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We consider the higher integral moments for automorphic L-functions in short intervals and give a proof for the conjecture of Conrey et al. under Generalized Riemann Hypothesis for automorphic L-function.

Introduction

The central values of L-functions is one of the most important problems in number theory. A typical example is the Lindelöf problem. In many arithmetic applications, we only ask for its mean values. The simplest example is the 2rth moment of the Riemann ζ-function :

(1.1) M r (T ; ζ) = 2T T |ζ( 1 2 + iτ )| 2r dτ
for r > 0 and T 1. Hardy and Littlewood [START_REF] Hardy | Contributions to the theory of the riemann zeta-function and the theory of the distribution of primes[END_REF] proved that

M 1 (T ; ζ) ∼ T log T (T → ∞).
Ingham [START_REF] Ingham | Mean-Value Theorems in the Theory of the Riemann Zeta-Function[END_REF] showed that M 2 (T ; ζ) ∼ 1 2π 2 T (log T ) 4 . Titchmarsh [START_REF] Titchmarsh | The theory of the Riemann zeta-function[END_REF]Theorem 7.19] showed that for all integer r > 0 ∞ 0 |ζ( 1 2 + iτ )| 2r e -t/T dτ T (log T ) r 2 .

Ramachandra [START_REF] Ramachandra | Some remarks on the mean value of the Riemann zeta function and other Dirichlet series[END_REF] strengthened the result to the lower bound

(1.2) M r (T ; ζ) r T (log T ) r 2 ,
when 2r is a positive integer. Ramachandra [START_REF] Ramachandra | Some remarks on the mean value of the Riemann zeta function and other Dirichlet series[END_REF] also showed that M r (T ; ζ) T (log T ) r 2 (log log T ) -θr for real r 1 2 , θ r being a constant depending, possibly, on r, and moreover that, under the Riemann Hypothesis (RH), (1.2) holds for all real r > 0. In other direction he proved [START_REF] Ramachandra | Some remarks on the mean value of the Riemann zeta function and other Dirichlet series[END_REF] the upper bound (1.3) M r (T ; ζ) T (log T ) r 2 unconditionally for r = 1 2 and under the RH for 0 < r < 2. Heath-Brown [START_REF] Heath-Brown | The fourth power moment of the Riemann zeta function[END_REF] proved that (1.2) holds for all rational number r > 0. He also proved that (1.3) holds for r = 1/n with Date: February 20, 2016. The author is supported by China Scholarship Council (CSC) and Graduate Innovation Foundation of Shandong University (GIFSDU).

integer n 1 and for all 0 < r 2 under RH. Radziwi l l in [START_REF] Radziwi | The 4.36th moment of the Riemann zeta-function[END_REF] improved this conditional upper bound for all 0 < r 2.181. In [START_REF] Soundararajan | Moments of the Riemann zeta function[END_REF], Soundararajan proved that for all r > 0 and ε > 0 RH implies M r (T ; ζ) r,ε T (log T ) r 2 +ε (T 2).

Radziwi l l and Soundararajan [START_REF] Radziwi | Continuous lower bounds for moments of zeta and L-functions[END_REF] proved the lower bound (1.2) for all r > 1 unconditionally by extending the idea of Rudnick and Soundararajan ([26] and [START_REF] Rudnick | Lower bounds for moments of L-functions: symplectic and orthogonal examples[END_REF]) (who developed a new method of obtaining lower bounds for rational moments of L-functions varying in certain families) to obtain the result in the irrational case.

Very recently Harper [START_REF] Harper | Sharp conditional bounds for moments of the Riemann zeta function[END_REF] succeeded in removing ε by further refining Soundararajan's method: under RH, one has

(1.4) M r (T ; ζ) r T (log T ) r 2 .
It is conjectured that there is a positive constant C r such that

(1.5) M r (T ; ζ) ∼ C r T (log T ) r 2 (T → ∞).
A precise value for C r was conjectured by Keating and Snaith [START_REF] Keating | Random matrix theory and ζ(1/2 + it)[END_REF] based on considerations from random matrix theory. Subsequently, Diaconu, Goldfeld and Hoffstein [START_REF] Diaconu | Multiple Dirichlet series and moments of zeta and L-functions[END_REF] gave an alternative approach based on multiple Dirichlet series and produced the same conjecture.

