear

that this work has had a great impact on the scientific community, as shown by the large number of citations.

On the other hand, considering the relevant properties of metaheuristics, a more frequent application to image

segmentation problems seems inevitable and, even more, to segmentation using deformable models. Given the

great potential of these two families of methods (metaheuristics and deformable models), it seems a safe bet to

explore the possibilities offered by their combination by studying new methods or improving the existing ones,

making algorithmic implementations more efficient, and introducing novel approaches to image analysis fully

based on metaheuristics or for which metaheuristics are an essential part [73].

In the literature, only two surveys can be found, which are just partially related to this one: [74] and [8]. The

former provides a state-of-the-art survey on the application of the principles of genetic algorithms to medical
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Figure 3: Scientific production related to image segmentation using metaheuristics. The queries, run in Elsevier

ScopusTM on the 25th of June, 2014, displayed 2347 papers with a globally growing tendency.

Figure 4: Publications (left) and citations (right) related to image segmentation using deformable models and

metaheuristics. The queries, run in Elsevier ScopusTM on the 25th of June, 2014, displayed 165 papers and

1137 citations with a clear growing tendency.
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image segmentation, only focusing onto this metaheuristic and considering all kinds of segmentation techniques.

In the latter, the author examines the suitability of a number of different optimization methods (differential

evolution, genetic algorithms, self-organizing migrating algorithm, simplex, and pattern search) for the task of

template matching, performing tests over a series of 2-D analytic functions designed to highlight the generic

properties of each optimization method, as well as on three images of increasing difficulty.

The next sections review the main metaheuristic approaches applied to deformable model optimization.

While every section shows the same structure to provide a consistent description, each of them is devoted to a

specific deformable model type, analyzing the problems it is able to solve and the difficulties which have to be

tackled in applying such models to real-world problems.

4.1. Active Contour Models

Among all kinds of deformable models, the active contour model is the one which has been most frequently

hybridized with metaheuristics as testified by the large number of works, the different roles played by the

metaheuristics, and the diverse application fields. The earliest proposals date from the late nineties [75–77]

with an important number of contributions already in those first years. Since those initial pioneering results,

genetic algorithms have been the type of metaheuristic which has been used most frequently. In recent years,

swarm intelligence has also attracted the attention of researchers in classic contour models which resulted in

several publications [78–86]. Finally, a few proposals have been based on simulated annealing [76, 87–90] and

basic memetic approaches [90–92]. Applications of more recent metaheuristics such as differential evolution,

CMA-ES, or scatter search are absent, up to now.

Metaheuristics play different roles in the existing approaches to image segmentation based on active contour

models. Most methods employ a metaheuristic to evolve each control point of the model, searching for its

best location in a given search space. Many of these approaches are extensions or applications to different

segmentation problems of the pioneering work by Ballerini [75], which introduced for the first time the so-called

“genetic snakes”. Another important set of proposals follow a coarse-to-fine approach employing different

strategies: multi-scale segmentation [93, 94], multi-stage evolution [77, 90, 95, 96], or the combination of

different optimization methods at different stages [90, 92, 97].

A completely different approach is followed in [91, 98–100] where the specific metaheuristic is used for

searching the best set of values for the parameters that control the evolution of the active contour model, i.e., the

weights of the different terms of the energy function. All these works propose a training mechanism to obtain

the best value for those parameters using manually segmented examples as training data for the supervised

learning process. Similarly, in [101], a supervised approach delivers a global set of parameter values as in

the aforementioned proposals, while an unsupervised approach also determines a local set of parameter values.
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Other methods take advantage of both the learning and optimization capabilities of genetic algorithms in such a

way that the active contour model is evolved jointly with the energy terms weights [102].

Finally, there are few approaches where the metaheuristic plays an alternative role. In [81, 99, 103] meta-

heuristics are used to set the initial location of the snake, the number of required snakes, and the appropriate

number of control points. Far from other approaches, but still using a metaheuristic inside the deformable

model-based image segmentation process, the authors in [89] use simulated annealing to set the state of each

neuron of a Hopfield neural network which optimizes the energy function.

4.1.1. Encoding

The existing approaches within this category can be classified in metaheuristics which: evolve control points,

learn energy term weights, and initialize the model. Each of them considers a different encoding scheme.

Among the proposals that employ a metaheuristic to evolve the control points of an active contour model,

most of them encode the positions of the snake in the image plane in polar coordinates. The total number of

snake control points is stored in the chromosomes. This is the encoding scheme employed in all the works

developed by Ballerini [75, 106, 108, 116, 117] and other related approaches [119, 122]. Alternatively, other

works encode the location of each control point using Cartesian coordinates. Some of these employ Gray-coding

[93, 94, 96, 113, 114] while others use real-number encoding [92, 97].

In the same group of proposals, there are few methods that do not encode the control points coordinates.

In [77], each gene of the binary-coded chromosome represents the state Si of the contour Ci according to a

number of parameters (control point and associated search space for each of them) V i
j , where Si is defined as the

contour state after the ith state transition. These values correspond to displacement vectors in a state map, which

are added to V to give the variant contour state. In [118], for every control point the authors encode the distance

and the angle from the center to the control point. In [95] the chromosome consists of three 2-D matrices whose

elements are the Fourier descriptors [124], and in [110, 111] the chromosome is an integer vector containing

the index value (location in a neighborhood window within which individual control points can move) for each

of the 4 control points, representing the location they moved to. Approaches based on swarm intelligence also

encode similar data. In [82] and [86], each particle’s search space is constructed around each control point while

in [79, 83, 84] each control point in the snake is associated to a swarm of particles searching a large window

which surrounds it.

In the second group of proposals, where the energy term weights are learned using metaheuristics, the

information encoded by each method differs from one to another even if they all employ a genetic algorithm.

In [99], two different parameter sets are learned from examples: the edge detector (filter coefficients, offsets of

the data to be processed, and a threshold) and the deformable model parameters (the weights of an uncertainty
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Table 1: Active Contour Models (or Snakes). This table continues in Table 2. From left to right: author(s)

and reference to the paper, deformable model type, dimensions (2-D/3-D), metaheuristics used, image type

addressed, and publication year.

Reference Model Name Dim. Metaheuristic Image Modality Year

Kidder and Nnaji [76] Discrete surface 3-D Simulated Annealing not specified 1997

MacEachern and Snake 2-D Genetic Algorithms not specified 1998

Manku [77]

Cagnoni et al. [99] Snake 3-D Genetic Algorithms 3 synthetic seqs. of 64 imgs.: 1999

1 seq. of computed tomography (right lung)

2 seqs. brain magnetic resonance imaging

Tanatipanond Snake 2-D Genetic Algorithms 60 Brain magnetic resonance 1999

and Covavisaruch [94] images

Tanatipanond Snake 2-D Genetic Algorithms 60 Brain magnetic resonance 1999

and Covavisaruch images

[93, 104]

Ballerini [75, 105] Snake 2-D Genetic Algorithms 12 synthetic and 2 ocular 1998-1999

fundus images

Ballerini [106, 107] Snake 2-D Genetic Algorithms unspecified number of 1999

dynamic angiographic images

Ballerini [108, 109] Snake 2-D Genetic Algorithms 13 synthetic, 2 retinal, 2001-2007

and 1 photo (meat)

Bredno et al. [98] Balloon Snake 2-D Genetic Algorithms 137 histochemically stained 2000

cells and unknown number of

endoscopic seq. of larynx

Chen and Sun [91] Snake 2-D Taguchi’s method 1 synthetic and 12 2000

+ Genetic Algorithms cardiac ultrasonic images

Liatsis and Ooi Snake 2-D Coevolutionary road scenarios 2001-2002

[110, 111] Genetic Algorithms unspecified number of real

road images (car and trucks)

Tohka [92] Simplex Mesh 3-D Memetic Algorithms 9 synthetic surfaces 2001

Fan et al. [95] Dynamic 3-D Parallel Genetic Algorithms unspecified number of 2002

Surface brain MRIs

Xu et al. [112] Snake 2-D Genetic Algorithms unspecified number 2002

of mammographies

Seguier and Cladel Snake 2-D Genetic Algorithms 1 video sequence (lips) 2003

[113, 114]

Ballerini and Bocchi Snake 2-D Genetic Algorithms unspecified number 2003

[115, 116] of hand X-Ray

Ballerini [117] Snake 2-D Genetic Algorithms unspecified number of 2003

video seq. (people)

Mishra et al. [96] Snake 2-D Genetic Algorithms cardiac ultrasound seq. 2003

(20 frames and 10 patients)

Rousselle et al. [101] Snake 2-D Genetic Algorithms unspecified number 2003

of synthetic images

Plissiti et al. [89] Snake 2-D Neural Network 18 arterial segments of 1432 2004

+ Simulated Annealing ultrasound frames

Mun et al. [118] Snake 2-D Genetic Algorithms 6 synthetic, 2 brain magnetic resonance imgs 2004

2 microscopy and 2 photos
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Table 2: Active Contour Models (or Snakes). This is the second part of Table 1. From left to right: author(s)

and reference to the paper, deformable model type, dimensions (2-D/3-D), metaheuristics used, image type

addressed, and publication year.

Reference Model Name Dim. Metaheuristic Image Modality Year

Wang et al. Snake 2-D Ant Colony Optimization unspecified left 2005

[86] ventricle ultrasound images

Mobahi et al. [81] Snake 2-D Swarm Intelligence 20 imgs. of faces/hands/lips 2006

Wang et al. [85] Snake 2-D Particle Swarm Optimization not specified 2006

Rad and Kashanian cubic B-spline 2-D Genetic Algorithms 1 mammography 2006

[119]

Tseng et al. and Li et al. Snake 2-D Particle Swarm Optimization 3 synthetic, 1 computed tomography, 2006-2009

[79, 83, 84] 1 ultrasound

Delu et al. [78] Snake 2-D Particle Swarm Optimization not specified 2007

Wu et al. [120] B-spline 2-D Genetic Algorithms Synthetic images and 2 tooth 2007

and mandible computed tomography seq.

Hong and You-rui [121] Snake 2-D immune Genetic Algorithms 2 synthetic images 2007

Tang et al. [90] Snake 2-D Simulated Annealing 1 synthetic and 2007

1 magnetic resonance images

Cristhian et al. [87, 88] Snake 2-D Simulated Annealing 90 X-ray tomography of knots 2008-2012

of wood samples

Hussain [122] Snake 2-D Genetic Algorithms unspecified number 2008

of retinal images

Teixeira et al. [100] Gradient Vector Flow 2-D Genetic Algorithms 150 Cardiac magnetic 2008

Snake resonance images

Hsu et al. [103] Poisson 2-D Genetic Algorithms 3 × 16 liver positron emission 2008

Gradient Vector Flow tomography slices

Vera et al. Snake 2-D real-coded Genetic Algorithms 6 angiographic seq. of the 2010

[97] left ventricle (228 images)

Shahamatnia and Snake 2-D Particle Swarm Optimization 5 Synthetic, 1 computed tomography, 2011

Ebadzadeh [82] and 2 Brain magnetic resonance imgs.

Talebi and Ayatollahi Snake (Balloon) 2-D Genetic Algorithms unspecified number 2011

[102] of breast ultrasounds

Chen et al. [123] Snake 2-D Genetic Algorithms 452 samples of handwritten 2012

Chinese characters
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function used to compute the elastic contour model coefficients). All sixteen parameters have been encoded as

6-bit binary strings (resulting in a 96-bit genome), even if all parameters are real values. In [98], the parameters

of a Balloon model are encoded. In particular: (i) the minimal and maximal edge length, (ii) the scale of

gradients, (iii) the appearance and intensity of gradients, (iv) the mapping of image values to image potentials,

(v) the strength of the deformation force, and (vi) the sign of the pressure. Each individual i in this population

is a parameter set Pi =
−→p i, j which consists of a parameter’s value vali, j combined with its variability during

reproduction vari, j (that helps to increase or decrease the diversity of an evolving population). A different set

of parameters is encoded in [100] for a Balloon model as well. The set of parameters are: elasticity; rigidity;

viscosity; the largest amplitude associated to the image gradient; and k1 and k2, parameters that weight the

strength of the Balloon forces. All of them are binary-encoded. In contrast to the former three approaches,

Chen and Sun [91] learn local weights, different for each control point, instead of global ones. Thus, they

encode the corresponding weights αi j for each control point Pi and each feature j. A combination of global and

local learning is employed by Rousselle et al. [101]. Their genetic algorithm comprises two different phases

which rely on a similar encoding. In the first phase, a genetic algorithm learns the (global) snake parameters

by evolving individuals who encode them (weights of the five energy function terms: continuity, curvature,

gradient, intensity, and balloon force). In the second, the same parameters are encoded for each point of the

snake. Finally, in [102], each of the four control coefficients of a Balloon model (continuity, curvature, image,

pressure) are encoded as a set of ten binary genes.

