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HIGHER INTEGRAL MOMENTS OF AUTOMORPHIC L-FUNCTIONS
IN SHORT INTERVALS

XUANXUAN XIAO

Abstract. We consider the higher integral moments for automorphic L-functions in short
intervals and give a proof for the conjecture of Conrey et al. under Generalized Riemann
Hypothesis for automorphic L-function.

Keywords. L-functions, automorphic forms, Moment

1. Introduction

The central values of L-functions is one of the most important problems in number theory.
A typical example is the Lindelöf problem. In many arithmetic applications, we only ask for
its mean values. The simplest example is the 2rth moment of the Riemann ζ-function :

(1.1) Mr(T ; ζ) =

∫ 2T

T

|ζ(1
2

+ iτ)|2rdτ

for r > 0 and T > 1. Hardy and Littlewood [8] proved that

M1(T ; ζ) ∼ T log T (T →∞).

Ingham [12] showed that

M2(T ; ζ) ∼ 1

2π2
T (log T )4.

Titchmarsh [31, Theorem 7.19] showed that for all integer r > 0∫ ∞
0

|ζ(1
2

+ iτ)|2re−t/Tdτ � T (log T )r
2

.

Ramachandra [23] strengthened the result to the lower bound

(1.2) Mr(T ; ζ)�r T (log T )r
2

,

when 2r is a positive integer. Ramachandra [22] also showed that

Mr(T ; ζ)� T (log T )r
2

(log log T )−θr

for real r > 1
2
, θr being a constant depending, possibly, on r, and moreover that, under the

Riemann Hypothesis (RH), (1.2) holds for all real r > 0. In other direction he proved [24]
the upper bound

(1.3) Mr(T ; ζ)� T (log T )r
2

unconditionally for r = 1
2

and under the RH for 0 < r < 2. Heath-Brown [10] proved that
(1.2) holds for all rational number r > 0. He also proved that (1.3) holds for r = 1/n with
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integer n > 1 and for all 0 < r 6 2 under RH. Radziwi l l in [20] improved this conditional
upper bound for all 0 < r 6 2.181. In [28], Soundararajan proved that for all r > 0 and
ε > 0 RH implies

Mr(T ; ζ)�r,ε T (log T )r
2+ε (T > 2).

Radziwi l l and Soundararajan [21] proved the lower bound (1.2) for all r > 1 uncondition-
ally by extending the idea of Rudnick and Soundararajan ([26] and [27]) (who developed
a new method of obtaining lower bounds for rational moments of L-functions varying in
certain families) to obtain the result in the irrational case.

Very recently Harper [9] succeeded in removing ε by further refining Soundararajan’s
method: under RH, one has

(1.4) Mr(T ; ζ)�r T (log T )r
2

.

It is conjectured that there is a positive constant Cr such that

(1.5) Mr(T ; ζ) ∼ CrT (log T )r
2

(T →∞).

A precise value for Cr was conjectured by Keating and Snaith [15] based on considerations
from random matrix theory. Subsequently, Diaconu, Goldfeld and Hoffstein [3] gave an
alternative approach based on multiple Dirichlet series and produced the same conjecture.
Recently Conrey et al. [2] gave a more precise conjecture, identifying lower order terms in
an asymptotic expansion for Mr(T ; ζ).

It is natural to consider the analogue of Mr(T ; ζ) for automorphic L-functions. For positive
even integer κ, denote by H∗κ the set of all normalized Hecke primitive cuspforms of weight
κ for the modular group SL2(Z). The Fourier series expansion of f ∈ H∗κ at the cusp ∞ is

f(z) =
∑
n>1

λf (n)n(κ−1)/2e2πinz (=mz > 0),

where λf (n) is the nth normalized Fourier coefficient of f with λf (1) = 1. The automorphic
L-function attached to f is defined as

L(s, f) :=
∑
n>1

λf (n)n−s (σ > 1).

Here and in the sequel, we write implicitly s = σ + iτ . It is well known that L(s, f) can be
analytically prolonged to C and satisfies the functional equation over C :

(1.6) (2π)−sΓ
(
s+ 1

2
(κ− 1)

)
L(s, f) = iκ(2π)−(1−s)Γ

(
1− s+ 1

2
(κ− 1)

)
L(1− s, f).

Similarly to (1.1), for f ∈ H∗κ and r > 0, we define

(1.7) Mr(T ; f) :=

∫ 2T

T

|L(1
2

+ iτ, f)|2rdτ.

The study of mean squares for L-functions over GL(2) was mainly pioneered by Good [7, 6],
who showed that

M1(T ; f) ∼ CfT log T as T →∞
for some positive constant Cf depending on f . In [29], Sun and Lü considered fractional
power moments and proved that

Mr(T ; f)� T (log T )r
2

,
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for all r = p
q
6 1

2
with positive integers p and q, and also that

Mr(T ; f)� T (log T )r
2

for positive even integer q under GRH for L(s, f).
Pi considers in [19] the moments of automorphic L-functions on GL(m), under Generalized

Ramanujan Conjecture (GRC), he proved the lower bound for any non-negative rational
number r > 0 (for all non-negative real numbers under GRC and GRH). He also shows that
under GRC and GRH the upper bound holds for 0 6 r 6 2/m− ε for arbitrary ε > 0. The
lower bound is also considered by Akbary and Fodden [1]. They proved the lower bound
under GRH and a weaker conjecture instead of GRC for the local parameters at unramified
primes. The moments of products of automorphic L-functions are considered by Milinovich
and Turnage-Butterbaugh [17] with the method of frequency of large values introduced by
Soundararajan.

Conrey et al. (see [2, Conjecture 2.5.4]) provided us the conjecture about Mr(T ; f) by con-
sidering the attached shifted moments, from what we can deduce the following one without
considering the exact coefficients.

Conjecture 1. For f ∈ H∗κ and r > 0, we have

Mr(T ; f)�f,r T (log T )r
2

,

where the implied constant depends on f and r.

In this paper, we consider a more general problem, i.e., the higher moment of L(1
2

+ iτ, f)
in short intervals :

(1.8) Mr(T,H; f) :=

∫ T+H

T

|L(1
2

+ iτ, f)|2rdτ.

Thus Mr(T ; f) = Mr(T, T ; f).
Our result is as follows.

Theorem 1.1. Let f ∈ H∗κ, r > 0 and 0 < ε 6 1. Assuming GRH for L(s, f), we have

(1.9) H(log T )r
2 �Mr(T,H; f)� H(log T )r

2

uniformly for T > T0(f, r, ε) and T ε 6 H 6 T , where the constant T0(f, r, ε) and the implied
constants depend on f , r and ε only.

Particularly, the lower bound above holds for rational number r unconditionally.

The particular case of Theorem 1.1 shows that the analogues of Harper’s upper bound
result [9] and Heath-Brown’s lower bound result [10] on Mr(T ; ζ) also hold for Mr(T ; f).
Our result improves the upper bound of the particular case of Milinovich and Turnage-
Butterbaugh [17] and extends the range of validity of Pi’s result [19] in the case of auto-
morphic L-functions on SL2(Z). For the completeness of the result, the lower bound in
short interval is also considered in the present article, although it seems to be a trivial
generalization of the result of Pi and Akbary and Fodden [1].

Our approach is an adaptation of [28, 9] for upper bound part and of [10] for lower bound
part. In [28], Soundararajan built on Selberg’s work on the distribution of log ζ(1

2
+ iτ).

He removed the effect of zeros very near 1
2

+ iτ by finding an inequality and gave an upper

bound for log ζ(1
2

+ iτ) (see [28, Proposition]). By choosing a suitable length of the Dirichlet
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polynomial, he investigated the frequency with which large values of log |ζ(1
2

+iτ)| can occur
and then deduced an estimation for the moment of zeta function.

Harper in [9] improves the method. His work is based on that of Soundararajan. He divides
the Dirichlet polynomial into small intervals, chooses a longer length for the polynomial and
splits the integral into pieces according to the large values of these polynomials over small
intervals. With these delicate decoupage, we can take more advantage of the information
about large values. Moreover, he doesn’t estimate the frequency of large values but works
throughout with moment-type objects. Furthermore, he uses a similar lemma of Radziwi l l
(see Lemma 2.5 below) to deal with the integral of a product over primes of terms cos(τ log p).
With these ’almost-equations’, we can save more for the contributions from these Dirichlet
polynomials.