Recently Conrey et al. [START_REF] Conrey | Integral moments of L-functions[END_REF] gave a more precise conjecture, identifying lower order terms in an asymptotic expansion for M r (T ; ζ).

It is natural to consider the analogue of M r (T ; ζ) for automorphic L-functions. For positive even integer κ, denote by H * κ the set of all normalized Hecke primitive cuspforms of weight κ for the modular group SL 2 (Z). The Fourier series expansion of f ∈ H * κ at the cusp ∞ is f (z) = n 1 λ f (n)n (κ-1)/2 e 2πinz ( m z > 0), where λ f (n) is the nth normalized Fourier coefficient of f with λ f (1) = 1. The automorphic L-function attached to f is defined as

L(s, f ) := n 1 λ f (n)n -s (σ > 1).
Here and in the sequel, we write implicitly s = σ + iτ . It is well known that L(s, f ) can be analytically prolonged to C and satisfies the functional equation over C :

(1.6) (2π) -s Γ s + 1 2 (κ -1) L(s, f ) = i κ (2π) -(1-s) Γ 1 -s + 1 2 (κ -1) L(1 -s, f ). Similarly to (1.1), for f ∈ H * κ and r > 0, we define (1.7) M r (T ; f ) := 2T T |L( 1 2 + iτ, f )| 2r dτ.
for all r = p q 1 2 with positive integers p and q, and also that

M r (T ; f ) T (log T ) r 2
for positive even integer q under GRH for L(s, f ). Pi considers in [START_REF] Pi | Fractional moments of automorphic L-functions on GL(m)[END_REF] the moments of automorphic L-functions on GL(m), under Generalized Ramanujan Conjecture (GRC), he proved the lower bound for any non-negative rational number r > 0 (for all non-negative real numbers under GRC and GRH). He also shows that under GRC and GRH the upper bound holds for 0 r 2/m -ε for arbitrary ε > 0. The lower bound is also considered by Akbary and Fodden [START_REF] Akbary | Lower bounds for power moments of L-functions[END_REF]. They proved the lower bound under GRH and a weaker conjecture instead of GRC for the local parameters at unramified primes. The moments of products of automorphic L-functions are considered by Milinovich and Turnage-Butterbaugh [START_REF] Milinovich | Moments of products of automorphic L-functions[END_REF] with the method of frequency of large values introduced by Soundararajan. 

M r (T ; f ) f,r T (log T ) r 2 ,
where the implied constant depends on f and r.

In this paper, we consider a more general problem, i.e., the higher moment of L( 1 2 + iτ, f ) in short intervals :

(1.8) M r (T, H; f ) := T +H T |L( 1 2 + iτ, f )| 2r dτ.
Thus M r (T ; f ) = M r (T, T ; f ). Our result is as follows.

Theorem 1.1. Let f ∈ H * κ , r > 0 and 0 < ε 1. Assuming GRH for L(s, f ), we have (1.9)

H(log T ) r 2 M r (T, H; f ) H(log T ) r 2
uniformly for T T 0 (f, r, ε) and T ε H T , where the constant T 0 (f, r, ε) and the implied constants depend on f , r and ε only.

Particularly, the lower bound above holds for rational number r unconditionally.