The last group of methods use metaheuristics as part of the initialization mechanism of the active contour

model. Two approaches fit in this category. In [103], the threshold and sigma parameters of the Canny edge

detector are encoded into a binary chromosome. The other method [81] uses swarm intelligence for snake

initialization. The behavior of each agent is defined by three state variables, namely position, velocity, and

energy.

4.1.2. Operators

It is of common knowledge in evolutionary algorithms that the implementation of most of the operators

depend on the encoding scheme employed, mainly, binary or real-coded. Ad hoc operator design could be

needed to overcome specific restrictions such as the prohibition of link crossings in snake models. However,

restrictions can be neglected in the definition of the operators if they are expressed as penalty terms in the fitness

function [125]. The latter is the most common approach followed by the different snake-based methods which

tend to employ standard operators and penalize unfeasible solutions through the fitness function.

This way, most of these approaches use uniform mutation (bit-flip in the case of binary encoding). A few

proposals do not use the mutation operator at all [92, 95, 98] or use something different from the uniform
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scheme. Among the latter, [97] uses a non-uniform mutation; [110, 111] use the adaptive non-uniform mutation

proposed by Michalewicz [48]; and [77] is the only proposal with an ad hoc mutation design which randomly

reassigns control-point states in population members to alternate states. The mutation rate is related to the

number of bits used to completely encode the chromosome.

With respect to the selection mechanism, roulette wheel is the most frequently employed method [75, 98,

100, 106, 108, 116, 117, 119, 122], followed by tournament selection [92, 97, 101]. A rank-based selection op-

erator was implemented in [77] while in [110, 111] the authors differentiate between inter- and intra-population

selection mechanisms. In the intra-population case three chromosomes are selected and the two with the largest

average distance between control points are chosen as parents to favor diversity (a kind of family competition

approach [126]). In inter-population selection, populations that share control points with the population of

interest (reference populations) are termed candidate populations. Chromosomes from the reference and can-

didate populations are known as the major and minor chromosomes or parents, as appropriate. According to

this scheme, a minor parent is selected from a randomly selected candidate population, for being crossed with a

major parent. Elitism is only employed in a few proposals [97, 100].

Most proposals use standard crossover operators. In particular, all the binary-coded approaches use two-

point [75, 101, 106, 108, 116, 117, 119, 122], one-point [91, 99], or uniform crossover [77, 102]. However,

for real-coded chromosomes there is no standard approach and several ad hoc crossover operators have been

proposed. Among standard real-coded crossover operators, BLX-α is employed in [92, 100] and linear cross-

over in [97]. Concerning ad hoc proposals: two different crossover operators are implemented in [98], each

of which is applied to a fixed number of individuals. The former only considers a single parent that cre-

ates one child, whose parameters are randomly set with a uniform distribution of the parameters in the range

[vali, j − 1
2 vari, j,vali, j + 1

2 vari, j]. The latter crossover first sets the mean of all parameters values (from both

parents) and then changes them according to the range defined in the single-parent crossover. In [110, 111] the

authors propose a coevolutionary genetic algorithm [127], where intra- and inter-population crossover operators

are employed, as in the case of the selection operator. The former uses uniform, arithmetic and linear arithmetic

crossover operators, while in the latter a “major” parent is split at a randomly chosen location, such that a valid

child can be generated by substituting one of its ends with an appropriate segment from the “minor” parent.

Finally, the way the population is initialized is much more variable. In [75, 106, 108, 116, 117, 119], the

initial population is randomly originated within a region between two user-defined radii r and R. Hussain et

al. propose an approach [122] that only differs from Ballerini’s in the initial population and in the setup of the

neighborhood, since they use a radial instead of a square window. In [98] the genetic algorithm starts by sorting

the individuals according to their fitness function and selecting a fixed number of single-ancestor reproductions
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(this random selection chooses parents with a Poisson-distribution so that individuals with higher fitness are

more likely to become a parent). The initial variability vari, j of all parameters is set to one fifth of their absolute

initial value vali, j. In [97], the initial population is generated by randomly modifying the landmarks detected

within a given neighborhood and, in [91], the weights obtained by Taguchi’s method are used as the genetic

algorithm’s initial population.

Besides evolutionary algorithms, there are a few proposals based on swarm intelligence which do not use the

operators described above. The method described in [82] is a customized particle swarm optimization algorithm

that avoids concave boundaries and local minima, while limiting sensitivity to noise. It considers the particles’

average position at time t, which approximates the center of mass of particles, to speed up the algorithm and

solve problems when the snake stagnates and there is no other compelling force. It also includes an external

energy term in the particle swarm optimization equations. In [79, 83, 84] the initialization and subsequent

movements of the particles in the swarm of particles Oi is constrained within a certain search window (in

particular around the perpendicular bisector of the line connecting two neighboring control points). This method

is intended to avoid dramatic changes which may cause improper snake evolution such as the crossing of the

snake with itself.

Finally, a representative of simulated annealing-based approaches is proposed in [87, 88]. A classical sim-

ulated annealing algorithm is used. A Boltzmann distribution [43] is assumed and, consequently, a logarithmic

cooling schedule is used. This method initially considers the generation of a contour in the 2-D image space

having a given number of vertices. A neighborhood patch of n×n pixels is created for every pixel in the contour.

Then, in that neighborhood, a new candidate vertex is selected by evaluating it according to the energy function.

The acceptance of the new vertex depends on criteria such as the number of iterations, number of acceptances

and the probability of accepting a “bad solution”. Additionally, a criterion for the elimination and creation of

new vertices is used. This criterion is based on the distance between the vertices in the contour. Once all vertices

in the contour have been checked for a given temperature T , the criterion for elimination and creation is applied.

A vertex is eliminated in case the distance to its neighbor is smaller than a minimum distance (dmin). Similarly,

a vertex is created in case the distance between two vertices is higher than a maximum allowed distance (dmax).

4.1.3. Fitness Function

In all approaches employing a metaheuristic to evolve the control points of an active contour model, the

fitness function to be minimized is the total snake energy. However, the active contour model terms change

from one method to another depending on the object(s) to be segmented. In fact, the external terms in [75, 106]

include the gradient of the image plus a slightly different edge functional whose minima lies on the zero-

crossings of ∇2Gσ ∗ I(x,y). These methods also include an energy term associated to the eye’s foveal avascular
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zone, which is the object to be segmented in this application. That leads to a modified version of the image

energy, which considers both the magnitude and the direction of the gradient and the Laplacian of Gaussian.

The same formulation employed in [106] is extended in [119] by defining the contour as a piecewise parametric

curve using a cubic B-spline. The authors adapt Lai and Chin [128] curvature and continuity terms to the cubic

B-spline model. In [108] the author extends the formulation of genetic snakes [75] to segment connective tissue

in meat images, exploring additional internal and external energy terms and applying them to color images. This

is done by introducing a new energy term involving the gradient of the RGB color components, which causes

the contour to expand or contract depending on the sign of a given constant δ . An area energy term is also

introduced which forces the snake to enclose a given reference area Are f . This term has the form of a harmonic

potential reaching a minimum when the area enclosed by the snake is equal to the reference area. In [115, 116]

a priori knowledge is incorporated into the fitness function in order to segment bones in radiographic images.

This is obtained by using three snakes representing the three bones to segment, chained together by means

of the binding force. Information about the geometry of the bones is not necessary but only their relative

position. Each snake is composed of 36 points and the binding energy acts on five pairs of consecutive points

in each junction. Apart from the previously proposed internal and external energy terms, other two terms have

been added: i) a derivative energy that is minimal when the snake is positioned on the image edge, having

the brighter region to the left of the snake and the darker region to its right, and ii) a binding energy term

that models the anatomical relationships between adjacent bones by introducing an elastic force connecting

appropriate points of adjacent snakes. The same model and optimization approach developed in [115, 116]

is employed in [117] to detect people and segment their body parts (head, torso, legs) in videos. The only

difference is the removal of the derivative term and the addition of a new term which allows the model to be

applied to color images by considering the gradient of the three components in the color space, as already done

in [108]. The method described in [94] segments the brain regions enclosing white matter, gray matter and

cerebrospinal fluid, employing a “standard” set of energy terms: continuity and curvature as internal and Kirsch

spatial gradient [129] as external. The same authors extend this work in [93], where the internal features are

dynamic as they are trained, and therefore may change, from slice to slice, while the trained external features

are static and do not change across the whole magnetic resonance dataset. The internal features are the contour

length and center. The external features consist of intensity relationships along with the gradient of each contour

point and its connected outer neighbor(s). A priori knowledge about the shape of the target object (the mouth) is

included in the fitness function in [113, 114]. Lips have a strong intensity level while teeth and the dark interior

of the mouth are blurred and rather dark. Thus, a Sobel filter, a binarization, and morphological processing are

applied during a preprocessing step. The final aim is to place a snake on the outer lips contour and another on
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the inner contour.

In [96] genetic algorithm-based optimization searches for the best location of the contour in two phases: in

the first only the internal energy is considered while, in the second, the external energy is also added. Similarly,

in [95], a two-stage approach is proposed for solving two main problems: active models’ high sensitivity to the

choice of the initial contour and the common tendency of numerical gradient-based techniques to get trapped

into local minima due to image noise and pseudo-edges. In the first stage, a coarse segmentation of the target

object is performed from one image set, slice by slice, using a 2-D method. The latter preliminary segmentation

is used as the initial surface. Then, the equation regulating the modification in time of the contour is solved by a

finite-difference method, whose result is used to generate the first generation for the parallel genetic algorithm

optimizer. In the second stage, the parallel genetic algorithm refines the surface and produces the final result. In

order to reconstruct the object surface from the image data using a genetic algorithm, a geometric representation

of this discrete surface is used, based on Fourier descriptors.

Another approach that also relies on more than one fitness function is described in [110, 111]. A coevolu-

tionary genetic algorithm adopts a fitness function that consists of several energy terms each having two distinct

components: an own fitness, enabling the comparison of different chromosomes within the same population

(a candidate solution is represented by a whole population) and a global fitness, measuring the fitness of the

chromosome as part of the overall solution. In the former, only the gradient energy is employed. The latter

considers three different components: (1) the Euclidean distance between the control points of the current chro-

mosome and the best chromosome in all other populations; (2) a term that minimizes the distance between the

end-points of the sub-contour represented by the chromosome under consideration and the end-points of the

best chromosome in the neighboring populations; and (3) a term that constrains the contour shape by counting

the number of Fourier descriptors of the contour, constructed using the crossing over of the current chromosome

with the best chromosome from other populations.

A different evolutionary scheme was implemented in [77]. This method involves the concept of “active

contour state” which leads to a multi-stage active contour energy minimization procedure. The contour state

is referenced with regard to the ith state transition using a 5-tuple formulation. For each state a population of

different states is randomly created and a genetic algorithm is run. A contour moves into a new state i+1 when

the contour’s state i+1 has a smaller energy than its previous state i, until no better states are found.

Among the proposals based on swarm intelligence, in [79, 83, 84] particle swarm optimization manages a

swarm of particles {Oi}, each of which corresponds to a control point pi. The cost of a given particle in the

swarm is the local energy of the point. The proposed method iteratively scans each control point, allocates

a search window and performs a one-round optimization by minimizing the local energy. When all swarms
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become stable the optimization process finishes.