In this article, we succeed in extending the method of Soundararajan and Harper to the
moments of automorphic L-functions in short intervals . The difference is that: if just follow
their methods, we have to assume RH for ζ(s) and GRH for L(s, sym2f) additionally. Our
argument does not truncate the second summation over prime squares by log T as Harper
has done, but considers it together with the first summation directly. The contribution
from this part is also negligible with our method. These allow us to avoid RH for ζ(s) and
GRH for L(s, sym2f) and to give some simplification for the Soundararajan-Harper method.
Moreover, in the last part, we use the method of Heath-Brown and apply the Rankin-Selberg
L-function to prove the exact lower bound.

The result can be generalised to modular forms on congruence subgroups of SL2(Z). Be-
sides, the method can be used to improve the result of Milinovich and Turnage-Butterbaugh
[17] and the work of Milinovich and Ng [16], but the Generalised Ramanujan Conjecture is
needed for the case GL(m).

2. Automorphic L-functions and some preliminary lemmas

Let f ∈ H∗κ. According to Deligne, for any prime number p there are complex numbers
αf (p) and βf (p) such that

(2.1)

{
|αf (p)| = αf (p)βf (p) = 1,

λf (p
ν) =

∑
06j6ν αf (p)

ν−jβf (p)
j (ν > 1).

Hence, λf (n) is real and satisfies the Hecke relation

(2.2) λf (m)λf (n) =
∑
d|(m,n)

λf

(
mn

d2

)
for all m > 1 and n > 1, and the Deligne’s inequality

(2.3) |λf (n)| 6 d(n) (n > 1),

where d(n) is the divisor function. L(s, f) admits the Euler product :

L(s, f) =
∏
p

(1− αf (p)p−s)−1(1− βf (p)p−s)−1 (σ > 1).

It is well known that (see e.g. [25], see also [4])

(2.4)
∑
p6x

λf (p)
2

p
= log2 x+Of (1) (x > 3),
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where we denote by logj the j-fold iterated logarithm.
The main aim of this section is to prove Proposition 2.1 below. Let us begin by citing

some properties on the logarithmic derivative of L(s, f) which will be needed in the proof of
Proposition 2.1. First we define bf (n) by the formula :

(2.5) −L
′

L
(s, f) =

∑
n>1

Λ(n)bf (n)

ns
(σ > 1),

where Λ(n) is the von Mangodt function and bf (n) is supported on prime powers such that

(2.6) bf (p
ν) = αf (p)

ν + βf (p)
ν

for prime number p and integer ν > 1. Particularly, bf (p) = λf (p).

• In view of the functional equation (1.6), the logarithmic derivative L′

L
(s, f) have “trivial

poles” at the points s = −n− 1
2
(κ− 1) for n = 0, 1, 2, . . . .

• According to [14, Proposition 5.7], for any s in the vertical strip −1
2
< σ < 2 we have

L′

L
(s, f)�f log(|τ |+ 3) +

∑
|s−ρ|<1

1

s− ρ
,

where ρ denotes the non-trivial zero of L(s, f). If we write s = σ + iv, then the number of
zeros ρ with |v−=mρ| < 1 is � log(|v|+ 3). Hence by varying v by a bounded amount, we
can ensure that

(2.7) |v −=mρ| � log−1(|v|+ 3).

With the present choice of v, we have for −1
2
< σ < 2

(2.8)
L′

L
(σ + iv, f)�f log(|v|+ 3) +

∑
|v−=mρ|<1

log(|v|+ 3)�f log2(|v|+ 3).

• By the functional equation (1.6) and Stirling’s formula [30, 4.42] we have for σ < −1
2

(2.9) −L
′

L
(s, f) =

Γ′

Γ

(
1− s+

κ− 1

2

)
+

Γ′

Γ

(
s+

κ− 1

2

)
+Of (1)�f log(|s|+ 3).

.
The main result of this section is the following proposition, which will consists in the

starting point of the proof of upper bound part in Theorem 1.1.

Proposition 2.1. Let f ∈ H∗κ and let $0 = 0.4912... denote the unique positive real number
satisfying e−$0 = $0 + 1

2
$2

0. Assuming GRH for L(s, f), we have

log |L(1
2

+ iτ, f)| 6 <e
∑
n6x

Λ(n)bf (n) log(x/n)

n1/2+$/ log x+iτ (log n) log x
+ ($ + 1)

log T

log x
+O

(
1

log x

)
(2.10)

log |L(1
2

+ iτ, f)| 6 <e
∑
p6x

bf (p) log(x/p)

p1/2+$/ log x+iτ log x
+

1

2
<e

∑
p6
√
x

bf (p
2) log(x/p2)

p1+2$/ log x+i2τ log x
(2.11)

+ ($ + 1)
log T

log x
+O(1)

for T > 2, T < τ 6 2T , 2 6 x 6 T 2 and $ > $0, where the implied constants depend on f .
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Proof. Let c := max(1, 2− σ). Under GRH, we can denote ρ = 1
2

+ iγ to be the non-trivial
zeros of L(s, f). By the Perron formula, we can write∑

n6x

Λ(n)bf (n)

ns
log
(x
n

)
= − 1

2πi

∫ c+iv

c−iv

L′

L
(s+ w, f)

xw

w2
dw +O

(xc log2 x

v2

)
,

where s = σ + iτ with σ > 1
2

and T < τ 6 2T and v > 3 is a parameter tending to infinity
but satisfying (2.7). Shift the segment of integration to the path C consisting of straight
lines joining c− iv, −v − iv, −v + iv and c+ iv. By the residue theorem, one gets that

(2.12)

∑
n6x

Λ(n)bf (n)

ns
log
(x
n

)
= −L

′

L
(s, f) log x−

(
L′

L
(s, f)

)′
−

∑
|γ−τ |<v

xρ−s

(ρ− s)2

−
∑

n+(κ−1)/2+σ<v

x−n−(κ−1)/2−s

(n+ (κ− 1)/2 + s)2
− 1

2πi

∫
C

L′

L
(s+ w, f)

xw

w2
dw +O

(xc log2 x

v

)
.

We apply (2.9) and (2.8) to estimate the integrals over horizontal segments from −v to −1
2

and from −1
2

to c, respectively. Then it is

� log(|s|+ v)

v2
√
x log x

+
xc log2(T + v)

v2
·

The integral over the vertical segment is � x−vv−1 log(|s| + v). Inserting these estimates
into (2.12) and making v →∞, it follows that

(2.13)

−L
′

L
(s, f) =

∑
n6x

Λ(n)bf (n)

ns
log(x/n)

log x
+

1

log x

(
L′

L
(s, f)

)′
+

1

log x

∑
ρ

xρ−s

(ρ− s)2
+

1

log x

∑
n>0

x−n−(κ−1)/2−s

(n+ (κ− 1)/2 + s)2
·

Taking real parts of both sides and integrating with respect to σ over σ0 >
1
2

to ∞, we get

(2.14)

log |L(s0, f)| = <e
{∑

n6x

Λ(n)bf (n)

ns0 log n

log(x/n)

log x
− 1

log x

L′

L
(s0, f)

+
1

log x

∑
ρ

∫ ∞
σ0

xρ−s

(ρ− s)2
dσ

}
+O

(
x−κ/2

)
,

where s0 = σ0 + iτ and the implied constant is absolute.
For s = σ + iτ with σ > 1

2
and T 6 τ 6 2T , define

(2.15) F (s) :=
∑
ρ

<e 1

s− ρ
=
∑
ρ

σ − 1
2

(σ − 1
2
)2 + (τ − γ)2

> 0.