The particular case of Theorem 1.1 shows that the analogues of Harper's upper bound result [START_REF] Harper | Sharp conditional bounds for moments of the Riemann zeta function[END_REF] and Heath-Brown's lower bound result [START_REF] Heath-Brown | The fourth power moment of the Riemann zeta function[END_REF] on M r (T ; ζ) also hold for M r (T ; f ). Our result improves the upper bound of the particular case of Milinovich and Turnage-Butterbaugh [START_REF] Milinovich | Moments of products of automorphic L-functions[END_REF] and extends the range of validity of Pi's result [START_REF] Pi | Fractional moments of automorphic L-functions on GL(m)[END_REF] in the case of automorphic L-functions on SL 2 (Z). For the completeness of the result, the lower bound in short interval is also considered in the present article, although it seems to be a trivial generalization of the result of Pi and Akbary and Fodden [START_REF] Akbary | Lower bounds for power moments of L-functions[END_REF].

Our approach is an adaptation of [START_REF] Soundararajan | Moments of the Riemann zeta function[END_REF][START_REF] Harper | Sharp conditional bounds for moments of the Riemann zeta function[END_REF] for upper bound part and of [START_REF] Heath-Brown | The fourth power moment of the Riemann zeta function[END_REF] for lower bound part. In [START_REF] Soundararajan | Moments of the Riemann zeta function[END_REF], Soundararajan built on Selberg's work on the distribution of log ζ( 1 2 + iτ ). He removed the effect of zeros very near 1 2 + iτ by finding an inequality and gave an upper bound for log ζ( 1 2 + iτ ) (see [START_REF] Soundararajan | Moments of the Riemann zeta function[END_REF]Proposition]). By choosing a suitable length of the Dirichlet polynomial, he investigated the frequency with which large values of log |ζ( 1 2 + iτ )| can occur and then deduced an estimation for the moment of zeta function.

Harper in [START_REF] Harper | Sharp conditional bounds for moments of the Riemann zeta function[END_REF] improves the method. His work is based on that of Soundararajan. He divides the Dirichlet polynomial into small intervals, chooses a longer length for the polynomial and splits the integral into pieces according to the large values of these polynomials over small intervals. With these delicate decoupage, we can take more advantage of the information about large values. Moreover, he doesn't estimate the frequency of large values but works throughout with moment-type objects. Furthermore, he uses a similar lemma of Radziwi l l (see Lemma 2.5 below) to deal with the integral of a product over primes of terms cos(τ log p). With these 'almost-equations', we can save more for the contributions from these Dirichlet polynomials.

In this article, we succeed in extending the method of Soundararajan and Harper to the moments of automorphic L-functions in short intervals . The difference is that: if just follow their methods, we have to assume RH for ζ(s) and GRH for L(s, sym 2 f ) additionally. Our argument does not truncate the second summation over prime squares by log T as Harper has done, but considers it together with the first summation directly. The contribution from this part is also negligible with our method. These allow us to avoid RH for ζ(s) and GRH for L(s, sym 2 f ) and to give some simplification for the Soundararajan-Harper method. Moreover, in the last part, we use the method of Heath-Brown and apply the Rankin-Selberg L-function to prove the exact lower bound.

The result can be generalised to modular forms on congruence subgroups of SL 2 (Z). Besides, the method can be used to improve the result of Milinovich and Turnage-Butterbaugh [START_REF] Milinovich | Moments of products of automorphic L-functions[END_REF] and the work of Milinovich and Ng [START_REF] Milinovich | Simple zeros of modular l-functions[END_REF], but the Generalised Ramanujan Conjecture is needed for the case GL(m).

Automorphic L-functions and some preliminary lemmas

Let f ∈ H * κ . According to Deligne, for any prime number p there are complex numbers α f (p) and β f (p) such that (2.1)

|α f (p)| = α f (p)β f (p) = 1, λ f (p ν ) = 0 j ν α f (p) ν-j β f (p) j (ν 1).
Hence, λ f (n) is real and satisfies the Hecke relation

(2.2) λ f (m)λ f (n) = d|(m,n) λ f mn d 2
for all m 1 and n 1, and the Deligne's inequality

(2.3) |λ f (n)| d(n) (n 1),
where d(n) is the divisor function. L(s, f ) admits the Euler product :

L(s, f ) = p (1 -α f (p)p -s ) -1 (1 -β f (p)p -s ) -1 (σ > 1).
It is well known that (see e.g. [START_REF] Rankin | Sums of powers of cusp form coefficients[END_REF], see also [START_REF] Fomenko | Fourier coefficients of parabolic forms, and automorphic L-functions[END_REF])

(2.4)

p x λ f (p) 2 p = log 2 x + O f (1) (x 3),
where we denote by log j the j-fold iterated logarithm.