The formulation of the fitness function in those proposals that learn energy term weights through meta-

heuristics differs significantly from the previous group in many cases. In general, they are based on measuring

the segmentation error obtained by the active contour whose parameters were automatically adjusted. To that

aim, they use one or more reference images that have been already segmented manually. This is the case

of [98], [91], and [101]. Instead of using a segmentation error rate, in [100] the authors use a fitness function

based on the distances from the center of gravity (mean of the coordinates) of the manually segmented curve

to the ith point of the automatically segmented curve. Although these evolutionary-based learning paradigms

carry out different tasks, a few of them still consider the total energy of the active contour as fitness. This is

the case of [102] where there is only one active contour with four control coefficients whose weights are to be

learnt by a genetic algorithm. In each generation of the genetic algorithm, the best-fit individual is used for the

single-step contour deformation. The fitness function is 1
1+αEcontinuity+βEcurvature+γEimage+κEpressure

.

Finally, in those proposals where the metaheuristic is used during active contour model initialization, the

fitness function depends on the specific segmentation task (that determines the global shape, starting position

and number of initial curves). In [103], the goal is to obtain the initial candidate curves by optimizing the

threshold and σ parameter of Canny edge detector. The fitness function is α
max(L)
min(N) , where L and N are the

length and the total number of pixels of the contour, respectively, and α is a weight (usually equal to 2/3).

In [81] the authors propose a snake initialization method based on SI, which automatically sets the number

of required snakes as well as the appropriate number of control points. Once the swarm reaches the equilibrium,

which is tested by continually measuring the activity of the swarm until it drops below a threshold, the agents

become ready for shaping up contours. This is achieved by connecting adjacent agents pairwise in a specific

order. Each agent chooses two neighbors based on two factors, distance and angle. Concerning distance, closer

agents are preferred, while concerning angle, those that form flatter connections. These criteria result in smooth

and natural contours. Two thresholds delimit the maximum distance and the cosine of the angle between two

connections.

4.1.4. Critical Discussion

Metaheuristic-based approaches applied to active contour models have been shown to be effective when

employed as model optimizers, model initializers, and also as the central part of learning paradigms aimed at

deriving the best possible energy term parameters for a given ground-truth image set. Apart from the different

roles assigned to metaheuristics, the best proof of their success is the wide range of real-world applications

described in the literature.

Specific metaheuristic-based active contour model designs have been mainly developed for different med-
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ical image segmentation problems. In particular, for segmenting: the foveal avascular zone in ocular fundus

images [75]; the optic-nerve head [122]; hand and wrist bones in radiographic images (to study abnormalities

in skeletal growth) [116]; the ascending and descending aorta in cardiovascular magnetic resonance images (for

measuring regional aortic compliance) [130]; series of histochemically stained cells and laryngoscopic color

image sequences [98], breast ultrasound images [102]; tumors in mammograms [119], positron emission tomog-

raphy images of the liver [103]; teeth in dental computed tomographies [120]; brain magnetic resonance images

(to detect white matter, gray matter and cerebrospinal fluid) in [93, 94], and lateral ventricles in [95]. They have

also been used for detecting the left ventricle boundary in a sequence of cardiac ultrasound images [86, 91, 96]

and angiographic sequences [97, 100]; and the lumen and media-adventitia border in sequential intravascular

ultrasound frames [89]. Moreover, the application of these techniques also covers other fields. For example,

they have been used for meat analysis to separate connective tissue from meat [108]; in audio-visual speech

recognition [113] by lip segmentation; in video surveillance [117] to segment body parts (head, torso, legs); to

segment the different components (radicals) of handwritten Chinese characters [123]; in the visual inspection

of wood, to automatically detect classical defects such as knots and knotty cylinders [87, 88]; or for tracking

moving objects [81, 110].

Other approaches in this category were designed as general-purpose segmentation techniques and tested

on different segmentation problems. That is the case of the method presented in [82, 99], which was able to

properly segment computed tomographies of the lung and magnetic resonance images of the brain ventricle.

Sequences of synthetic images were also included in the test image sets. In [118], the proposed genetic snake

was tested on brain tumor segmentation in magnetic resonance, and on synthetic and histological (bacteria and

blood) images. Synthetic, computed tomography, and ultrasound images were used as test in [79, 84]. A few

papers as [92] just focus on the segmentation of synthetic images drawn ad hoc to serve as proofs of concept.

Finally, some works established theoretical properties and advantages of the use of genetic algorithms for active

contour models optimization [77, 101] but without providing any proofs, either quantitative or qualitative.

The performance of the metaheuristic-based approaches have been evaluated by comparing their results with

segmentations manually drawn by experts [89, 91, 96–100, 102, 103, 120, 130], ground-truth data from public

repositories [95, 103, 113], software-generated phantoms [92, 99] and/or by comparing them to other active

contour model approaches [93, 96, 98, 118, 120, 130], but never with other approaches that use metaheuristics.

In almost all those cases the metaheuristic-based approach outperformed its counterparts. However, it is almost

impossible to draw an overall conclusion about the relative performance of the different proposals. Almost

none of them used a common image repository and they were not compared to other metaheuristic-based active

contour models. Some proposals did not even perform any comparison with other segmentation methods [75,
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79, 81, 82, 84, 94, 108, 110, 116, 119, 122] providing just a subjective evaluation of their results.

4.2. Active Nets and Volumes

Most approaches based on the active net paradigm hybridize topological active nets or topological active

volumes with an evolutionary algorithm. Despite the promising features of topological active nets/volumes, the

complexity of the model and the difficult optimization task inherent to the segmentation process have limited

their use. In fact, after an early work in 1994 [25], only few approaches based on topological active nets/volumes

have been developed in the last ten years. These works have been mainly focused on the use of global opti-

mization techniques. That is why the evolution of topological active nets/volumes models is tightly linked to

the evolutionary algorithm-based proposals since the latter solve, at the same time, their main drawbacks and

limitations: topological changes, energy terms employed, and the need for an accurate optimization procedure.

There are only two exceptions. The first one [27] refers to a novel modelization of the original topological

active volumes model [25]. The second one is a recent contribution tackling the topological active nets model’s

limitations by developing an extension named extended topological active nets [131]. This extended model

defines a new strategy for changing its topology, as well as a novel external force and a new local optimization

method.

Concerning topological changes, most authors rely on an automatic methodology for topological active net

division. The purely evolutionary approach [132, 133] has limitations since the topological active nets/volumes

topology cannot be changed to obtain a better adjustment. To overcome this drawback, a memetic algorithm in

which an evolutionary and a greedy algorithm are hybridized is employed [134–137]. Following a Lamarckian

strategy, all the changes made by the greedy procedure are reverted to the original genotypes. This way, the

greedy algorithm allows for topological changes (link cuts and automatic net division) in the net structure to be

obtained.

Besides energy terms designed to address specific image segmentation problems, which will be summarized

at the end of section 4.2.3, novel energy terms were developed as part of some evolutionary methods. A first ex-

ample is the gradient distance term GD(v(r,s)), i.e. the distance from position v(r,s) to the nearest edge [135].

The gradient distance, whose value diminishes as the node approaches an edge, facilitates the adjustment of

the external nodes to the object boundaries. All subsequent publications employed it in both topological active

net/volume models. Similar to the previous one, the “in-out distance” term [138] acts as a gradient: for the in-

ternal nodes its value decreases as image brightness increases whereas for the external nodes its value decreases

with image brightness, ideally reaching its minimum in the background. This term was also extended to the

topological active volume model in [139].

Most proposals regard the optimization framework. There is a relevant number of different evolutionary
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algorithms hybridized with topological active nets/volumes and they are all used to draw the topological active

nets/volumes node locations towards the best possible segmentation. Only a few approaches optimize the topo-

logical active net [138, 140] and topological active volume [139–141] energy term weights. Moreover, they

do so while, at the same time, searching for the best node locations by means of an evolutionary multi-objec-

tive optimization [142] approach. As previously said, all the proposals are based on evolutionary algorithms:

genetic algorithms were employed in [133, 135], differential evolution in [136, 140], scatter search in [134],

and strength Pareto evolutionary algorithm 2 in [138], among others. However, apart from the initial propos-

als [132, 133, 143, 144] they all hybridize the global search procedure with the greedy local search proposed

in [145] or an extension of the same local search procedure [134]. Finally, a completely different approach has

been recently proposed where differential evolution is used to train an artificial neural network [146] that acts

as a “segmentation operator” moving each topological active net node in order to reach the final segmentations

[147, 148].

Table 3: Active Nets. From left to right: author(s) and reference to the paper, deformable model type, dimen-

sions (2-D/3-D), metaheuristics used, image type addressed, and publication year.

Reference Model Name Dim. Metaheuristic Image Modality Year

Sakaue [149] Topological Active Net 2-D Memetic Algorithms 3 stereo images 1996

Ibáñez et al. [132] Topological Active Net 2-D Genetic Algorithms 7 synthetic 2006

Ibáñez et al. [135] Topological Active Net 2-D Memetic Algorithms 9 synthetic and 2007-2009

4 computed tomographies

Novo et al. [133, 144] Topological Active Net 2-D Genetic Algorithms 273 digital retinal fundus images 2008-2009

Novo et al. Topological Active Net 2-D strength Pareto 6 synthetic, 2010-2013

evolutionary algorithm 2 2 computed tomographies

[138–141] and Topological Active Volume and 3-D and Differential Evolution and retinal (233 + 40) images

Novo et al. [137, 143] Topological Active Volume 3-D Memetic Algorithms 6 synthetic and 2009-2011

2 computed tomographies

Novo et al. [136, 150, 151] Topological Active Net and 2-D and 3-D Differential Evolution ' 20 synthetic and computed 2011-2012

Topological Active Volume tomography images

Novo et al. [147, 148] Topological Active Net 2-D Differential Evolution 12 synthetic, 2012-2013

4 computed tomographies

Bova et al. [134] Extended 2-D Scatter Search 10 synthetic and 10 computed 2013

Topological Active Nets tomographies (knee and lung)

4.2.1. Encoding

For almost all existing approaches each chromosome represents one topological active net/volume. It en-

codes the cartesian coordinates of every node. An active net chromosome has two genes for each node, one
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for its x coordinate and another for its y coordinate, both encoded as integer values. Similarly, three real-coded

genes encode the x, y, and z coordinates of each node in topological active volumes. There is only one ex-

ception [147, 148], where each individual encodes an artificial neural network: the genotypes encode all the

artificial neural network connection weights as real numbers in the range [−1,1].

In addition, since all the memetic approaches consider topological changes in each individual, in those

cases a second chromosome encodes the model topology. Therefore, for each node, this additional chromosome

encodes the status of the links connecting it to the neighboring nodes (see Figure 5). However, this double

chromosome scheme can generate offsprings having crossings in their connections when combining nets with

different topologies. The probability of this undesirable event increases with the number of different topologies

in the parent nets. The differential evolution-based approaches described in [136, 150, 151] represent the only

exception since all individuals share the same topology with the best individual in the population.

Figure 5: Topological active net encoding.

4.2.2. Operators

From a global optimization perspective, there are several constraints on the topology of the active net mod-

els. The same pixel (voxel) cannot correspond to more than one node, link crossings are not allowed, and

threads have to be avoided for a proper mesh division (see Figure 6). In many cases, these constraints induced

specific designs of the evolutionary operators employed in the corresponding algorithms.

Figure 6: Representation of link crossings and threads in topological active net models.

26



In particular, most of the existing approaches [132, 133, 135, 137] propose the use of an arithmetic cross-

over [50] which is only allowed between nets having the same topology, to avoid link crossings in the offsprings.

However, this operator is only useful at the very beginning of the search process, since it produces nets hav-

ing worse fitness than their parents’ whenever the search process starts to converge. In addition, it does not

incorporate the same information as the parents and may generate unfeasible offsprings when combining nets

with different topologies. In the approaches based on differential evolution [138, 140, 147, 148], the classical

binomial vector crossover [59] is implemented, where the donor vector is chosen by tournament selection.

More complex crossover operators have been designed in [134] and [149]. In [149], a crosspoint is selected

at random (C1) partitioning the active net into four rectangles (see Figure 7). Points C2 and C3 are then selected

at random within the upper left and lower right rectangles induced by C1. Using these points as reference, the

crosspoints are combined in fourteen ways resulting in fourteen new network shapes. Among those, the one

with the smallest energy is defined as the new individual (child) generated by the crossover.