According to [14, Theorem 5.6], we have

−<e L
′

L
(s, f) = − log(2π) + <e Γ′

Γ

(
s+

κ− 1

2

)
−<eB −<e

∑
ρ

(
1

s− ρ
+

1

ρ

)
,
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where <eB = −
∑

ρ<e (1
ρ
). Thus for s = σ + iτ with σ > 1

2
and T 6 τ 6 2T , we have

(2.16) −<e L
′

L
(s, f) = log T − F (s) +Oκ(1),

where we have evaluated Γ′

Γ
(s+ κ−1

2
) = log T +Oκ(1) by the Stirling formula. Observing∑

ρ

∣∣∣∣∫ ∞
σ0

xρ−s

(ρ− s)2
dσ

∣∣∣∣ 6∑
ρ

∫ ∞
σ0

x1/2−σ

|ρ− s0|2
dσ =

∑
ρ

x1/2−σ0

|ρ− s0|2 log x
=

x1/2−σ0F (s0)

(σ0 − 1
2
) log x

,

together with (2.14) and (2.16), we deduce that

log |L(s0, f)| 6 <e
∑
n6x

Λ(n)bf (n)

ns0 log n

log(x/n)

log x
+

log T − F (s0) +O(1)

log x
+

x1/2−σ0F (s0)

(σ0 − 1
2
)(log x)2

·

Integrating (2.16) as σ varies from 1
2

to σ0 (> 1
2
), we obtain

log |L(1
2

+ iτ, f)| − log |L(s0, f)| = {log T +O(1)}(σ0 − 1
2
)−

∫ σ0

1/2

F (σ + iτ)dσ.

According to the definition of F (σ + iτ), we have∫ σ0

1/2

F (σ + iτ)dσ =
1

2

∑
ρ

log

(
1 +

(σ0 − 1/2)2

(τ − γ)2

)
>

1

2
F (s0),

since we have log(1 + x2) > x2/(1 + x2). Then it follows that

log |L(1
2

+ iτ, f)| − log |L(s0, f)| 6 {log T − 1
2
F (s0) +O(1)}(σ0 − 1

2
).

Together with the precedent inequality, it follows that

log |L(1
2

+ iτ, f)| 6 <e
∑
n6x

Λ(n)bf (n)

ns0 log n

log(x/n)

log x
+
(
(σ0 − 1

2
) log x+ 1

) log T

log x

+ F (s0)(σ0 − 1
2
)−1(log x)−2G

(
(σ0 − 1

2
) log x

)
+O

(
(log x)−1 + σ0 − 1

2

)
where G($) := e−$ −$ − 1

2
$2. We take σ0 = 1

2
+ $

log x
with $ > $0. It is easy to see that

G($) is decreasing and G($0) = 0. Since F (s0) > 0, we have F (s0)G($) 6 0 for $ > $0

and therefore this term can be omitted. Then (2.10) follows.
The inequality (2.11) is a simple consequence of (2.10) since the contribution of pν with

ν > 3 to the sum on the right-hand side of (2.10) is∑
pν6x, ν>3

bf (p
ν)

pν/2+νiτ+ν$0/ log xν

log(x/pν)

log x
�

∑
pν6x, ν>3

1

pν/2
� 1.

This completes the proof. �

Finally we shall cite some mean value theorems and an elementary lemma, which will be
useful later. The first one is a slight variant of [28, Lemma 3]. The proof is more or less the
same.

Lemma 2.2. Let 0 < ε 6 1. For any complex numbers a(p), we have∫ T+H

T

∣∣∣∣∑
p6x

a(p)

p1/2+iτ

∣∣∣∣2rdτ � r!H

(∑
p6x

|a(p)|2

p

)r
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uniformly for r ∈ N, T > 2, T ε 6 H 6 T and 2 6 x 6 (H/ logH)1/r, where the implied
constant depends on ε at most.

The second lemma is [18, Corollary 3]).

Lemma 2.3. For any complex sequence {an}n>1 verifying
∑

n>1 n|an|2 <∞, we have∫ T

0

∣∣∣∑
n>1

ann
−iτ
∣∣∣2dτ =

∞∑
n>1

|an|2{T +O(n)}

uniformly for T > 2, where the implied constant is absolute.

The following lemma is a corollary of [5, Theorem 2].

Lemma 2.4. Let F (s) be regular in the vertical strip α < σ < β and continuous for α 6
σ 6 β. Suppose F (s) → 0 as |τ | → ∞ uniformly for α 6 σ 6 β. Then for α 6 γ 6 β and
any q > 0 we have∫

R
|F (γ + iτ)|qdτ 6

(∫
R
|F (α + iτ)|qdτ

)(β−γ)/(β−α)(∫
R
|F (β + iτ)|qdτ

)(γ−α)/(β−α)

.

The following lemma is a simple generalization of [9, Proposition 2].

Lemma 2.5. Let M = pµ11 · · · pµrr and N = qν11 · · · qνtt , where the pj and qk are all distinct
primes of one another, the µj, νk are positive integers and the r, t are non negative integers.
We have

(2.17)

∫ T+H

T

∏
16j6r

(cos(2τ log pj))
µj
∏

16k6t

(cos(τ log qk))
νkdτ = HΘ(MN) +O(M2N),

uniformly for 2 6 H 6 T , where

Θ(MN) :=
∏

16j6r

1

2µj

(
µj
µj/2

) ∏
16k6t

1

2νk

(
νk
νk/2

)
.

Here by convention,
(
ν
ν/2

)
= ν!

((ν/2)!)2
if ν is even and

(
ν
ν/2

)
= 0 if ν is odd.

Proof. Notice that

(cos(aτ))ν =
(eiaτ + e−iaτ )ν

2ν
=

1

2ν

(
ν

ν/2

)
+

∑
06`6ν, ` 6=ν/2

1

2ν

(
ν

`

)
ei(ν−2`)aτ .

Therefore the integral on the left-hand side of (2.17) is equal to HΘ(MN) +R with

R :=

∫ T+H

T

∑
(`11,...,`1r,`21,...,`2t)

∏
16j6r

∏
16k6t

1

2µj+νk

(
µj
`1j

)(
νj
`2k

)
e

iτ log
(
p
2c1
1 ···p2crr q

d1
1 ···q

dt
t

)
dτ

with cj := µj − 2`1j and dk := νk − 2`2k. Here 0 6 `1j 6 µj and 0 6 `2k 6 νk such that∑
j c

2
j +
∑

k d
2
k 6= 0. Since the pj, qk are distinct and |cj| 6 µj and |dk| 6 νk, clearly we have
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|p2c1
1 · · · p2cr

r qd11 · · · qdtt − 1| >M−2N−1. Thus
∣∣ log

(
p2c1

1 · · · p2cr
r qd11 · · · qdtt

)∣∣�M−2N−1 and

R�M2N
∑

(`11,...,`1r,`21,...,`2t)

∏
16j6r

∏
16k6t

1

2µj+νk

(
µj
`1j

)(
νj
`2k

)

�M2N
∏

16j6r

∏
16k6t

∑
`1j

1

2µj

(
µj
`1j

)∑
`2k

1

2νk

(
νk
`2k

)
�M2N.

Then the result follows. �

3. Harper’s refinement

Harper’s method is a refinement of that of Soundararajan. Its starting point is (2.11).
Harper proposed a delicate decoupage on the first sum on the right-hand side and considered
the contribution of the second sum. We do the same decoupage for the first sum and our
treatment for the second sum is a little different: we do not truncate this sum by log T (this
asks for additional assumptions of RH for ζ(s) and GRH for L(s, sym2f)), but consider it
directly with the first sum by choosing proper values for parameters.

By the prime number theorem, we have trivially∣∣∣∣ ∑
p6
√
x

bf (p
2) log p2

p1+2/ log x+2iτ log x

∣∣∣∣ 6 ∑
p6
√
x

4 log p

p log x
� 1.

Combining this with (2.11), we find, for (log T )10 6 x 6 T 2,

(3.1) log |L(1
2

+ iτ, f)| 6 <e
∑
p6x

bf (p) log(x/p)

p1/2+1/ log x+iτ log x
+

1

2
<e

∑
p6
√
x

bf (p
2)

p1+i2τ
+ 2

log T

log x
+Of (1).