The main aim of this section is to prove Proposition 2.1 below. Let us begin by citing some properties on the logarithmic derivative of L(s, f ) which will be needed in the proof of Proposition 2.1. First we define b f (n) by the formula :

(2.5) - L L (s, f ) = n 1 Λ(n)b f (n) n s (σ > 1),
where Λ(n) is the von Mangodt function and b f (n) is supported on prime powers such that

(2.6) b f (p ν ) = α f (p) ν + β f (p) ν
for prime number p and integer ν 1. Particularly, b f (p) = λ f (p).

• In view of the functional equation (1.6), the logarithmic derivative L L (s, f ) have "trivial poles" at the points s = -n - log(|v| + 3) f log 2 (|v| + 3).

• By the functional equation (1.6) and Stirling's formula [30, 4.42] we have for σ < -1 2

(2.9)

- L L (s, f ) = Γ Γ 1 -s + κ -1 2 + Γ Γ s + κ -1 2 + O f (1) f log(|s| + 3).
. The main result of this section is the following proposition, which will consists in the starting point of the proof of upper bound part in Theorem 1.1. 

-0 = 0 + 1 2 2 0 . Assuming GRH for L(s, f ), we have log |L( 1 2 + iτ, f )| e n x Λ(n)b f (n) log(x/n) n 1/2+ / log x+iτ (log n) log x + ( + 1) log T log x + O 1 log x (2.10) log |L( 1 2 + iτ, f )| e p x b f (p) log(x/p) p 1/2+ / log x+iτ log x + 1 2 e p √ x b f (p 2 ) log(x/p 2 ) p 1+2 / log x+i2τ log x (2.11) + ( + 1) log T log x + O(1)
for T 2, T < τ 2T , 2 x T 2 and 0 , where the implied constants depend on f .

Proof. Let c := max(1, 2 -σ). Under GRH, we can denote ρ = 1 2 + iγ to be the non-trivial zeros of L(s, f ). By the Perron formula, we can write

n x Λ(n)b f (n) n s log x n = - 1 2πi c+iv c-iv L L (s + w, f ) x w w 2 dw + O x c log 2 x v 2 ,
where s = σ + iτ with σ > 1 2 and T < τ 2T and v 3 is a parameter tending to infinity but satisfying (2.7). Shift the segment of integration to the path C consisting of straight lines joining c -iv, -v -iv, -v + iv and c + iv. By the residue theorem, one gets that (2.12)

n x Λ(n)b f (n) n s log x n = - L L (s, f ) log x - L L (s, f ) - |γ-τ |<v x ρ-s (ρ -s) 2 - n+(κ-1)/2+σ<v x -n-(κ-1)/2-s (n + (κ -1)/2 + s) 2 - 1 2πi C L L (s + w, f ) x w w 2 dw + O x c log 2 x v .
We apply (2.9) and (2.8) to estimate the integrals over horizontal segments from -v to -1 2 and from -1 2 to c, respectively. Then it is log

(|s| + v) v 2 √ x log x + x c log 2 (T + v) v 2 •
The integral over the vertical segment is

x -v v -1 log(|s| + v).
Inserting these estimates into (2.12) and making v → ∞, it follows that (2.13)

- L L (s, f ) = n x Λ(n)b f (n) n s log(x/n) log x + 1 log x L L (s, f ) + 1 log x ρ x ρ-s (ρ -s) 2 + 1 log x n 0 x -n-(κ-1)/2-s (n + (κ -1)/2 + s) 2 •
Taking real parts of both sides and integrating with respect to σ over σ 0 > 1 2 to ∞, we get

(2.14) log |L(s 0 , f )| = e n x Λ(n)b f (n) n s 0 log n log(x/n) log x - 1 log x L L (s 0 , f ) + 1 log x ρ ∞ σ 0 x ρ-s (ρ -s) 2 dσ + O x -κ/2 ,
where s 0 = σ 0 + iτ and the implied constant is absolute.