In [134], two crossover operators are proposed which overcome the limitations of the arithmetic crossover

employed in previous approaches (see Figure 8). The genotypic crossover computes a different combination

weight θ for every pair of homologous nodes of the parent nets. This value is inversely proportional to the

local energy of the nodes, in such a way that the location of the corresponding offspring node will be closer

to the one corresponding to the parent node with lower local energy. Hence, it works as a heuristic real-

coded crossover [50]. The phenotypic crossover computes the binary segmentations of the two parents, then it

performs the union of the resulting two binary images and adjusts a mesh to the shape of the object(s) in the

union image using the hybridized local search. The resulting net has the same shape of the union of the two

parent nets, including a new proper topology calculated by local search.

The mutation operator employed in the majority of the genetic algorithm-based approaches [132, 133, 135,

138] allows a node to mutate to any possible position, without causing any crossing in the topological active

net, thanks to an ad hoc design. The basic idea is to compute the area of the four polygons formed by the

mutating node and its eight nearest-neighbors, as Figure 9 shows. If the sum of the four subareas is the same

before and after the mutation, the mutation is valid and will not cause any crossing. The same idea has been

also extended into three dimensions for topological active volume models [137]. The approaches that do not use

this operator [134, 149] do not employ any mutation operator at all except for the differential evolution-based

approaches [136, 140].

Some approaches also use one or more of the ad hoc operators proposed in [135]: the spread operator,

the group mutation and the shift operator. They have been designed to maintain the diversity of sizes in the

population, to simultaneously modify a group of neighboring nodes in the same direction and by the same
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Figure 7: Sakaue’s crossover [149].

extent, and to translate the net to another position in the image, respectively.

In contrast to these approaches, which promote diversity through any of those ad hoc operators, the scatter

search-based approach by Bova et al. [134] relies on a reference set composed of the best and the most diverse

subsets. In particular, the diversity function looks for meshes that properly segment some objects (or parts of

them) subject to the a priori requirement that these objects are located far away, on the image plane, from the

ones segmented by the nets in the quality subset of the reference set.

Concerning the selection operator, almost all approaches use tournament selection with a size equal to 3%

of the population size. We only found two exceptions, the roulette-wheel selection employed in [149] and the

two-tier reference set approach followed by the scatter search in [134].
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Figure 8: Images in the first row correspond to Bova et al.’s genotypic solution combination operators (parents

on both sides and resulting solution in the middle. Images in the second row depicts the phenotypic solution

combination process proposed in the same work [134]

4.2.3. Fitness Function

We can say that, in general, all approaches are guided by a fitness function that corresponds to the energy

function of the model. Most of them divide the evolutionary process into two stages with two different sets of

energy term weights [133, 135, 137]. In the first stage, the energy parameters allow the nodes to be outside

the image without a strong penalization so the model can cover the image within the first generations. In the

second stage, the parameter values are changed to favor a more homogeneous distribution of the internal nodes,

to reduce the size of the net, and to adapt it to the image. Similarly, in [138, 140], an evolutionary multiobjective

optimization framework is proposed that, instead of changing the parameter values, uses different objectives in

each phase. As an exception, the authors of [147, 148] train a multilayer perceptron model to learn how the

topological active net nodes should be iteratively moved in order to reach the desired segmentations. The main

purpose of the artificial neural network is to provide, for a given topological active net node, suitable movements

that imply an energy minimization of the whole topological active net structure. The fitness associated to

each individual (encoded artificial neural network) is the energy of the final segmentation obtained by such an
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Figure 9: Ibañez et al.’s mutation operator [135]. It uses the area of the polygons formed by the central node

(subject to mutation) with its eight nearest neighbors, to check the feasibility of mutation. Left: the four

polygons before mutation. Center: a valid mutation; in this case, the sum of the areas remains unchanged.

Right: an unfeasible mutation.

artificial neural network.

When tackling image segmentation as an energy minimization task, the correlation between fitness function

and segmentation quality plays a critical role. Indeed, if this correlation is loose, even the perfect optimizer

leads to suboptimal segmentations. Although the mesh adjustment to the object contour (local search) and the

evaluation of a segmentation through its mesh position (global search) are both tackled as minimization prob-

lems, they are actually quite different tasks. Hence, it is not surprising that the most suitable fitness functions

for the two tasks do not match. A problem shared by the genetic algorithm-greedy memetic approaches is the

difficulty to maintain fitness coherence in the population individuals after topological changes in some of them.

To deal with that, a node that turns from internal to external after a link cut is only considered as external for

fitness computation when it is on the object edges. In contrast, differential evolution- and scatter search-based

approaches [134, 136] do not need to employ this mechanism. In the former, all the nets inherit the topology of

the best individual. In the latter, two different energy functions are employed. While the same external energy

formulation is used for both local and global searches, the internal energy function has been redesigned for the

global search in order to solve some specific problems. In particular, the contraction term of the internal energy

is not suitable for a global search framework because it penalizes big nets regardless of the size of the target

object. Thus, an area-related term has been introduced in the global search fitness function, while the bending

term has been removed from it. Authors argue that this term strongly penalizes meshes which split to adapt

their topology to the objects, particularly in the presence of many target objects.

Finally, a few approaches use specifically-designed energy terms to address specific image segmentation

problems. In [133] a topological active net is employed to detect the optic disc in digital retinal images. To
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simplify this task, a new component is introduced that assigns good fitness values to the active nets in the genetic

population having a circular structure as the optic disc. Such a term considers the average radius, calculated as

the average distance between the centroid of the whole active net and the external nodes. Another term has also

been added to favor the correspondence of external nodes with dark pixels and of internal nodes with bright

ones, because in retinal images the optic disc has brighter intensities than the surrounding region.

4.2.4. Critical Discussion

Few approaches based on active nets [134, 135, 137, 138] have provided solutions to the main drawbacks

and criticalities of active nets: sensitivity to topological changes, definition of the external energy, and local

deformations. They have already been succesfully applied to different problems such as iris location [133] and

to the segmentation of different structures in computed tomography images [134–138, 140].

We can draw some objective comparative conclusions about the performance of the different evolutionary

topological active net/volume proposals, since the most recent proposals have been compared against previous

solutions. However, in most cases, comparisons were made on small image sets and were based on a visual

subjective comparison of the results. In [135], the authors evaluate the segmentation results of a greedy, a

genetic, and a memetic algorithm over seven synthetic images and three computed tomography images. The

evaluation of the results is based on different criteria: from segmentation of fuzzy edges to sensitivity to noise

and computation time. The memetic approach outperforms the other two in all categories except in computa-

tion time. In [138, 140], the results obtained by the multi-objective approach on synthetic images, computed

tomography images of the knee, and retinal images suggest that this approach also outperforms the greedy

and evolutionary approaches. Besides its main advantage, the automatic tuning of weights, it produces a net

with a more homogeneous distribution of the nodes and is very little sensitive to noise. In [136], the new

approach has been tested on a set of 20 images, including 2-D and 3-D synthetic and actual medical images

with one or more target objects. The results obtained showed faster convergence and better outcomes than the

ones obtained in [135, 137]. Meanwhile, extended topological active nets yield an outstanding performance

in comparison with the topological active net model while also outperforming state-of-the-art parametric and

geometric deformable models [131]. Finally, the scatter search-based proposal described in [134] has been

tested on synthetic and actual computed tomography images of the knee and of the lungs. Its performance has

significantly outperformed the one achieved by two extended topological active nets-based optimization approa-

ches (the original local search and a new multi-start local search) and the differential evolution-based memetic

algorithm [136].

Although the segmentation results obtained by all the evolutionary approaches improve on the greedy ap-

proach, their applicability is still limited when dealing with real-world images and complex synthetic ones. In
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particular, those algorithms fail to design evolutionary operators able to effectively combine nets and conse-

quently require very large populations. In some approaches, the population size is around 1000 individuals

(even 2000 in the case of topological active volume [140]), each encoding a complete mesh and the correspond-

ing topology. Consequently, the search needs to be run for thousands of generations. In addition, they lack a

proper energy definition for a global optimization scenario. Only the recent work based on scatter search [134]

has overcome these two important limitations.

4.3. Statistical Shape Models

One of the most populated categories within deformable model research includes models that use some

sort of statistical information about the objects to segment instead of using only generic constraints, as active

contour models do. Such deformable models can be created by running some mathematical transform (like

principal component analysis [152], approximated principal geodesic analysis [153], or hierarchical regional

principal component analysis [154]) on a number of training shapes, or by including more information specific

to the deformation shape limits. In all these cases, we will refer here to active shape models, active appearance

models, deformable templates and similar approaches by the common term of statistical shape models, even if

the contributions where they are described do not refer explicitly to such a category.

The approaches described in this section aim to optimize the positions of the control points of the de-

formable model, i.e., metaheuristics are employed to “guide” the movement and deformation of the deformable

model [153, 155–161], to optimize/tune different parameters of the segmentation method [162, 163], or, most

frequently, to optimize the weights of the main modes of variation found in the training set and the parameters

of a (usuallly affine) transformation [152, 154, 164–169].

The potential of applying metaheuristics to this kind of deformable models was discovered rather early. Five

papers were already presented in the 90’s where deformable models were used in combination with metaheuris-

tics. Since the seminal papers by Hill et al. [170, 171], metaheuristics have been frequently used, alone or in

hybrid approaches, as optimizers to overcome the problems of classic methods, mainly related with deformable

model initialization, parameter selection, and existence of local optima.

All works remark the interest for applying metaheuristics, in consideration of the multimodality of the prob-

lem, the lack of knowledge about the mathematical properties of the objective function to optimize (continuity,

differentiability, convexity,...), and the nature of metaheuristics, which avoids the need for computing deriva-

tives, which is often a time-consuming task, can involve approximation errors or be impossible at all.

4.3.1. Encoding

In general, the parameters to be optimized by the metaheuristic are either the coordinates of the con-

trol points of the parametric deformable model [157] or the coefficients of a parameterized curve (like a B-
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Table 4: Statistical Shape Models (Active Shape Models, Active Appearance Models, Deformable Templates).

This table continues as Table 5. From left to right: author(s) and reference to the paper, deformable model type,

dimensions (2-D/3-D), metaheuristics used, image type addressed, and publication year.

Reference Model Name Dims. Metaheuristic Image Modality Year

Hill et al. [171] Flexible Templates 2-D Genetic Algorithm ultrasound 1992

(like Active Shape Model) vs Simulated Annealing heart’s left ventricle

20 and 25 images

[170]

Jolly et al. [155] Deformable Template 2-D Simulated Annealing 393 image sequences 1996

(Metropolis algorithm) moving vehicles

Rueckert & Burger Geometrically 4D Simulated Annealing + 1 magnetic resonance image 1996,

[130],[168],[169] Deformable Template Iterated Conditional sequence 1997

Modes

Mignotte et al.[166] Deformable Template / 2-D Genetic Algorithm echographic sequence 2001

Active Shape Model + steepest ascent (50 frames)

& synthetic images

Pitiot et al.[167] Statistical Shape Model 2-D Evolutionary Simulated Annealing magnetic resonance images 2002

94 images and 3 brain structures

Lalonde & Gagnon[172] Geometrically 2-D Variable Neighborhood optic disc in 2002

Deformable Template Search using Simulated Annealing 2 ophthalmic images

as local search

Betrouni et al.[164] Active Appearance Model 2-D Simulated Annealing 30 abdominal 2004

ultrasound images

Karungaru et al. Deformable Template 2-D real-coded 54 faces 2004

[173] Genetic Algorithm

Vavilin & Jo[174] Deformable Template 2-D Genetic Algorithm 95 images 2006

with 119 signs

Heimann et al.[152] Statistical Shape Model + 3-D Evolutionary Strategy liver in 54 2007

Deformable Surface computed tomography volumes

Sattar et al. Active Appearance Model 2-D Genetic Algorithm vs face images 2008

[175],[176],[177] /3-D Nelder-mead simplex vs 32 subjects

Non Sorting Genetic Algorithm II 1405 images

Gradient-based Genetic Algorithm real & synthetic images

Mata et al.[163] Deformable Template 2-D Genetic Algorithm real-time 2008

video sequences

Yin & Collins[178] Deformable Template/ 2-D Simulated Annealing aerial video of motorcycle 2009

Active Shape Model bladder magnetic resonance imaging

human walking sequence

Chen et al.[179] Active Shape Model 2-D Genetic Algorithm 20 lateral knee 2009

X-ray images
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Table 5: Statistical Shape Models (Active Shape Models, Active Appearance Models, Deformable Templates).