For 0 < ε 6 1, r > 0, T > 100 and large positive constant c(ε) depending on ε, we define
the real sequence {ψi}i>0 and the integer I by

ψ0 := 0, ψi :=
20i−1

(log2 T )2
(i > 1),(3.2)

I = Iε,r,T := 1 + max{i : ψi 6 e−c(ε)r} 6 (2/ log 20) log3 T.(3.3)

Then define the set T = Tr,T,H by

(3.4) T :=
{
τ ∈ [T, T +H] : |Fi(τ)| 6 ψ

−3/4
i (1 6 i 6 I)

}
,

where T ε 6 H 6 T and

(3.5) Fi(τ) := <e
∑

Tψi−1<p6Tψi

λf (p) log(TψI/p)

p1/2+1/(ψI log T )+iτ log TψI
·

Lemma 3.1. Let f ∈ H∗κ, r > 0 and 0 < ε 6 1. Under the previous notation, we have

(3.6)

∫
T

exp

(
2r<e

∑
p6TψI

λf (p) log(TψI/p)

p1/2+1/(ψI log T )+iτ log TψI

)
dτ � H(log T )r

2

,

uniformly for T > 100 and T ε 6 H 6 T , where the implied constant depends on f , r and ε.
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Proof. Denoting by I the integral on the left-hand side of (3.6), we can write

I =

∫
τ∈T

∏
16i6I

(
exp{rFi(τ)}

)2
dτ.

On the other hand, we have

(3.7) et =
∑

06j6J

tj

j!
+O(e−J)

uniformly for J > 0 and |t| 6 1
9
J , where we have used the Stirling formula to write

eJ
∑
j>J

tj

j!
�
∑
j>J

(et)j

(j/e)j
√
j
�
∑
j>J

(e2/9)j√
j
� 1.

By the definition of T , we have |Fi(τ)| 6 ψ
−3/4
i for τ ∈ T and 1 6 i 6 I. Applying (3.7) of

the form et = {1 +O(e−J)}
∑

06j6J t
j/j! with J = [100rψ

−3/4
i ] and t = rFi(τ), we get

(3.8)

I =

∫
T

∏
16i6I

{
1 +O

(
e−100rψ

−3/4
i

)}( ∑
06j6100rψ

−3/4
i

(rFi(τ))j

j!

)2

dτ

�
∫ T+H

T

∏
16i6I

( ∑
06j6100rψ

−3/4
i

(rFi(τ))j

j!

)2

dτ,

where we have used the following estimates :

(3.9)

∑
16i6I

e−100rψ
−3/4
i =

∑
16i6I

e−ab
−i

(a = 203/4100r(log2 T )3/2, b = 203/4)

6
∫ I+1

1

e−ab
−t

dt (u = ab−t, dt = −du/(u log b))

=
1

log b

∫ a/b

100b−1rψ
−3/4
I

e−u

u
du� 1.

Developing the square and then (rFi(τ))j, we can deduce that

(3.10) I�r

∑
j,k,p,q

Cj,k,p,q

∫ T+H

T

∏
16i6I

( ∏
16m6ji
16n6ki

cos
(
τ log pi(m)

)
cos
(
τ log qi(n)

))
dτ,

where j := (j1, j2, . . . , jI), k := (k1, k2, . . . , kI) with 0 6 ji, ki 6 100rψ
−3/4
i , and

p :=
(
p1(1), . . . , p1(j1); p2(1), . . . , p2(j2); . . . ; pI(1), . . . , pI(jI)

)
q :=

(
q1(1), . . . , q1(k1); q2(1), . . . , q2(k2); . . . ; qI(1), . . . , qI(kI)

)
with primes pi(m) and qi(n) satisfying

Tψi−1 < pi(1), . . . , pi(ji); qi(1), . . . , qi(ki) 6 Tψi (1 6 i 6 I),

and

Cj,k,p,q :=
∏

16i6I

rji+ki

ji!ki!

( ∏
16m6ji
16n6ki

λf (pi(m)) log(TψI/pi(m))

pi(m)1/2+1/(ψI log T ) log TψI
λf (qi(n)) log(TψI/qi(n))

qi(n)1/2+1/(ψI log T ) log TψI

)
.
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Using Lemma 2.5 with M = 1, we have

(3.11) I�r HI1 + I2,

where

I1 :=
∑

j,k,p,q

Dj,k,p,qΘ
( ∏

16i6I

∏
16m6ji
16n6ki

pi(m)qi(n)
)
,

I2 :=
∑

j,k,p,q

Dj,k,p,q

∏
16i6I

∏
16m6ji
16n6ki

pi(m)qi(n),

with

Dj,k,p,q :=
∏

16i6I

rji+ki

ji!ki!

( ∏
16m6ji
16n6ki

|λf (pi(m))λf (qi(n))|√
pi(m)qi(n)

)
.

Since ∏
16i6I

∏
16m6ji
16n6ki

pi(m)qi(n) 6
∏

16i6I

Tψi(ji+ki) 6
∏

16i6I

T 200rψ
1/4
i 6 T ε/10,

we have

(3.12)

I2 � T ε/10
∏

16i6I

{ ∑
06j6100rψ

−3/4
i

rj

j!

( ∑
Tψi−1<p6Tψi

|λf (p)|√
p

)j}2

� T ε/10
∏

16i6I

T 200rψ
1/4
i

( ∑
06j6100rψ

−3/4
i

rj

j!

)2

� T 2ε/10e2rI �ε,r T
3ε/10.

For the first term on the right-hand side of (3.11), we have

I1 6
∏

16i6I

∑
06m6200rψ

−3/4
i

∑
j+k=m
j, k>0

rm

j!k!

∑
Tψi−1<p1,...,pm6Tψi

Θ(p1 · · · pm)|λf (p1) · · ·λf (pm)|
√
p1 · · · pm

6
∏

16i6I

∑
06m6200rψ

−3/4
i

rm2m

m!

∑
Tψi−1<p1, ..., pm6Tψi

Θ(p1 · · · pm)|λf (p1) · · ·λf (pm)|
√
p1 · · · pm

·

According to the definition of Θ(·) in Lemma 2.5, we can assume m = 2n. Thus

(3.13) I1 6
∏

16i6I

∑
06n6100rψ

−3/4
i

(2r)2n

(2n)!

∑
Tψi−1<p1, ..., pn6Tψi

|λf (p1) · · ·λf (pn)|2

p1 · · · pn
Φ(p1, . . . , pn),

where

(3.14) Φ(p1, . . . , pn) := Θ(p2
1 · · · p2

n)
|{(q1, . . . , q2n) : q1 · · · q2n = p2

1 · · · p2
n}|

|{(q1, . . . , qn) : q1 · · · qn = p1 · · · pn}|
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with primes Tψi−1 < q1, . . . , q2n 6 Tψi . Write p2
1 · · · p2

n = p2ν1
n1
· · · p2ν`

n`
with (pni , pnj) = 1 for

i 6= j. By direct calculation, we have

Θ(p2
1 · · · p2

n) =
1

22n

∏
16j6`

(2νj)!

(νj!)2
,

∣∣{(q1, . . . , q2n) : q1 · · · q2n = (p1 · · · pn)2
}∣∣ =

(2n)!∏
16j6`(2νj)!

,

|{(q1, . . . , qn) : q1 · · · qn = p1 · · · pn}| =
n!∏

16j6` νj!
·

These imply that

Φ(p1, . . . , pn) =
(2n)!

22nn!
∏

16j6` νj!
6

(2n)!

22nn!
·

Inserting this into (3.13) and using (2.4), we find that

(3.15)

I1 6
∏

16i6I

∑
06n6100rψ

−3/4
i

1

n!

(
r2

∑
Tψi−1<p6Tψi

|λf (p)|2

p

)n

6 exp

(
r2
∑
p6TψI

|λf (p)|2

p

)
�ε,r (log T )r

2

.

Now the required bound follows from (3.11), (3.12) and (3.15). �

Next we shall consider further the integral on T together with the second sum inside.

Proposition 3.2. Let f ∈ H∗κ, r > 0 and 0 < ε 6 1. Under the previous notation, we have∫
T

exp

{
2r<e

( ∑
p6TψI

λf (p) log(TψI/p)

p1/2+1/(ψI log T )+iτ log TψI
+

1

2

∑
p6TψI/2

bf (p
2)

p1+2iτ

)}
dτ � H(log T )r

2

,

uniformly for T > 100 and T ε 6 H 6 T , where the implied constant depends on f , r and ε.