For s = σ + iτ with σ > 1 2 and T τ 2T , define

(2.15) F (s) := ρ e 1 s -ρ = ρ σ -1 2 (σ -1 2 ) 2 + (τ -γ) 2 > 0.
According to [14, Theorem 5.6], we have

-e L L (s, f ) = -log(2π) + e Γ Γ s + κ -1 2 -e B -e ρ 1 s -ρ + 1 ρ ,
where e B =ρ e ( 1 ρ ). Thus for s = σ + iτ with σ > 1 2 and T τ 2T , we have

(2.16) -e L L (s, f ) = log T -F (s) + O κ (1),
where we have evaluated

Γ Γ (s + κ-1 2 ) = log T + O κ (1) by the Stirling formula. Observing ρ ∞ σ 0 x ρ-s (ρ -s) 2 dσ ρ ∞ σ 0 x 1/2-σ |ρ -s 0 | 2 dσ = ρ x 1/2-σ 0 |ρ -s 0 | 2 log x = x 1/2-σ 0 F (s 0 ) (σ 0 -1 2 ) log x ,
together with (2.14) and (2.16), we deduce that

log |L(s 0 , f )| e n x Λ(n)b f (n) n s 0 log n log(x/n) log x + log T -F (s 0 ) + O(1) log x + x 1/2-σ 0 F (s 0 ) (σ 0 -1 2 )(log x) 2 • Integrating (2.16) as σ varies from 1 2 to σ 0 (> 1 2 ), we obtain log |L( 1 2 + iτ, f )| -log |L(s 0 , f )| = {log T + O(1)}(σ 0 -1 2 ) - σ 0 1/2 F (σ + iτ )dσ.
According to the definition of F (σ + iτ ), we have

σ 0 1/2 F (σ + iτ )dσ = 1 2 ρ log 1 + (σ 0 -1/2) 2 (τ -γ) 2 1 2 F (s 0 ), since we have log(1 + x 2 ) x 2 /(1 + x 2 ). Then it follows that log |L( 1 2 + iτ, f )| -log |L(s 0 , f )| {log T -1 2 F (s 0 ) + O(1)}(σ 0 -1 2
). Together with the precedent inequality, it follows that

log |L( 1 2 + iτ, f )| e n x Λ(n)b f (n) n s 0 log n log(x/n) log x + (σ 0 -1 2 ) log x + 1 log T log x + F (s 0 )(σ 0 -1 2 ) -1 (log x) -2 G (σ 0 -1 2 ) log x + O (log x) -1 + σ 0 -1 2
where G( ) := e ---1 2 2 . We take σ 0 = 1 2 + log x with 0 . It is easy to see that G( ) is decreasing and G( 0 ) = 0. Since F (s 0 ) > 0, we have F (s 0 )G( ) 0 for 0 and therefore this term can be omitted. Then (2.10) follows.

The inequality (2.11) is a simple consequence of (2.10) since the contribution of p ν with ν 3 to the sum on the right-hand side of (2.10) is

p ν x, ν 3 b f (p ν ) p ν/2+νiτ +ν 0 / log x ν log(x/p ν ) log x p ν x, ν 3 1 p ν/2
1.

This completes the proof.

Finally we shall cite some mean value theorems and an elementary lemma, which will be useful later. The first one is a slight variant of [START_REF] Soundararajan | Moments of the Riemann zeta function[END_REF]Lemma 3]. The proof is more or less the same.

Lemma 2.2. Let 0 < ε 1. For any complex numbers a(p), we have 

n } n 1 verifying n 1 n|a n | 2 < ∞, we have T 0 n 1 a n n -iτ 2 dτ = ∞ n 1 |a n | 2 {T + O(n)}
uniformly for T 2, where the implied constant is absolute.