This table is the seconnd part of Table 4. From left to right: author(s) and reference to the paper, deformable

model type, dimensions (2-D/3-D), metaheuristics used, image type addressed, and publication year.

Reference Model Name Dims. Metaheuristic Image Modality Year

Szilagyi et al.[180] Active Appearance 4D multipopulation Genetic Algorithm heart ultrasound 2009

Motion Model + Nelder-Mead simplex Number not specified

Takahashi et al.[181] Active Shape Model 2-D Genetic Algorithm 5 computed tomography images 2010

cardiac region

Colutto et al.[153] 3-D medial axis 3-D CMA-ES (vs Particle Swarm 3-D magnetic resonance imaging 2010

shape model Optimization and Differential Evolution) scan & synthetic data

Ben Fredj et al.[162] Deformable Template 2-D Genetic Algorithm synthetic heart 2011

/3-D 3-D magnetic resonance imaging

McIntosh et al.[165],[154] Medial-based shape 2-D Genetic Algorithm magnetic resonance imaging 2010, 2012

50 images of corpus callosum

Mussi et al. Deformable Template 2-D Particle Swarm Optimization road signs 2010, 2012

[182],[158],[159] Differential Evolution vs human body pose

Ugolotti et al.[183] Particle Swarm Optimization road signs 2012

Liu te al.[184] Active Appearance Model 2-D Genetic Algorithm 200 tongue images 2012

Mesejo et al. [157], [156] Active Shape Model 2-D Differential Evolution vs histological 2011, 2012

Ugolotti et al. [161], [160] Particle Swarm Optimization vs brain (hippocampus) 2013

Levenberg-Marquardt vs 320 real images

Simulated Annealing vs Scatter Search + 20 synthetic images +

vs Genetic Algorithm 4 human video-sequences
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Spline) [167]. Such coordinates usually refer to a Cartesian reference system but polar coordinates are also

used [160].

In [170, 171], the model parameters for the segmentation of the heart’s left ventricle are encoded as ten

unsigned binary integers. These parameters control the shape and transformations of the model and include

six shape parameters and four transformation parameters (accounting for translations along the x and y axes,

rotation and scale). In [179, 181], a similar approach is carried out in terms of deformable model representation

and encoding.

In [167], an individual in the population consists of pose and shape parameters, including scale, rotation,

translation and the weights for the first m eigenvectors (they take m = number o f training instances/10). In

this case, the evolutionary algorithm uses prior statistical information about the shape of the target structure

to control the behavior of a number of deformable templates, each template being modeled in the form of a

B-spline. The population is made up of f families, and each family F i consists of a parent Pi and ci children

Ci, j.

In [154, 165], unlike in boundary-based techniques, a medial-axis-based 2-D shape representation is used.

This kind of representation describes the object’s shapes in terms of an axis (the medial-axis) with respect to

which the object is approximately symmetric, along with thickness values assigned to each point along the

axis, describing the object boundary shape. A real-valued encoding is used and each shape is represented as

a chromosome whose genes encode affine and statistical shape deformation parameters. Affine transformation

parameters encode global rotation, scale, and position of the shape. Statistical shape deformation parameters

represent the weights of the principal components, obtained using hierarchical regional principal component

analysis for a particular deformation, location, and scale.

Besides these, a sort of medial-based representations can be found in [156–161, 182, 183] where, even if

according to very different schemes, the common factor is the use of simple skeleton representations of the

object to localize, segment or track. Of course, this kind of minimal representation has many advantages, like

a low computation cost allowing for real-time execution, the simplification of the operations on the coordi-

nates and of their constraints, and the opportunity to perform a fast initial coarse localization and, later, a finer

segmentation. In particular, in [156, 157, 160], the encoding includes lengths and angles from one point in

the model to another, i.e., the relative position of the control points (joints), represented in polar coordinates.

In [158, 159, 161], an articulated 3-D model of a human body is matched against the frames of a set of videos

of a human performing some action, taken from different perspectives, to estimate the subject’s posture in space

and time. The body model consists of two layers, the skeleton and the skin. The skeleton is defined as a set of

cascaded homogeneous transformation matrices which encode the information about the position and orienta-
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tion of every joint with respect to its parent joint, in a kinematic tree hierarchy. The skin layer is connected to

the skeleton through the joints’ local coordinate systems and each joint controls a corresponding skin region. In

all these cases, a real-valued encoding was used by the metaheuristic and the search space was the space of all

plausible skeleton configurations where every individual is composed of 3+M · 3 genes, corresponding to the

position of the root joint with respect to the reference (world) coordinate system and the rotational degrees of

freedom of each of the M joints around every axis in the three dimensions.

A classical representation is used in [152, 164] where the deformable model is represented by a point distri-

bution model, i.e., a dense collection of landmark points on the object’s surface. Each training shape is described

by a single vector of concatenated landmark coordinates. In [152], an individual, stored as a real-valued vec-

tor, represents one of the possible shape configurations, consisting of a similarity transform and several shape

parameters. The pose parameters (translation, rotation, scale) are estimated from the mean values of the corre-

sponding training samples (using relative coordinates for location) and also randomly generated according to a

Gaussian distribution. In [164], the automatic segmentation of prostate boundaries from abdominal ultrasound

images is performed, and every real-coded chromosome represents parameters describing the variations of the

prostate boundary with respect to an average contour.

In [155], the authors define a polygonal template to characterize a general model of a vehicle and derive

a prior probability density function to constrain the template to be deformed to lie within a set of allowed

shapes. Every solution encodes a deformable template, characterized by a finite set of parameters representing

the vertices’ locations.

Another Bayesian formulation is presented in [168, 169] and solved using simulated annealing. The authors

present an energy-minimization framework based on geometrically deformable templates. To solve the segmen-

tation problem it is necessary to estimate the optimal values for the following parameters: translation, scaling,

rotation, and N parameters for the non-affine deformation. The affine values are calculated by an exhaustive

search method (iterated conditional modes). The non-affine ones are estimated using simulated annealing.

A cubic B-spline shape representation based on a binary encoding is used in [166]. In this case, the set of

feasible deformations includes translation, scaling, rotation, and stretching of the template. Thus, the parameter

vector to be optimized contains five parameters corresponding to the affine transformations, four pairs of global

non-affine deformation parameters, and τ−2 pairs of translation vectors, τ being the number of control points.

In [163], genetic algorithms are used in three different stages: a preliminary region of interest identification

stage and two learning stages. In the first, each individual’s genome is made up of five variables: the deformed

model’s Cartesian coordinates (x, y) in the image, its horizontal and vertical size in pixels, and a measure of its

vertical perspective distortion. Then, during a first training step, a second genetic algorithm, that searches the
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training image space, is used for learning the best threshold values for the color segmentation of a landmark, i.e.,

the target object bounded by a rectangular box. Thus, each individual in this genetic algorithm encodes upper

and lower thresholds for the HSL color components (six values). Finally, during the second training step, a third

genetic algorithm is used to find the values d0, . . . ,d3 that determine the best position for a pattern-window that

is placed over the model diagonals to exploit the frequent symmetries which can be observed in the objects used

as landmarks.

A real-coded genetic algorithm is used to select the best deformable model parameters in [162]. The main

idea is to find relevant ranges in a large parameter space, including external force factor, parameters control-

ling the template stiffness, coefficients describing the model compressibility, and number of iterations of the

deformation process.

In [153], a parametric 3-D medial-axis representation (3D-MRep) [185, 186] is used as shape model. The

parameters defining the 3D-MRep shape are encoded and optimized using CMA-ES. The parameter domain of

3D-MReps constitutes a finite-dimensional Riemannian manifold and each element of this shape space defines

a surface. 3D-MRep uses a discretization of an object’s continuous medial axis instead of boundary repre-

sentations. Every instance of an MRep in three dimensions is represented by a regular mesh described by the

coordinates of its vertices (called atoms). A detailed description of the information encoded for every atom can

be found in [153].

In [173], a genetic algorithm is employed to reinforce the segmentation results (lip and eye regions) by

aiding the matching of the general shapes with the segmented areas. A 26-gene chromosome is used. The first

10 genes represent the height and width of the shapes. The remaining 16 genes represent selected points in the

shape (at roughly equal distance from each other).

4.3.2. Operators

In general terms, the metaheuristic operators are generic and they do not present a great level of sophistica-

tion because the statistical shape models are usually already constrained within a specific region of the search

space as the result of a training stage.

In [167], a hybrid evolutionary algorithm inspired by guided evolutionary simulated annealing [187] is

used. The population is made up of families and each family consists of one parent and its children. The pose

parameters of each of the parents are selected at random (their shape being the mean shape). The children in each

family are generated by randomly modifying the pose parameters of the parents and choosing valid instances

of the shape model. The authors introduce restrictions to ensure that the deformed template is a valid instance

of the shape model. The main components used in the algorithm are: i) a local search, where the parent and

the children are evolved according to a local deformation template matching; ii) a local competition, where the
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child with best fitness is selected and may replace its parent following a simulated annealing scheme; iii) a shape

constraint imposed on the projection of the new parent onto the shape space; and iv) a second level competition

among families. In this approach, to favor the children whose shapes are closer to the first eigenmodes, the

temperature of the Boltzmann distribution that controls the acceptance criterion is varied. At a local level, the

children of the same family compete with one another to generate the parent for the next generation. In a second

level, there is a competition between the families, since the number of children allocated to each family depends

on the combined fitness of all their children, and is biased toward the first eigenmodes to favor the most likely

shapes. The number of children actually reflects the relevance of a given area of the search space. The better the

candidate solutions in a given area, the more attention it attracts. Therefore, the entire algorithm can be viewed

as a parallel simulated annealing with competition.

In [170, 171] a standard genetic algorithm is used to optimize shape models (using one-point crossover and

bit string mutation). The remainder stochastic independent sampling algorithm [188] is used as selection opera-

tor. Niching is also applied to avoid premature convergence to suboptimal solutions. The fitness of an individual

is weighted by the number of neighbors (the more the neighbors of an individual, the worse its fitness), the size

of the population is allowed to increase, and a restricted mating strategy is implemented in order to promote

speciation, i.e., neighbors are preferred to distant individuals for crossover. In [180], the optimization problem

is also solved by means of a multi-population genetic algorithm approach, which creates subpopulations within

the niches defined by multiple potential optima. Subpopulations only interact by means of a migration process

where the best individuals from one subpopulation are copied into another subpopulation, replacing the worst in-

dividuals in the destination search niche. Intensification is achieved by allocating a separate portion of the search

space to each subpopulation. After convergence of the global search, a Nelder-Mead simplex algorithm [189] is

further applied starting from the best solution. Each subpopulation uses scaled fitness-proportionate selection,

uniform crossover, and random mutation.

In [154, 165], mutation is performed by altering some weights of the hierarchical regional principal com-

ponent analysis while crossover consists of swapping a set of weights between two individuals (see Figure 10).

Roulette-wheel selection is used along with a coarse-to-fine approach to steer the evolution, facilitating faster

initial convergence. Initially mutation is applied only to the affine transformation parameters (2 translation val-

ues, 1 model orientation angle, and 2 scaling values). After that, the authors allow mutations to start including

shape deformations. Dynamic mutation of a single gene amounts to altering the corresponding weight by sam-

pling it from a uniform random distribution under the constraint that the total weight lies within ±3 standard

deviations of the corresponding mode of variation.