Proof. For 0 6 m 6MT := [ψI log T/ log 4] (2m 6 TψI/2), define

Pm(τ) := <e
(

1

2

∑
2m<p62m+1

bf (p
2)

p1+2iτ

)
,

P(m) :=
{
τ ∈ T : |Pm(τ)| > 2−m/10 but |Pj(τ)| 6 2−j/10 (m+ 1 6 j 6MT

)}
.

If τ belongs to none of these sets, then |Pj(τ)| 6 2−j/10 for all j 6MT and

<e
(

1

2

∑
p6TψI/2

bf (p
2)

p1+2iτ

)
� 1.

If we denote by J the integral to estimate, the contribution of such part of τ to J is �
H(log T )r

2
thanks to Lemma 3.1. Let Jm be the integral of the same integrand over P(m).

Then

(3.16) J� H(log T )r
2

+ J0 + · · ·+ JMT
.
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Using the fact that |Pm(τ)| > 2−m/10 for τ ∈P(m) and Lemma 2.5 with N = 1, we have

|P(m)| =
∫

P(m)

dτ 6
∫ T+H

T

(
2m/10Pm(τ)

)2n
dτ

= 2mn/5
∑

2m<p1, ..., p2n62m+1

( ∏
16i62n

bf (p
2
i )

2pi

)∫ T+H

T

∏
16i62n

cos(2τ log pi)dτ

= 2mn/5
∑

2m<p1, ..., p2n62m+1

( ∏
16i62n

bf (p
2
i )

2pi

){
HΘ(p1 · · · p2n) +O

(
(p1 · · · p2n)2

)}
,

where

(3.17) n = n(m) :=

{
[23m/4] if 2m 6 log T ,

c(ε, r) if 2m > log T .

Here c(ε, r) is a positive constant large enough and c(ε, r) ∈ [6r2 + 2r, ec(ε)rε/700]. With
such choice of n, it is easy to see that the contribution of the error term O

(
(p1 · · · p2n)2

)
to

|P(m)| is

� 2mn/525mn � T ε/10,

since |bf (p2)| 6 2. For the main term, according to the definition of Θ(·), we can assume
that p1 · · · p2n = q2

1 · · · q2
n. We can bound the contribution of the main term to P(m) as

before to write, with the notation (3.14),

(3.18)

|P(m)| � H2mn/5
∑

2m<q1, ..., qn62m+1

( ∏
16i6n

bf (q
2
i )

2

4q2
i

)
Φ(q1, . . . , qn) +H1/10

6 H2mn/5
( ∑

2m<q62m+1

1

q2

)n
(2n)!

22nn!
+H1/10

� H2−(4/5)mnnn +H1/10.

By Cauchy’s inequality, Proposition 3.1 and (3.18) allow us to deduce that

(3.19)

Jm �
{∫

T

exp

(
4r<e

∑
p6TψI

λf (p) log(TψI/p)

p1/2+1/(ψI log T )+iτ log TψI

)
dτ

∫
P(m)

(log T )2rdτ

}1/2

�
(
H(log T )4r2 ×

(
H2−(4/5)mnnn +H1/10

)
(log T )2r

)1/2

� H(log T )2r2+r2−(2/5)mnnn/2 +H3/5.

This and (3.17) imply that

(3.20)

∑
(log2 T )262m6TψI/2

Jm

� H(log T )2r2+r
( ∑

(log2 T )262m6log T

2−(1/40)mn +
∑

log T62m6TψI/2

2−(2/5)mn
)

+H9/10

� H(log T )2r2+r
(
e−(log2 T )3/2/30 + (log T )−c(ε,r)/10

)
+H9/10

� H(log T )r
2

.
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Now we bound Jm when 2m 6 (log2 T )2 following the argument of Harper. By the defini-
tion of P(m), we have

<e
( ∑
p62m+1

λf (p) log(TψI/p)

p1/2+1/(ψI log T )+iτ log TψI
+

1

2

∑
p6TψI/2

bf (p
2)

p1+2iτ

)
�

∑
p62m+1

(
1
√
p

+
1

p

)
+ 1 6 c2m/2

for τ ∈P(m), where c > 0 is an absolute positive constant. Introduce the notation

F (τ) := <e
∑

2m+1<p6TψI

λf (p) log(TψI/p)

p1/2+1/(ψI log T )+iτ log TψI
·

According to the definition of T and T (m), and similarly to (3.8), we have

Jm � ecr2
m/2

∫
P(m)

exp{2rF (τ)}dτ

� ecr2
m/2

2mn/5
∫

T

Pm(τ)2n
∏
i

( ∑
06j6100rψ

−3/4
i

(rFi(τ))j

j!

)2

dτ

where Fi(τ) is defined by (3.5) and i in the product satisfies Tψi−1 > 2m+1 and i < I. Since
the primes p in Pm(τ) are different from those in F (τ), Lemma 2.5 is applicable with M
(product of primes from Pm(τ)) and N (product of primes from F (τ)). A similar argument
for proving (3.13) and (3.15) allows us to deduce, for 2m 6 (log2 T )2 and n = [23m/4],

(3.21)

Jm � Hecr2
m/2

2mn/5 exp

(
r2

∑
2m+1<p6TψI

|λf (p)|2

p

) ∑
2m<p1, ..., p2n62m+1

Θ(p1 · · · p2n)

p1 · · · p2n

+H3/10

� H(log T )r
2

ecr2
m/2

2mn/5
(2n)!

22nn!

( ∑
2m<p62m+1

1

p2

)n
+H3/10

� H(log T )r
2

ecr2
m/2−23m/4 .

This implies that

(3.22)
∑

2m6(log2 T )2

Jm � H(log T )r
2

∑
2m6(log2 T )2

ecr2
m/2−23m/4 � H(log T )r

2

.

Inserting (3.20) and (3.22) into (3.16), we get the required inequality. �

For 1 6 i 6 j 6 I, define

Gi,j(τ) := <e
( ∑
Tψi−1<p6Tψi

λf (p) log(Tψj/p)

p1/2+1/(ψj log T )+iτ log Tψj

)
.

And for 0 6 j 6 I − 1, define

(3.23)
Sj :=

{
τ ∈ [T, T +H] : |Gi,`(τ)| 6 ψ

−3/4
i (1 6 i 6 j and i 6 ` 6 I)

but |Gj+1,`(τ)| > ψ
−3/4
j+1 for some j + 1 6 ` 6 I

}
.

Similarly to Lemma 3.1, we have the following lemma.
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Lemma 3.3. Let f ∈ H∗κ, r > 0 and 0 < ε 6 1. Then we have∫
Sj

exp

(
2r<e

∑
p6Tψj

λf (p) log(Tψj/p)

p1/2+1/(ψj log T )+iτ log Tψj

)
dτ � H(log T )r

2

exp
(
− ε

51
ψ−1
j+1 logψ−1

j+1

)
uniformly for T > 100, T ε 6 H 6 T and 1 6 j 6 I − 1, where the implied constant depends
on f , r and ε. What’s more, we have

|S0| � He−(log2 T )2/10.

Proof. Since the proof is similar to that of Proposition 3.1, we just sketch the proof here.
For 1 6 j < k, define

Sj,k :=
{
τ ∈ [T, T +H] : |Gi,j(τ)| 6 ψ

−3/4
i (1 6 i 6 j), but |Gj+1,k(τ)| > ψ

−3/4
j+1

}
.

Denote by Kj the integral to bound and by Kj,k the corresponding integral over Sj,k. Then

(3.24) Kj 6 Kj,j+1 + Kj,j+2 + · · ·+ Kj,I

and with the notation `ε := [ε/(10ψj+1)]

Kj,k =

∫
Sj,k

∏
16i6j

(
exp{rGi,j(τ)}

)2
dτ

�
∫
|Gi,j(τ)|6ψ−3/4

i
(16i6j)

∏
16i6j

(
exp{rGi,j(τ)}

)2(
ψ

3/4
j+1Gj+1,k(τ)

)2`ε
dτ

� ψ
(3/2)`ε
j+1

∫ T+H

T

∏
16i6j

( ∑
06n6100rψ

−3/4
i

(rGi,j(τ))n

n!

)2

Gj+1,k(τ)2`εdτ.