The following lemma is a corollary of [5, Theorem 2].

Lemma 2.4. Let F (s) be regular in the vertical strip α < σ < β and continuous for α σ β. Suppose F (s) → 0 as |τ | → ∞ uniformly for α σ β. Then for α γ β and any q > 0 we have

R |F (γ + iτ )| q dτ R |F (α + iτ )| q dτ (β-γ)/(β-α) R |F (β + iτ )| q dτ (γ-α)/(β-α)
.

The following lemma is a simple generalization of [9, Proposition 2].

Lemma 2.5.

Let M = p µ 1 1 • • • p µr r and N = q ν 1 1 • • • q νt t ,
where the p j and q k are all distinct primes of one another, the µ j , ν k are positive integers and the r, t are non negative integers. We have (2.17)

T +H T 1 j r (cos(2τ log p j )) µ j 1 k t (cos(τ log q k )) ν k dτ = HΘ(M N ) + O(M 2 N ),
uniformly for 2 H T , where

Θ(M N ) := 1 j r 1 2 µ j µ j µ j /2 1 k t 1 2 ν k ν k ν k /2 .
Here by convention,

ν ν/2 = ν! ((ν/2)!) 2 if ν is even and ν ν/2 = 0 if ν is odd. Proof. Notice that (cos(aτ )) ν = (e iaτ + e -iaτ ) ν 2 ν = 1 2 ν ν ν/2 + 0 ν, =ν/2 1 2 ν ν e i(ν-2 )aτ .
Therefore the integral on the left-hand side of (2.17) is equal to HΘ(M N ) + R with 

R := T +H T ( 11 ,..., 1r , 21 ,..., 2t ) 1 j r 1 k t 1 2 µ j +ν k µ j 1j ν j 2k e iτ log p 2c 1 1 •••p 2cr r q d 1 1 •••q d t t
|p 2c 1 1 • • • p 2cr r q d 1 1 • • • q dt t -1| M -2 N -1 . Thus log p 2c 1 1 • • • p 2cr r q d 1 1 • • • q dt t M -2 N -1 and R M 2 N ( 11 ,..., 1r , 21 ,..., 2t ) 1 j r 1 k t 1 2 µ j +ν k µ j 1j ν j 2k M 2 N 1 j r 1 k t 1j 1 2 µ j µ j 1j 2k 1 2 ν k ν k 2k M 2 N.
Then the result follows.

Harper's refinement

Harper's method is a refinement of that of Soundararajan. Its starting point is (2.11).

Harper proposed a delicate decoupage on the first sum on the right-hand side and considered the contribution of the second sum. We do the same decoupage for the first sum and our treatment for the second sum is a little different: we do not truncate this sum by log T (this asks for additional assumptions of RH for ζ(s) and GRH for L(s, sym 2 f )), but consider it directly with the first sum by choosing proper values for parameters.

By the prime number theorem, we have trivially

p √ x b f (p 2 ) log p 2 p 1+2/ log x+2iτ log x p √ x 4 log p p log x 1.
Combining this with (2.11), we find, for (log

T ) 10 x T 2 , (3.1) log |L( 1 2 + iτ, f )| e p x b f (p) log(x/p) p 1/2+1/ log x+iτ log x + 1 2 e p √ x b f (p 2 ) p 1+i2τ + 2 log T log x + O f (1).
For 0 < ε 1, r > 0, T 100 and large positive constant c(ε) depending on ε, we define the real sequence {ψ i } i 0 and the integer I by

ψ 0 := 0, ψ i := 20 i-1 (log 2 T ) 2 (i 1), (3.2) 
I = I ε,r,T := 1 + max{i : ψ i e -c(ε)r } (2/ log 20) log 3 T. (3.3)
Then define the set T = T r,T,H by (3.4)