In [156, 157, 160], the restrictions, in terms of deformation, are managed by the polar representation and
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Figure 10: In [154], like in many other statistical shape model approaches, segmenting an anatomical structure

consists of finding the optimal set of shape parameters. The authors represent each shape as a chromosome with

genes encoding affine and statistical shape deformation parameters.

the limits for the deformation are calculated from a training set. Thus, the conventional operators for genetic

algorithms (scatter search, differential evolution, simulated annealing, and particle swarm optimization) are

used. In [152], an evolutionary strategy is run to find a rough initialization in a strongly down-sampled version

of the image. There is no crossover operator and solutions are mutated by adding a random vector from a

multivariate zero-mean Gaussian distribution (Gaussian mutation). In [176], a genetic algorithm searches faces

globally whereas gradient descent helps the genetic algorithm to search a face locally. In other words, the

exploitation properties of gradient descent and the exploration properties of the genetic algorithm are combined

into an effective memetic optimizer. For this reason, the authors propose a new gradient operator which operates

in conjunction with the mutation operator already available in the genetic algorithm.

In [166], 100 individuals (each representing an ellipse: circle + affine transform) are initially randomly

generated in the image when segmenting ecographic sequences. A genetic algorithm with one-point crossover

operator, elitism and a local optimization procedure is used. In each generation, 5% of the best individuals are

selected for hybridization with the local optimization technique (gradient ascent).

In [172] two modifications to the geometrically deformable template model are proposed to perform the seg-

mentation of the optic disc in ophthalmic images. The proposed search method is computationally costly and

the invariance to affine transformations may cause the search algorithm to retain invalid solutions (e.g. ellipses

when searching for circles). The authors address these concerns using a metaheuristic called Variable Neigh-
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borhood Search, that treats simulated annealing as a local search tool, and also by redefining the shape energy

so that affine transformations are taken into account to improve search quality. The main operators used in this

metaheuristic are the shaking step, that chooses a random configuration of points within the neighborhood, the

local search, and the moving step in which, if the local search finds a configuration with lower energy than the

current best solution, the new configuration is set to be the starting point for another step.

4.3.3. Fitness Function

The most common approach used in this family of methods aims to maximize the overlap of the deformable

model with the object of interest. It takes into account intensities, boundaries, or textures, and controls the

feasibility of the new configuration using the main modes of variation computed from a training set. All these

features are introduced as terms in the deformable model energy formulation that is directly taken as the fitness

function to be minimized. Prior knowledge about every particular case can be very easily included in the fitness

function, as happens, for example, in [157]. In that work, since the target anatomical district (the hippocampus)

is slightly darker than the immediately surrounding area, the fitness function includes a term (to be maximized)

which is proportional to the difference in intensity between the inner model points (ideally corresponding to the

hippocampus) and the outer model points (ideally corresponding to the external, clearer regions surrounding the

hippocampus). Along with the previously introduced external energy, the model (as well as the fitness function)

includes an internal energy term, based on the shape deformation limits found in a training set, that controls the

maximum amount of distortion the deformable model can present.

In [158, 159, 161], the fitness function compares the silhouettes extracted from the images to be processed

to the silhouettes generated by the model in its candidate pose. The lower the fitness value, the closer the

candidate pose to the model position. In [167], the fitness function also measures the matching between the

deformed template and a modified edge image, and the elastic deformation energy required in the warping

process. The compound functional to be minimized includes stretching and bending energies, along with an

attraction factor which favors the attraction to the image edges. In [175–177], fitness is calculated pixelwise as

the difference between the deformed curve (obtained by the appearance parameters of each chromosome) and

the test image.

In [155], simulated annealing optimizes the vertices’ positions (the authors do not specify if those positions

are encoded as real or integer numbers). The energy function is minimized by constructing a sequence of

template deformations starting from a prototype template. In each iteration, the algorithm determines a new

value for the deformation parameters, based on their current one. The authors propose a likelihood probability

density function which combines motion information and edge directionality to ensure that the deformable

template is contained within the moving areas in the image and that its boundary coincides with strong edges
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with the same orientation in the image. The probability density function is modeled as a Gibbs distribution

whose exponent comprises two terms. One term is a function which derives from the motion of the vehicle of

interest and is maximized when the deformed template encompasses only pixels that are moving. The other term

is a directional edge-based function that is maximized when the contours of the deformed template coincide with

underlying image edges that have a strong gradient magnitude and whose gradient orientation is perpendicular

to the contour. By using the gradient magnitude and direction on the template boundary, the authors implicitly

correlate both sides (object and background) of the boundary. Since the energy function features many local

minima, simulated annealing is applied according to a geometric cooling scheme.

In [166], the fitness function is composed of a likelihood energy term that is minimized when the deformed

template delimits exactly two homogeneous regions with gray level distributions corresponding to blood and

muscle. A prior energy term that penalizes the deviation of the deformed template from the original prototype

is also included.

A model of the heart is composed of three different objects in [168, 169]. The fitness function to be op-

timized by the metaheuristic contains an internal and an external term. The former measures the amount of

non-affine transformation of the template with respect to the equilibrium shape. The latter is a form of potential

that attracts the template towards specific image features, such as edges.

In [153], the authors investigate two approaches for detecting objects in voxel images based on the 3D-

MRep shape models [185]. One involves a simplified Mumford-Shah Functional used to segment synthetic 3-D

images. The other is an edge-based segmentation for the cerebellum. In the former, the authors search for sets of

voxels representing volumes characterized by a significant difference between the mean image intensity inside

the volume and the mean intensity of the background. If the objects of interest have nearly the same intensity

as the surrounding volume, region-based segmentation cannot be applied. To overcome this problem an edge-

based segmentation method is introduced in the latter. In that case, a functional with two terms is used: the first

term forces a Jordan submanifold to be at locations where the gradient of voxel data is high, and the second one

penalizes the surface area of such a submanifold. The authors use CMA-ES to minimize the functionals.

4.3.4. Critical Discussion

In general terms, there is a relevant number of publications dealing with statistical shape models. With re-

gard to the strengths of these approaches, metaheuristics increase the flexibility of the deformable model design.

They allow one to ignore the nature of the objective function (differentiability, convexity) and to use the method

as a black-box optimizer where different combinations of parameters, usually principal component weights and

transformation parameters, are tested in an inherently parallel manner, typical of many metaheuristics. Meta-

heuristics are also used to guide the deformable model deformation and movement, as well as to optimize its
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parameters, although the latter option is not too common in statistical shape models. Regarding the weaknesses

found in the different approaches, we could mention the following:

• In general terms, the contributions published so far do not provide a clear justification for the use of

metaheuristics and it seems that, in some cases, a simpler local optimizer or classical optimization method

could have worked properly as well.

• With regard to the former point, comparisons with traditional methods are seldom reported, even if they

would be really useful and illuminating. Those comparisons could demonstrate the effectiveness of intro-

ducing metaheuristics instead of using more traditional methods.

• Finally, in the vast majority of the papers, there is no detailed description and presentation of the param-

eters and operators used, there is no proper statistical comparison of results, while no information about

the parameter tuning procedure followed is provided.

In terms of applications, a broad variety of problems has been tackled, ranging from face/body recogni-

tion [158, 159, 161, 173, 175–177] and car/road-sign localization [155, 174, 178, 182, 183] to medical image

segmentation [152–154, 156, 157, 160–162, 164–172, 179–181, 184], or mobile robot navigation [163]. In

particular, in this section we have discussed Bayesian approaches [155, 166, 168, 169], the online definition

of a deformable model for mobile robot navigation [163], and approaches focused on the segmentation of

objects using sophisticated metaheuristics (a generalization of the CMA-ES on vector spaces to Riemannian

manifolds [153], as well as an evolutionary version of simulated annealing [167]), or the appropriate use of

evolutionary algorithms in the solution of very difficult biomedical problems [154, 157].

4.4. Level Set Method

The first remark worth making about this sort of techniques is related to the shortage of proposals where

geometric/implicit approaches are used in conjunction with metaheuristics. We could find only 16 papers of this

kind, four of which apply practically the same basic design [190–192]. In other cases, the use of metaheuristics

has not been adequately justified or explained [193–195]. Most often, classic optimization methods, like gradi-

ent descent, are used. However, in some cases, like geodesic active contours, such techniques have been shown

to be ineffective and likely to produce suboptimal solutions. Moreover, many deformable models are based on

partial differential equations which can be solved by traditional numerical methods. However, metaheuristics

have demonstrated to be very useful for learning the parameters of the model [196–200], to refine the results

obtained by the geometric approach [201], to initialize the contour and/or extract the prior information which is

to be used by the level set method [195, 198, 202] or to directly guide the optimization process avoiding local
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minima [190–193, 203]. An important advantage of using metaheuristics is that they can optimize the level

set function without the need to compute derivatives, thereby permitting a straightforward introduction of new

curve-evolution terms [198]. Moreover, in [202], metaheuristics are used along with a parametric deformable

model to initialize the level set contour.

In several papers where authors have used eigenshapes (the main modes of deformation computed from a

training set of shapes), despite their differences (kind of textural measures used and calculation of the affine

transformation), the fitness function and the general pipeline is essentially similar. All proposals employ texture

and shape information to evolve the contour using a training and a test phase. The fitness of a given shape is

determined by the matching degree between the texture of its enclosed region and the mean texture of the target

object calculated in the training phase.

Table 6: Level Set Method. From left to right: author(s) and reference to the paper, dimensions (2-D/3-D),

metaheuristics used, image type addressed, and publication year.

Reference Dims. Metaheuristic Image type Year

Wang et al. [194] 2-D Evolutionary Strategy 1 cell image, 1 magnetic resonance image 2002

1 computed tomography, 1 ultrasound (9 imgs)

[204] 2004

Xiao et al. [195] 2-D Genetic Algorithm 1 Histological 2005

1 Mammogram

Ghosh et al. [190, 191] 2-D-3-D Genetic Algorithm 10 prostate computed tomographies [190], 100 2006

Differential Evolution vs Particle Swarm computed tomographies and 100 magnetic

Mesejo et al. [192] 2-D Optimization vs real-coded Genetic Algorithm resonance imgs. [191], 10 histological imgs. [192] 2013

Kan et al. [193] 2-D Particle Swarm Optimization 4 Tree images 2007

Iakovidis et al. [197] 2-D Genetic Algorithm Ultrasound images 2007

Law et al. [203] 2-D Basin Hopping 1 Natural scene 2008

vs Gradient Descent 1 Brain magnetic resonance imaging

vs Simulated Annealing 1 Zebrafish Intestine Image

1 Breast cancer cell image

Heydarian et al. [196] 2-D Dynamic Genetic Algorithm 4 computed tomography imgs. (kidney and lung) 2009

2 magnetic resonance images (kidney)

Oliveira et al. [199] 2-D Genetic Algorithm 20 liver computed tomography 2010

[200] 2011

Feltell & Li[201] 3-D swarm agents 1 brain simulated magnetic resonance 2010

(181 imgs)

Mesejo et al. [198] 2-D Scatter Search and Genetic Algorithm 26 Microscopy, 17 magnetic resonance images 2013

and 10 computed tomographies

Mesejo & Cagnoni[202] 2-D Differential Evolution 26 Histological Images 2013
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4.4.1. Encoding

Genetic algorithms have been used in the majority of methods. In some cases, they rely on a binary encod-

ing [196, 197] even when the features of the problem may suggest using a real-number representation.

In the works of Ghosh et al. [190, 191] and Mesejo et al. [192] the parameters that are optimized are the

coefficients/weights of a linear combination of the eigenshapes. Some approaches [190, 191] also consider the

pose of the object to segment (position, size, and orientation) and encode it as the parameters of an affine trans-

formation of that object. In other cases, for example, the parameters represent the location (in polar coordinates)

of the points of a parametric model that is used later as initial boundary for the level set [202], the weights for the

different terms in the level set equation [197, 198], or the parameters which encode prior knowledge [195, 198].

In [201], the segmentation problem is treated as a fuzzy voxel classification along the level set interface

but the presence of anisotropic voxel intensities within the input image causes an unacceptable number of

incorrectly classified voxels. To solve this problem, after the user identifies the area of interest, intelligent semi-

autonomous agents move across the zero-level surface and modify it. The level set representation allows the

authors to locate the surface in space and compute the normal to the surface in any point very easily. Therefore,

the encoding used by the swarms of intelligent agents is the same as the representation used by the level set

(the voxel coordinates). The agents inhabit the surface, modifying the sparse field, and update the values of all

zero-level points within a given range r of the agent’s position x by a value a = A(x), weighted by the distance

from the agent, according to a normalized Gaussian distribution.