In the last inequality, we have a similar argument to establish the first inequality of (3.10).
Expand the square and the power n and 2`ε, and proceed as the proof in Lemma 3.1 and
Proposition 3.2 for estimating the last integral. We can obtain

Kj,k � ψ
(3/2)`ε
j+1

{
H exp

(
r2
∑
p6Tψj

|λf (p)|2

p

)(
εψ−1

j+1

20

∑
Tψj<p6Tψj+1

|λf (p)|2

p

)`ε
+H4/5

}
for j + 1 6 k 6 I. Inserting it into (3.24), we get

(3.25)

Kj � H(I − j)ψ(3/2)`ε
j+1 ×

×
{

exp

(
r2
∑
p6Tψj

|λf (p)|2

p

)(
εψ−1

j+1

20

∑
Tψj<p6Tψj+1

|λf (p)|2

p

)`ε
+H−1/5

}
.

For j = 0, the left-hand side of (3.25) is |S0| which is

� HIψ
(3/2)[ε/(10ψ1)]
1

{
(
ψ1

20
)−[ε/(10ψ1)] +H−1/5

}
� He−ε(log2 T )2/10,

with the help of (2.4) and the fact that I � log3 T and ψ1 = (log2 T )−2.
For 1 6 j 6 I − 1, the contribution of H−1/5 on the right-hand side of (3.25) to Kj is

� (I − j)ψ(3/2)[ε/(10ψj+1)]
j+1 H4/5 � H exp

(
− ε

51
ψ−1
j+1 logψ−1

j+1

)
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since I 6 log3 T . Observing that I − j = log(ψI/ψj)/ log 20 6
logψ−1

j+1

log 20
, and∑

Tψj<p6Tψj+1

|λf (p)|2

p
6 4

∑
Tψj<p6Tψj+1

1

p
6 40,

the contribution of the first term on the right-hand side of (3.25) to Kj is

� H(log T )r
2

exp
(
− ε

51
ψ−1
j+1 logψ−1

j+1

)
,

according to (2.4) again. �

Similarly to Proposition 3.2, we have the following proposition. The proof is very similar.
The only difference is to apply Lemma 3.3 in place of Lemma 3.1.

Proposition 3.4. Let f ∈ H∗κ, r > 0 and 0 < ε 6 1. Then we have∫
Sj

exp

{
2r<e

( ∑
p6Tψj

λf (p) log(Tψj/p)

p1/2+1/(ψj log T )+iτ log Tψj
+

1

2

∑
p6Tψj/2

bf (p
2)

p1+2iτ

)}
dτ

� H(log T )r
2

exp
(
− ε

51
ψ−1
j+1 logψ−1

j+1

)
uniformly for T > 100, T ε 6 H 6 T and 1 6 j 6 I − 1, where the implied constant depends
on f , r and ε.

Next we follow the method of Soundararajan to give a weaker estimate for Mr(T,H; f),
which will consist in the first step of the iteration presented in Section 4.

Proposition 3.5. Let f ∈ H∗κ, r > 0 and 0 < ε 6 1. Assuming GRH for L(s, f), there is a
constant c0(r, ε) such that

Mr(T,H; f)�f,r,ε H(log T )c0(r,ε)

holds uniformly for T > 2 and T ε 6 H 6 T .

Proof. For T > 2, T ε 6 H 6 T and v ∈ R, define

ST,H(v) :=
∣∣{τ ∈ [T, T +H] : log |L(1

2
+ iτ, f)| > v}

∣∣.
We can write

(3.26) Mr(T,H; f) = −
∫
R

e2rvdST,H(v) = 2r

∫
R

e2rvST,H(v)dv.

Define x := T 4/v and z := T 4/(v log2 T ). By bounding the second sum on the right-hand
side of (2.11) of Proposition 2.1 trivially and by taking $ = 1

2
, we have

log |L(1
2

+ iτ, f)| 6 S1(τ) + S2(τ) + 1
2
v

for v > 10 log2 T and T > T0(f, r, ε), where

S1(τ) :=

∣∣∣∣∑
p6z

bf (p)

p1/2+1/2 log x+iτ

log(x/p)

log x

∣∣∣∣,
S2(τ) :=

∣∣∣∣ ∑
z<p6x

bf (p)

p1/2+1/2 log x+iτ

log(x/p)

log x

∣∣∣∣.



HIGHER INTEGRAL MOMENTS OF AUTOMORPHIC L-FUNCTIONS IN SHORT INTERVALS 17

When log |L(1
2

+ iτ, f)| > v, we have

S1(τ) > 3
8
v =: v1 or S2(τ) > 1

8
v =: v2.

With the help of Lemma 2.2, (2.4) and the Stirling formula n! ∼
√

2πn(n/e)n (n→∞), we
can deduce, for any positive integer ` 6 log(H/ logH)/ log z,∣∣{τ ∈ [T, T +H] : S1(τ) > v1}

∣∣ 6 ∫ T+H

T

(
S1(τ)

v1

)2`

dτ � H
√
`

(
` log2 T

ev2
1

)`
.

Taking ` = [v2
1/ log2 T ] if v 6 ε

2
(log2 T )2 and ` = [10v] if v > ε

2
(log2 T )2, then we get

(3.27) |{τ ∈ [T, T +H] : S1(τ) > v1}| �


Hv√
log2 T

e−9v2/(64 log2 T ) if v 6 ε
2
(log2 T )2,

He−4v log v if v > ε
2
(log2 T )2.

Similarly we have∣∣{τ ∈ [T, T +H] : S2(τ) > v2}
∣∣ 6 ∫ T+H

T

∣∣∣∣8S2(τ)

v

∣∣∣∣2`dτ.
Taking ` = [vε/4− 1] and using Lemma 2.2 again, we obtain∣∣{τ ∈ [T, T +H] : S2(τ) > 1

8
v}
∣∣� He−

ε
8
v log v.

This and (3.27) imply that

ST,H(v)�


Hv√
log2 T

e−9v2/(64 log2 T ) for 10 log2 T 6 v 6 1
2
(log2 T ) log3 T ,

He−
ε
33
v log v for v > 1

2
(log2 T ) log3 T .

Together with (3.26) and the trivial bound ST,H(v) 6 H for v 6 10 log2 T , we can obtain
the required inequality. �

4. Proof of the upper bound for the higher moments

We have been ready for the proof of the upper bound of (1.9). Let f ∈ H∗κ, r > 0 and
0 < ε 6 1. Let I, T and Sj be defined as in (3.3), (3.4), and (3.23). Then

[T, T +H] = T ∪
(
∪

06j6I−1
Sj

)
.

Thus we can write

(4.1) Mr(T,H; f) 6 L + L0 + L1 + · · ·+ LI−1,

where

L :=

∫
T

|L(1
2

+ iτ, f)|2rdτ, Lj :=

∫
Sj

|L(1
2

+ iτ, f)|2rdτ.

Assume GRH for L(s, f).
First we can apply (3.1) with x = TψI and Proposition 3.2 to deduce immediately that

(4.2) L� H(log T )r
2

.
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Secondly the Cauchy-Schwarz inequality, Lemma 3.3 and Propositions 3.5 imply

(4.3) L0 6

(
|S0|

∫
S0

|L(1
2

+ iτ, f)|4rdτ
)1/2

�
(
He−(log2 T )2/10H(log T )c0(ε,r)

)1/2

� H.

Finally, for 1 6 j 6 I − 1 inequality (3.1) with x = Tψj implies that

log |L(1
2

+ iτ, f)| 6 <e
( ∑
p6Tψj

λf (p) log(Tψj/p)

p1/2+1/(ψj log T )+iτ log Tψj
+

1

2

∑
p6Tψj/2

bf (p
2)

p1+2iτ

)
+

2

ψj
+Of (1).

By Proposition 3.4, it follows that

Lj � H(log T )r
2

exp
(
− ε

51
ψ−1
j+1 logψ−1

j+1 + 4rψ−1
j

)
.

Summing over 1 6 j 6 I − 1 and using a similar argument to (3.9), we can deduce that

(4.4) L1 + · · ·+ LI−1 � H(log T )r
2

.

Together with (4.2), (4.3) and (4.4), we get the upper bound in Theorem 1.1.