4.4.2. Operators

In general, the operators used in level set-based methods are the traditional ones, usually not specifically

customized to the problem at hand. The model constraints are usually managed within the level set formulation.

The curves are split and merged naturally adjusting the object topology. Furthermore, in some cases, the exis-

tence of a training set already constrains the possibilities of generating new shapes. In some cases, the authors

use operators which are not particularly well-suited to the nature of the chromosomes, like in [190, 191] where,

despite having a real-valued genome, single-point crossover is used.

In [201], agents inhabit the zero-level surface, sensing and modifying it as necessary using straightforward

interpolation routines. They are allowed to modify the surface at their location whilst maintaining the structure

of the sparse field. Basically, every agent moves independently using two rules/operators: a) navigation over

the surface, and b) modification of the sparse field. For the former, a movement potential function P needs to

be defined, while for the latter it is necessary to define a surface update function A.

In [203], the authors have designed a method based on two operations: hopping and local optimization.

In turn, the hopping phase consists of a stochastic split and a deterministic merge, in which both splitting and
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merging of a large area of the image may occur in each step of this region-based segmentation algorithm,

reducing the number of hops needed to search for a global minimum. To split the selected segment into two

sub-segments, a thresholding method [205] is used. The split-and-merge step is the crucial contribution in

this algorithm. After merging, the local optimization operator applies the gradient descent method. If the

resulting energy is decreased (compared to the energy before the splitting step), then the new configuration is

accepted and another round of hopping is performed. Otherwise, the system reverts back to the configuration

previous to splitting, remove the last chosen segment from the list of candidates for splitting, and re-normalize

the probability of choosing each segment.

In [204], only mutation is used, obtained as an additive Gaussian perturbation because the recombination of

contours requires a much higher computational complexity. As selection scheme, a modified (µ,λ ) is applied.

Since the acceptance of a temporary deterioration might make also (µ,λ ) selection drift away from the contour

energy minimum, the authors select the configuration with lowest energy from µ survivors in (µ,λ ) selection,

and compare it to the lowest energy configuration among those previously selected. The lowest-energy config-

uration found in all the selections represents the output contour and the solution to the problem at the end of the

algorithm.

Finally, in [206], a dynamic genetic algorithm is used that adaptively changes mutation and crossover prob-

abilities, as well as the number of crossover points.

4.4.3. Fitness Function

Two of the approaches that take most advantage of metaheuristics can be found in [198] and [203]. The

former describes a hybrid geometric deformable model, combining region- and edge-based information with

the prior shape knowledge introduced using deformable registration. Such an approach implies the learning of

the level set parameters by means of a genetic algorithm and the use of scatter search to derive the shape prior.

In the latter, the computation of a global minimum of the Chan-Vese model is performed combining gradient-

descent with a stochastic optimization phase which allows the search to hop from a local minimum (basin) to

another, while the computation cost is alleviated using a multiresolution approach. In a single hop, a large area

in the image is split and merged. Energy increases after the split-and-merge but decreases significantly after the

gradient descent iterations.

In [204], an extension of the work presented in [194], the authors take the viewpoint that region information

can be introduced as extra constraints within the contour energy-minimization framework. The contour energy

minimization problem is thus formulated as the search for a minimum-energy contour with its interior satisfying

a region-based constraint. Such a constraint can be any function characterizing the contour inner structure. In

this case, the authors adopt a criterion based on region homogeneity. The introduction of the constraint is
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Figure 11: Main workflow diagram for [196].

aimed at limiting the search space of contours, focusing on those with desirable interior properties, while an

evolutionary strategy is used to solve the energy minimization problem. Possibly, with this constrained contour

formulation, a traditional optimization approach could have solved the problem as well.

The main aim in [196] is to select the optimal values for the seven parameters introduced in [206] and

eliminate the need for level set re-initialization for different kinds of image modalities (computed tomography

and magnetic resonance imaging in particular) and organs (see Figure 11). To do so, the authors designed an

evaluation function comprising four measures to calculate geometric differences between the object boundaries

as determined by the level set method and the desired object boundaries. A similar approach is used in [198]

where a genetic algorithm is in charge of tuning the weights and the parameters of each term based on training

data. In general, the quality of a solution is defined as the average quality of the segmentations obtained in the

training phase using the parameter values it encodes.

In [204], the problem is to find a closed contour C(s, t) enclosing a region ΩC such that

E(C(s, t)) =
1∮

C ds
{
∮

C

1
1+ |∇G∗ I(x(s),y(s))|p

ds} (4)

is minimized subject to the constraint characterizing the region

D(x,y) =
1

1+ |∇G∗ I|2
e−
|I(x,y)−I0 |

σ ≥ TV (5)
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for all (x,y)∈ΩC, where p= 1 or 2, TV is the similarity threshold, and |∇G∗ I| is the absolute value of the image

intensity gradient (I(x,y)) smoothed by a Gaussian filter N(0,σ2
0 ). The solution to the constrained optimization

problem is to use an evolutionary strategy to deform C(s, t) until an optimum C(s) is reached.

In [203], each point is attracted towards a local minimum through a gradient descent process, after which,

a “basin hopping” operator is applied between local minima (basins) to simplify the energy landscape. If the

new local minimum corresponds to a lower energy, then the new solution will be taken without reservation.

Otherwise, a coin may be flipped to determine if the new solution is accepted. The updates are global, i.e.,

instead of each point on the level set function moving in its normal direction at a speed related with the gradient

descent, the hopping step is region-based, allowing the search to escape from local minima effectively. In

general terms, for a given image u0, the piecewise constant Mumford-Shah model [207] seeks for a set of

curves C and a set of constants c = (c1,c2, . . . ,cn) which minimize an energy functional given by

FMS(C,c) =
n

∑
i=1

∫
Ωi

|u0(x,y)− ci|2dxdy+µ×Length(C) (6)

In the latter equation, the curves in C partition the image into n mutually exclusive segments Ωi for i =

1,2, . . . ,n. The idea is to partition the image so that the intensity of each segment Ωi of u0 is approximated well

by a constant ci. The goodness-of-fit is measured by the fitting term
∫

Ωi
|u0(x,y)− ci|2dxdy.

In [201], each agent is affected by ‘forces’ pulling it in a certain direction. These forces are weighted

and summed and the resulting vector is normalized to compute a movement potential vector, provided by the

function P(x). This movement potential function P is defined as P(x) = ||v+γH(x)+λ ||u−x||||, where x is an

agent’s location in R3, v is the previous velocity, H(x) is a steering function moving the agents automatically

toward areas of interest (for example, using the gradient H can lead the agents away from areas characterized

by high intensity gradient, i.e., toward more homogeneous areas), u is a user-specified location, and γ and λ are

constants. In that work, the algorithm regulating an agent’s behavior is entirely deterministic. When the agents

are in an area that does not trigger any surface modifications (i.e., when they lie in an image region that does not

stimulate them to modify the level set surface), all the agents simply move together along a near-circular path

orbiting the user-specified point whilst being pulled toward the path characterized by the lowest image gradient.

4.4.4. Critical Discussion

All papers but [193] are related to medical applications because of the significance and importance that

the level set methods have in the segmentation of biomedical images. For instance, some of the approaches

discussed in this section have been focused on the segmentation of gray and white matter from simulated T1

magnetic resonance scans [201]; prostate in pelvic computed tomography images [190]; prostate in pelvic

computed tomography and magnetic resonance images [191]; lungs in computed tomography and kidneys in
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magnetic resonance images [196]; synthetic images, natural scenery, breast tumors and zebrafish cells, and brain

in magnetic resonance images [203]; and brain in histological and magnetic resonance images, as well as lung

and knee in computed tomography [192, 198, 202].

An interesting option when a set of training images is available, as evidenced by promising results, would

be to use an approach similar to those by Ghosh et al. [190, 191] and Mesejo et al. [192]. Nevertheless it is

noteworthy that these approaches are quite slow due to the need to compute the average shape and the main

forms of variation, as well as the evaluation of texture as the visual feature that characterizes the evolving

contour.

Regarding the main roles played by metaheuristics in these methods, interesting working examples can be

found which optimize the parameters of a level set model [196, 198], include different terms in the formula-

tion [198], use swarms of agents to refine results [201], take advantage of a training set of shapes to segment a

difficult structure [190–192], as well as to solve the Mumford-Shah functional [203] or to quickly initialize the

level set [202]. Again, the main advantages of using metaheuristics in combination with level sets derive from

the absence of both derivative computation and need to acquire and/or have knowledge about the objective func-

tion landscape. The main disadvantages could be the need of a training set to learn the parameters or to extract

the main deformation components, and the computation load of some procedures in which fitness calculation is

expensive.

The hybridization of level set with metaheuristic appears to be promising for future studies. This happens,

firstly, because not all the possibilities have been fully explored up to now. Secondly, because the combination

of two techniques with so many positive aspects should lead to results that are more than satisfactory. On the

one hand, metaheuristics provide learning and global search capabilities, avoiding local minima, making the

initialization of the initial contour robust and the introduction of new fitness terms straightforward, as well as

avoiding the need to compute derivatives and to speed up curve evolution. On the other hand, the level set

method provides easy management of topological changes and adaptation to solve problems of any dimensions,

as well as the opportunity to quickly determine the areas inside and outside the evolving contour.

4.5. Other Approaches

The metaheuristic-based approaches to deformable models that do not perfectly fit in any of the previous

categories have been included in this section. In many cases they could have been relocated in one of the

previous sections, but their peculiarities make them worth being treated separately.

Four novel deformable model approaches are presented here: Brownian strings [208, 209], Bayesian dy-

namic contours [210, 211], adaptive potential active contours [212], and fuzzy active contours [213]. First, the

main rationale underlying these approaches will be introduced. The rest of the section has the same structure as
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the previous ones, presenting encoding, operators, and fitness functions before closing with a critical discussion.

Unlike snakes and other deformable model approaches, Brownian strings can handle arbitrarily irregular

contours in which each interpixel crack (the line segments between pixels are called “crack-edges” in Brownian

strings terminology) represents an independent degree of freedom. Thus, Brownian strings are contours de-

scribed by means of crack-edge chains (see Figure 12) [214]. They rely on a statistically trained external energy

term and use simulated annealing to guide contour fitting. The reason why we consider this approach to lie

half-way between implicit and explicit deformable models is that it uses two complementary data structures to

represent the curve. The first representation is a crack-edge chain, that is an implicit representation of the curve:

a sequential enumeration of all vertex coordinates along the curve. In this representation the coordinates of the

starting vertex are stored, followed by a 1-D sequence of directional codes (right, up, le f t, or down) denoting

the orientations of subsequently traversed cracks. The second data structure is a crack diagram representing

the curve as a directed graph linking pixel edges on a rectangular grid. The diagram is implemented as a 2-D

crack-edge occupancy array, in which each element can hold at most one crack-edge. The crack diagram is an

explicit description of a curve that allows for split/merge-type operations and rapid identification of intersections

between contours (see Figure 12).

In Bayesian dynamic contours, each contour is a linked cyclic list of planar nodes, with two sub-models:

(i) an a priori contour model which incorporates properties like shape and smoothness, and (ii) an observation-

based model accounting for the measured signal intensities. In particular, Bayesian dynamic contours may

be considered to belong to the class of active contour models but they differ from the way such models are

generally used in three aspects: (a) a wider class of models (energy functions) can be used both for the prior

and the likelihood; (b) the optimization technique used is based on stochastic sampling and simulated annealing

to provide more flexibility in choosing energy functions; and (c) the number of nodes representing the contour

is random (while in the active contour approach is usually fixed, which is too restrictive when more complex

contours are to be recognized).

Adaptive potential active contours result from the union of active contour models and classifier construction

techniques. Contours are interpreted as contextual pixel classifiers where the context of a pixel consists of the

other pixels in its neighborhood. Simulated annealing is used to avoid the local minima of the energy function

and the model makes it possible to obtain contours with various topologies. Control points are included and

labeled as belonging or not to the object to be segmented. Hence, this is a semi-automatic approach, since the

definition of a training set is necessary.