5. Proof of the lower bound

In this section, we adapt Heath-Brown’s method [11] to prove the lower bound part in
Theorem 1.1. As indicated in the introduction, in order to obtain the correct order of
Mr(T,H; f), we need to apply the Rankin-Selberg theory.

Let f ∈ H∗κ and r > 0. When L(s, f) 6= 0, we define L(s, f)r by

L(s, f)r = exp(r logL(s, f)),

where logL(s, f) = log |L(s, f)| + argL(s, f) with −π < argL(s, f) 6 π. We also define
λf,r(n) by the formula

(5.1) L(s, f)r =
∑
n>1

λf,r(n)n−s (σ > 1).

Clearly λf,r(n) is multiplicative, and for all positive integers j and n we have

(5.2) λf,rj(n) =
∑

n=n1n2···nj

λf,r(n1)λf,r(n2) · · ·λf,r(nj).

Specially, we have

(5.3) λf,r(p) = rλf (p) and ∀ε > 0 : λf,r(n)�r,ε n
ε

for all prime numbers p and integers n.
In the sequel we write r = u/v. Here v = 1 and u is any positive real number when GRH

holds for L(s, f) (to ensure that gf,r(s,N) defined in (5.6) is a regular function); if not, u
and v are positive co-prime integers.

5.1. Some convexity estimates. For 1
2
6 σ 6 3

4
and 2 6 H 6 T , define

JT,H(σ) :=

∫
R
|L(σ + iτ, f)|2rwT,H(τ)dτ with wT,H(τ) :=

∫ ∆2

∆1

e−2r(τ−t)2dt,

where ∆1 = T +H1/4 and ∆2 = T +H −H1/4.
With the help of Lemma 2.4, we can prove the following convexity estimate.
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Lemma 5.1. Let f ∈ H∗κ, r > 0 and 0 < ε 6 1. Then we have

JT,H(1
2
)� T r(2σ−1)JT,H(σ) + e−rT

2/20(5.4)

JT,H(σ)� H(σ−1/2)JT,H(1
2
)3/2−σ(5.5)

uniformly for 1
2
6 σ 6 3

4
, T > 2 and T ε 6 H 6 T , where the implied constants depend on

f , r and ε.

Proof. With the help of the functional equation (1.6) and the Stirling formula, we have

|L(1− σ + iτ, f)| �f |L(σ + iτ, f)|(1 + |τ |)2σ−1.

Define F (s) = L(s, f)e(s−it)2 for t > 2. Then it follows that∫
R
|F (1− σ + iτ)|2rdτ �

∫
R
|L(σ + iτ, f)|2r(1 + |τ |)2r(2σ−1)e−2r(τ−t)2dτ.

In view of the convexity bound for L(σ + iτ, f), the contribution of the lines (−∞, t/2] ∪
[3t/2,∞) to the last integral is

�
(∫ t/2

−∞
+

∫ ∞
3t/2

)
(1 + |τ |)2re−2r(τ−t)2dτ � t2re−rt

2/2 � e−rt
2/3.

Therefore∫
R
|F (1− σ + iτ)|2rdτ � e−rt

2/3 + t2r(2σ−1)

∫
R
|L(σ + iτ, f)|2re−2r(τ−t)2dτ.

Applying Lemma 2.4 to F (s) with (α, γ, β) = (1−σ, 1
2
, σ) and q = 2r and using the preceding

inequality, we can deduce∫
R
|L(1

2
+ iτ, f)|2re−2r(τ−t)2dτ � e−rt

2/8 + tr(2σ−1)

∫
R
|L(σ + iτ, f)|2re−2r(τ−t)2dτ.

Then we can get (5.4) by integrating for ∆1 6 t 6 ∆2.
Similarly, we have∫

R
|F (σ + iτ)|2rdτ 6

(∫
R
|F (1

2
+ iτ)|2rdτ

)3/2−σ(∫
R
|F (3

2
+ iτ)|2rdτ

)σ−1/2

�
(∫

R
|L(1

2
+ iτ, f)|2re−2r(τ−t)2dτ

)3/2−σ

,

since
∫
R |F (3

2
+ iτ)|2rdτ � 1. Finally, integrating for ∆1 6 t 6 ∆2 and using the Hölder

inequality, we obtain (5.5). �

For N > 2, r = u/v and σ > 1
2
, define

(5.6) Sf,r(s;N) :=
∑
n6N

λf,r(n)n−s, gf,r(s;N) := L(s, f)u − Sf,r(s;N)v,

where λf,r(n) is defined as in (5.1). Define

KT,H,N(σ) :=

∫
R
|gf,r(σ + iτ ;N)|2/vwT,H(τ)dτ.
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Lemma 5.2. Let f ∈ H∗κ, r > 0 and 0 < ε 6 1. Then we have

KT,H,N(σ)�f,r,ε KT,H,N(1
2
)3/2−σ(HN−2/v+ε)σ−1/2

uniformly for 1
2
6 σ 6 3

4
, T > 2, T ε 6 H 6 T and T ε/2 6 N 6 T ε.

Proof. Applying Lemma 2.4 to F (s) = gf,r(s;N)eu(s−it)2 with (α, γ, β) = (1
2
, σ, 3

2
) and q = 2/v

where t > 2 is a parameter, it follows that for 1
2
6 σ 6 3

4
,∫

R
|F (σ + iτ)|2/vdτ 6

(∫
R
|F (1

2
+ iτ)|2/vdτ

)3/2−σ(∫
R
|F (3

2
+ iτ)|2/vdτ

)σ−1/2

.

Integrating for ∆1 6 t 6 ∆2 and using the Hölder inequality, we have

(5.7) KT,H,N(σ) 6 KT,H,N(1
2
)3/2−σKT,H,N(3

2
)σ−1/2.

Observing that Sf,r(s;N)� N � T ε for 1
2
6 σ 6 2, τ ∈ R and L(3

2
+ iτ, f)� 1 (τ ∈ R),

we conclude that gf,r(
3
2

+ iτ ;N)� T vε (τ ∈ R). Therefore

(5.8)

KT,H,N(3
2
)�

∫ ∆2

∆1

∫ T+H

t−tε

|gf,r(3
2

+ iτ ;N)|2/v

e2r(τ−t)2 dτdt+

∫ ∆2

∆1

(∫ t−tε

−∞
+

∫ ∞
T+H

)
T 2εdτdt

e2r(τ−t)2

�
∫ ∆2

∆1

∫ T+H

t−tε
|gf,r(3

2
+ iτ ;N)|2/ve−2r(τ−t)2dτdt+ e−rT

2ε

�
∫ T+3H

T−3H

|gf,r(3
2

+ iτ ;N)|2/vwT,H(τ)dτ + e−rT
2ε

.

Since v is always a positive integer, in view of (5.2), we can write

gf,r(s;N) = L(s, f)rv − Sf,r(s;N)v =
∑
n>N

ann
−s (σ > 1),

where an � nε (n > 1) for any ε > 0 thanks to (5.3). So Lemma 2.3 implies that∫ T+3H

T−3H

|gf,r(3
2

+ iτ ;N)|2dτ � H
∑
n>N

|an|2n−3 +
∑
n>N

|an|2n−2 � HN−2+ε,

since N 6 H. So we have∫ T+3H

T−3H

|gf,r(3
2

+ iτ ;N)|2/vdτ �
(∫ T+3H

T−3H

|gf,r(3
2

+ iτ ;N)|2dτ

)1/v

H1−1/v

� (HN−2+ε)1/vH1−1/v � HN−2/v+ε.

Putting it back to (5.8) and then to (5.7) and noticing that the term e−rT
2ε

can be absorbed
by HN−2/v+ε, we obtain the required inequality. �

5.2. Companion to JT,H(σ) and KT,H,N(σ). In this subsection we shall apply the Rankin-
Selberg theory to prove Lemma 5.3 below, which will consist in the main tool in this section.
For f ∈ H∗κ, the Rankin-Selberg L-function is defined by

(5.9) L(s, f × f) :=
∏
p

(
1− αf (p)2p−s

)−1(
1− βf (p)2p−s

)−1(
1− p−s

)−2
(σ > 1),
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where αf (p) and βf (p) are the local parameters of f . According to the Rankin-Selberg
theory, it is well know that L(s, f × f) has a simple pole at s = 1 (see e.g. [13]). Thus there
are two positive constants Af and Bf such that

(5.10) Af 6 (s− 1)L(s, f × f) 6 Bf (1 < s 6 2).

Lemma 5.3. Let f ∈ H∗κ and r > 0. There are positive constants C∗f,r and Nf,r such that

(5.11) S∗f,r(2σ;N) :=
∑
n6N

λf,r(n)2n−2σ � (σ − 1
2
)−r

2

uniformly for N > Nf,r and
1
2

+
C∗f,r
logN

6 σ 6 1. Moreover for N > Nf,r we have

(5.12) S∗f,r(1;N) � (logN)r
2

.

Here the implied constants depend on f and r.

Proof. We write σ = 1
2

+ δ with δ > 0. Denote by µ(n) the Möbius function. Then

S∗f,r(2σ;N) >
∑
n>1

λf,r(n)2µ(n)2n−1−2δ{1− (n/N)δ}

= Gf (1 + 2δ)−N−δGf (1 + δ),

where

(5.13) Gf (s) :=
∑
n>1

λf,r(n)2µ(n)2n−s =
∏
p

(
1 + r2λf (p)

2p−s
)

for real s > 1 by (5.3). Write Hf (s) := L(s, f × f)−r
2
Gf (s). Since Hf (s) > 0 for s > 1, we

can define hf (s) := logHf (s) for these s. Using (5.9) and (5.13), for s > 1 we have

hf (s) =
∑
p

(
log
(
1 + r2λf (p)

2p−s
)
− r2 log

{(
1− αf (p)2p−s

)−1(
1− βf (p)2p−s

)−1(
1− p−s

)−2})
.

Since αf (p)
2 +βf (p)

2 + 2 = λf (p)
2, the series on the right-hand side is absolutely convergent

for s > 1
2
. Thus Hf (s) 6= 0 for 1

2
< s 6 2. Combining this with (5.10) and in view of

continuity of Hf (s) on (1
2
, 2], there are two positive constants Cf,r and Df,r such that

(5.14) Cf,r 6 Hf (s) 6 Df,r (1 6 s 6 2).

Then

S∗f,r(2σ;N) > (Af/2δ)
r2Cf,r −N−δ(Bf/δ)

r2Df,r > 1
2
(Af/2)r

2

Cf,rδ
−r2 ,

provided C∗f,r is so large that N δ > eC
∗
f,r > 2(2Bf/Af )

r2Df,r/Cf,r. This proves the lower
bound part of (5.11).

Since λf,r(n) is multiplicative and λf,r(n)� nε, we have

S∗f,r(2σ;N) 6
∏
p

{
1 + r2λf (p)

2p−2σ +O(p−4σ+ε)
}

= L(2σ, f × f)r
2

Hf (2σ)
∏
p

{
1 +O(p−4σ+ε)

}
.

Now the upper bound of (5.11) follows from (5.10) and (5.14). We take σ = 1
2
+

C∗f,r
logN

in (5.11)

and we have n−2σ � n−1 for 1 6 n 6 N . Then (5.12) follows immediately from (5.11). �
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Let Sf,r(s;N) be defined in (5.6) and 0 < ε 6 1
2
. For 1

2
6 σ 6 3

4
, T > 2, T ε 6 H 6 T and

T ε/2 6 N 6 H1−ε, define

LT,H,N(σ) :=

∫
R
|Sf,r(σ + iτ ;N)|2wT,H(τ)dτ.

Since wT,H(τ)� 1 for ∆1 + 1
2
H1/4 6 τ 6 ∆2 − 1

2
H1/4, we can apply Lemma 2.3 to write

LT,H,N(σ)�
∫ ∆2− 1

2
H1/4

∆1+ 1
2
H1/4

|Sf,r(σ + iτ ;N)|2dτ

�
∑
n6N

λf,r(n)2n−2σ{H +O(n)}

� H
∑
n6N

λf,r(n)2n−2σ +O(N1+ε).

On the other hand, we have wT,H(τ) � 1 for all τ and wT,H(τ) � exp{−r(H1/2 + τ 2)/19}
for τ 6 ∆1 − 1

2
H1/4 or τ > ∆2 + 1

2
H1/4. It implies that

LT,H,N(σ)�
∫ ∆2+ 1

2
H1/4

∆1− 1
2
H1/4

|Sf,r(σ + iτ ;N)|2dτ +O(1)

�
∑
n6N

λf,r(n)2n−2σ{H +O(n)}+O(1)

� H
∑
n6N

λf,r(n)2n−2σ +O(N1+ε).

Then consequently by (5.11) of Lemma 5.3

(5.15) LT,H,N(σ) �f,r,ε H(σ − 1
2
)−r

2

for T > T0(f, r, ε), T ε 6 H 6 T , T ε/2 6 N 6 H1−ε and 1
2

+
C∗f,r
logN

6 σ 6 3
4
; and by (5.12) of

Lemma 5.3

(5.16) LT,H,N(1
2
) �f,r,ε H(log T )r

2

.

for T > T0(f, r, ε), T ε 6 H 6 T and T ε/2 6 N 6 H1−ε.

5.3. End the proof of the lower bound. Trivially we have

|Sf,r(s;N)v|2/v = |L(s, f)u − gf,r(s;N)|2/v � |L(s, f)|2r + |gf,r(s;N)|2/v.
Then it follows that

LT,H,N(σ)� JT,H(σ) +KT,H,N(σ)(5.17)

JT,H(σ)� LT,H,N(σ) +KT,H,N(σ)(5.18)

KT,H,N(1
2
)� LT,H,N(1

2
) + JT,H(1

2
)(5.19)

for 1
2
6 σ 6 3

4
, T > T0(f, r, ε), T ε 6 H 6 T and T ε/2 6 N 6 T ε, where 0 < ε 6 1

2
and

T0(f, r, ε) is a constant depending on f, r, ε.
If KT,H,N(1

2
) 6 H, (5.16) and (5.17) imply that

(5.20) JT,H(1
2
)� H(log T )r

2

.
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If KT,H,N(1
2
) > H, Lemma 5.2 follows that

(5.21) KT,H,N(σ)� KT,H,N(1
2
)N−(2/v−ε)(σ−1/2).

We take N = T ε/2 and σ = σ0 := 1
2

+
2C∗f,r,ε
log T

, where C∗f,r,ε is a large constant depending on f ,

r and ε. Then (5.17), (5.21) and (5.19) yield

LT,H,N(σ0)�r JT,H(σ0) +
(
LT,H,N(1

2
) + JT,H(1

2
)
)
T−ε(1/v−ε/2)(σ0−1/2)

�r JT,H(σ0) + JT,H(1
2
)e−2C∗f,r,ε(1/v−ε/2)ε + LT,H,N(1

2
)e−2C∗f,r,ε(1/v−ε/2)ε.

On the other hand, by (5.16) and (5.15), there is a positive constant C0(f, r, ε) such that

LT,H,N(1
2
)e−2C∗f,r,ε(1/v−ε/2)ε 6 C0(f, r, ε)e−2C∗f,r,ε(1/v−ε/2)εH(log T )r

2

,

LT,H,N(σ0) > C0(f, r, ε)(2C∗f,r,ε)
−r2H(log T )r

2

.

Combining these with the precedent inequality, we can deduce that

(5.22) LT,H,N(σ0)� JT,H(σ0) + JT,H(1
2
)e−2C∗f,r,ε(1/v−ε)ε.

Together with Lemma 5.1 and (5.15) again, we have

H(log T )r
2 � LT,H,N(σ0)� JT,H(1

2
)3/2−σ0 + JT,H(1

2
)� JT,H(1

2
),

where the implied constants depend on f , r and ε. So we can conclude that (5.20) holds no
matter KT,H,N(1

2
) 6 H or not. Since wT,H(τ)� 1 for all τ , we have

JT,H(1
2
)�Mr(T,H; f) +

(∫ T

−∞
+

∫ ∞
T+H

)
wT,H(τ)dτ �Mr(T,H; f) +O(1).

Then the lower bound follows from (5.20).
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