Finally, in fuzzy active contours [213], a fuzzy system tunes the boundaries of the candidate solutions during

the refinement phase. It generates a rule-based active contour model approach in which the fuzzy system,
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trained by particle swarm optimization, is used to set the weights of the energy terms of a classical snake

(internal, external, and thickness terms). Because of this peculiarity, we decided to treat this active contour

model separately from the others described in section 4.1.

Table 7: Other approaches distinguishable from the classical ones (snakes, active shape model, level set...).

From left to right: author(s) and reference to the paper, deformable model family and model name, dimensions

(2-D/3-D), metaheuristics used, image type addressed, and publication year.

Reference Model Family Model Name Dims. Metaheuristic Image Modality Year

Storvik [211] Parametric Bayesian 2-D Simulated 1 ultrasound and 1994

dynamic contours Annealing 1 brain magnetic resonance image

Lundervold & Storvik[210] 10 brain magnetic resonance images 1995

Grzeszczuk & Levin[208] Geometric Brownian strings 2-D Simulated 1 brain magnetic resonance image, 1997

& “Crack-edges” Annealing 1 angiogram

Piotrowski Parametric and 3 synthetic images

& Szczepaniak[209] Unspecified number of 2000

X-ray dental images

Tomczyk [212] Parametric Adaptive Potential 2-D Simulated 2 synthetic images 2007

Active Contours Annealing

Wang et el. [213] Parametric Fuzzy 2-D Particle Swarm 15 microscopy images 2012

Active Contour Optimization of nerve fibers

4.5.1. Encoding

In [208] and [209], simulated annealing optimizes the positions of the ‘cracks/points’ in the Brownian string

that encodes the boundary of the object to be segmented. In Bayesian dynamic contours [210, 211], the genes

making up the representation are the cartesian coordinates of every control point in the contour. In turn, adaptive

potential active contours [212] try to find the optimal parameter vector of length 4 · (N1 +N2) using simulated

annealing, where N1 is the number of control points describing the background and N2 is the number of control

points inside the object. Since contours are interpreted as contextual classifiers of pixels, the search of an

optimal contour is considered as a method for constructing optimal classifiers. Finally, in [213], particle swarm

optimization is used to derive a fuzzy system by learning the large number of parameters required. This method

is divided in three phases, each of which uses a different fuzzy system to: (1) identify nerve fiber candidates

(detection phase); (2) set active contour model weights (refinement phase); and (3) eliminate false positives

(confirmation phase). The same particle swarm optimization algorithm is used to obtain all the parameters of

the three proposed fuzzy rule-based systems.
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Figure 12: Representation of “Brownian Strings” [214]. A contour is represented by a collection of interpixel

“crack-edges”. Every contour (on the left) can be traversed in a counterclockwise fashion, starting at the upper

left vertex. The resulting collection of oriented cracks can be represented by a crack-edge chain code (the string

in the center), consisting of the coordinates of the starting vertex and a list of the orientations. The oriented

cracks in the contour can also be represented explicitly by a 2-D array (on the right of this figure), called a crack

diagram.
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4.5.2. Operators

In [208–212], simulated annealing is used, usually with an exponential cooling scheme. The formulation of

simulated annealing does not favor the development of sophisticated and ad hoc operators. Thus, the methods

included here do not boast of presenting complicated operators.

In [208, 209], the authors have developed a “move generator” operator that produces a new state (i.e., a new,

slightly perturbed contour configuration). This ad hoc procedure must satisfy several stringent requirements.

Firstly, all deformations must lead to curves having the required topology (a candidate contour must be closed

and must not intersect itself). Secondly, the move generator must be ergodic; i.e., it must be possible to find

a series of moves which will deform any curve in the search space into any other curve. Thirdly, the “move”

generator should provide the user with a mechanism to control the general size and shape of the deformations.

This makes it possible to increase the efficiency of the annealing process by using a spectrum of moves which

is appropriate for each temperature level. Finally, it is essential for deformations to be generated in “constant

time” (i.e., in a time that is independent of the contour length) in order for the computational burden not to grow

rapidly with the contour length. The authors presented two operators satisfying these criteria called “raindrop”

move generator and “Bike Trail” method. In each case, the new contour is generated from the previous one via a

local perturbation which consists of selecting a segment of the contour and replacing it with a different segment

in a way that assures that no self-intersections are formed in the process. In [210, 211], a gradient operator is

needed to recognize edges to be included in computing the potential in the energy function.

4.5.3. Fitness Function

In the Brownian approach, the non-parametric energy function is derived from the statistical properties of

previously segmented images (training contours). Each contour in the search space is assigned an energy which

depends on a global feature that characterizes it. Each crack has an energy that is a function of local image

features (e.g., average intensity, gradient, texture, etc.) and the energy of the whole contour is equal to the

average energy of all cracks in the contour. During the annealing process, each contour crack is assigned an

energy Ei = 1− p, where p is the probability of finding a similar crack in the training contour. In other words,

a crack is assigned low (high) energy if similar cracks are found frequently (rarely) in the training contour.

Regarding implementation, prior to annealing, the energies of all cracks in the image are precomputed and

stored in a 2-D array. Then, during the annealing process, the contour’s energy can be computed efficiently by

using this look-up table to find the average energy of all its cracks.

Bayesian dynamic contours use an energy function consisting of internal and external forces where, as usual,

the internal forces act as a smoothness constraint and the external ones draw the active contour towards specific

image features. Such an energy function is formulated within a Bayesian framework where minimizing the
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energy corresponds to finding the maximum a posteriori solution. The prior model captures the knowledge

available about the contour (smoothness, curvature, contour length) while the probability distribution of data is

computed from the observed image data (gray-levels inside and outside the object, and edges).

The energy of an adaptive potential active contour is composed of an intensity energy term, which attracts the

contour towards darker image regions; a homogeneity energy term, which tries to find contours that surround

the object composed of pixels with a given intensity; and an internal energy, that evaluates contour shapes.

Simulated annealing is used to avoid local minima.

In [213], particle swarm optimization uses the number of correctly classified patterns as a fitness function

to optimize all parameters of the three fuzzy rule-based systems. The systems are applied in the three phases

(detection, refinement, and confirmation) of the proposed segmentation algorithm. A greedy algorithm is used

to minimize the energy of the deformable model, since the search has the features of a local optimization. In

fact, initial candidate nerve fibers are obtained by a multi-level watershed scheme and later refined by a fuzzy

active contour model, which flexibly deforms contours according to the observed features of each nerve fiber. A

final scan with a different set of fuzzy rules removes false detections. No ad hoc operators have been developed.

4.5.4. Critical Discussion

In this section, four different approaches have been briefly summarized that are based on principles that

differ from the most common ones. In [213], particle swarm optimization is used to create a fuzzy rule-based

system that flexibly deforms an active contour model to segment nerve fibers. However, authors use a global-best

particle swarm optimization topology, which may be questionable since, usually, the local-best particle swarm

optimization using some neighborhood topology obtains better results. In [212], the segmentation process

is treated as a classification problem where pixels lying on the contours under consideration are the objects

to be classified. This approach tends to be computationally demanding and therefore can be expected to be

slow. In [208], an arbitrarily shaped contour, either using an explicit or implicit representation, is stochastically

deformed until it fits an object of interest and the non-parametric energy function is derived from the statistical

properties of previously segmented images.

Usually, the applicability of these methods has been limited so far to simply connected objects assuming

a finite space of possible contours when Bayesian dynamic contours have been used [211] or to very simple

synthetic images when adaptive-potential active contours have been used [212]. In many of these approaches,

simulated annealing has been the metaheuristic chosen as optimization method. The reason can be found in

the fact that simulated annealing is one of the most popular metaheuristics, introduced more than 30 years ago,

although more sophisticated methods such as differential evolution or memetic algorithms could also have been

used to obtain even better results, or comparable performances in a shorter time.
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5. Discussion and Recommendations for Future Research

This manuscript is the first attempt to survey examples of hybridization of deformable models and meta-

heuristics. The only survey partially related to this topic was published in 2009 by Ujjwal Maulik [74], but it

deals with all kinds of segmentation techniques, not only deformable models, and it is exclusively focused on

the use of genetic algorithms. This section tries to summarize the information provided by the previous sections,

identifying some general trends, criticizing them, and trying to derive some general recommendations which

may help those who intend to approach segmentation by hybridizing deformable models with metaheuristics.

5.1. Design Issues and Recommendations

Regarding the experimentation and the evaluation of results, the use of standard metrics and statistical

tests (absent in many works) should be considered from now on as a requirement for a rigorous investigation.

Besides, the use and creation of public datasets, and the public dissemination of the results obtained on them

would definitely facilitate the comparison between different methods.

Our design recommendation is to use more recent metaheuristics like differential evolution, particle swarm

optimization, CMA-ES and scatter search, instead of basic genetic algorithms (based on bit strings, and gener-

ally used as off-the-shelf tools, with no attempt to adapt representation, operators or the fitness function more

specifically to the problem at hand) or simulated annealing, which are still dominating despite being obsolete

or often unable to effectively solve real-world problems [9]. With respect to the use of evolutionary algorithms,

operators that best fit the nature of the problem and the characteristics of the representation being used should

be considered. For instance, if one is using real-coded genetic algorithms, the best option for crossover would

be SBX, PBX or BLX-α [49, 50]. In addition, since fitness computation is the most time-consuming component

of a metaheuristic, its effective design and implementation is crucial for a successful application of metaheuris-

tics. Importantly, when tackling an image segmentation problem using energy-minimization techniques like

deformable models, the cost function must be defined to be strongly correlated with the resulting segmentation.

Otherwise, even the best possible optimizer will lead to suboptimal results.

5.2. Possible Directions of Future Research

Very few papers have been published which deal with the automatic tuning of the deformable model pa-

rameters. Metaheuristics, or automatic tuners like irace[215], can be used to automatically configure computer

vision algorithms, instead of relying on costly and inefficient techniques like manual tuning or grid search. This

aspect can be considered as a possible direction of future research, as well as a recommendation for researchers

in computer vision.
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The exploitation of the level set method and prior shape knowledge by means of metaheuristics can be one

of the most appealing future trends, due to its actual potential and to the limited number of papers published

on this approach up to now [198]. Furthermore, there are very few approaches dealing with local deformations.

Usually the deformable model is deformed globally using metaheuristics, when maybe the subdivision of the

deformable model into sections to be locally optimized could be an interesting approach.

Finally, especially when dealing with medical image segmentation, it is sometimes possible to define mul-

tiple criteria that need to be optimized simultaneously. Hence, another major issue is the application of multi-

objective optimization techniques [216, 217] that can be effectively utilized to yield a set of Pareto-optimal

solutions from which the domain expert can choose to solve problems that are subject to conflicting con-

straints [136].

5.3. Available Resources

There are many libraries/frameworks containing general-purpose metaheuristic implementations. A poten-

tial user can choose from open source libraries, proprietary software, toolboxes in C/C++, MATLAB, CUDA,

python or Java. Some libraries/environments that can be of help in solving learning/optimization problems

as deformable model design are the following: HeuristicLab [218], Matlab Optimization Toolbox [219], Par-

adisEO [220], MHTB [221], CILib [222], jMetal [223], JCLEC [224], WEKA [225], libCUDAoptimize [226],

Open BEAGLE [227], GAlib [228], GAUL [229], MOMH [230], METSlib [231], inspyred [232], and Evop-

tool [233]. An extensive comparative study of metaheuristic optimization frameworks can be found in [234].

With respect to deformable model implementations, there are also several toolboxes available, mainly in

MATLAB and C++, for geometric [235–237] and parametric [238–241] deformable models. Other general

computer vision libraries can also help when developing image segmentation algorithms [242–245]. Consid-

ering hybridizations of both, to the best of our knowledge, there is only one software package available: the

hybridization of differential evolution and active shape models is included within an automatic framework for

exploring neurogenomic data and discovering neuropil-enriched RNAs in the hippocampus [246].
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