T := τ ∈ [T, T + H] : |F i (τ )| ψ -3/4 i (1 i I) ,
where T ε H T and

(3.5) F i (τ ) := e T ψ i-1 <p T ψ i λ f (p) log(T ψ I /p) p 1/2+1/(ψ I log T )+iτ log T ψ I • Lemma 3.1. Let f ∈ H * κ , r > 0 and 0 < ε 1.
Under the previous notation, we have

(3.6) T exp 2r e p T ψ I λ f (p) log(T ψ I /p) p 1/2+1/(ψ I log T )+iτ log T ψ I dτ H(log T ) r 2 ,
uniformly for T 100 and T ε H T , where the implied constant depends on f , r and ε.

Proof. Denoting by I the integral on the left-hand side of (3.6), we can write

I = τ ∈T 1 i I exp{rF i (τ )} 2 dτ.
On the other hand, we have

(3.7) e t = 0 j J t j j! + O(e -J )
uniformly for J 0 and |t| 1 9 J, where we have used the Stirling formula to write

e J j>J t j j! j>J (et) j (j/e) j √ j j>J (e 2 /9) j √ j 1.
By the definition of T , we have

|F i (τ )| ψ -3/4 i
for τ ∈ T and 1 i I. Applying (3.7) of the form e t = {1 + O(e -J )} 0 j J t j /j! with J = [100rψ -3/4 i ] and t = rF i (τ ), we get (3.8)

I = T 1 i I 1 + O e -100rψ -3/4 i 0 j 100rψ -3/4 i (rF i (τ )) j j! 2 dτ T +H T 1 i I 0 j 100rψ -3/4 i (rF i (τ )) j j! 2 dτ,
where we have used the following estimates :

(3.9)

1 i I e -100rψ -3/4 i = 1 i I e -ab -i (a = 20 3/4 100r(log 2 T ) 3/2 , b = 20 3/4 ) I+1 1 e -ab -t dt (u = ab -t , dt = -du/(u log b)) = 1 log b a/b 100b -1 rψ -3/4 I e -u u du 1.
Developing the square and then (rF i (τ )) j , we can deduce that

(3.10) I r j, k, p, q C j,k,p,q T +H T 1 i I 1 m j i 1 n k i cos τ log p i (m) cos τ log q i (n) dτ,
where j := (j 1 , j 2 , . . . , j I ),

k := (k 1 , k 2 , . . . , k I ) with 0 j i , k i 100rψ -3/4 i
, and p := p 1 (1), . . . , p 1 (j 1 ); p 2 (1), . . . , p 2 (j 2 ); . . . ; p I (1), . . . , p I (j I ) q := q 1 (1), . . . , q 1 (k 1 ); q 2 (1), . . . , q 2 (k 2 ); . . . ; q I (1), . . . , q I (k I )

with primes p i (m) and q i (n) satisfying

T ψ i-1 < p i (1), . . . , p i (j i ); q i (1), . . . , q i (k i ) T ψ i (1 i I),
and C j,k,p,q :=

1 i I r j i +k i j i !k i ! 1 m j i 1 n k i λ f (p i (m)) log(T ψ I /p i (m)) p i (m) 1/2+1/(ψ I log T ) log T ψ I λ f (q i (n)) log(T ψ I /q i (n)) q i (n) 1/2+1/(ψ I log T ) log T ψ I .
Using Lemma 2.5 with M = 1, we have

(3.11) I r HI 1 + I 2 ,
where

I 1 := j, k, p, q D j,k,p,q Θ 1 i I 1 m j i 1 n k i p i (m)q i (n) , I 2 := j, k, p, q D j,k,p,q 1 i I 1 m j i 1 n k i p i (m)q i (n), with D j,k,p,q := 1 i I r j i +k i j i !k i ! 1 m j i 1 n k i |λ f (p i (m))λ f (q i (n))| p i (m)q i (n) .
Since

1 i I 1 m j i 1 n k i p i (m)q i (n) 1 i I T ψ i (j i +k i ) 1 i I T 200rψ 1/4 i T ε/10 ,
we have (3.12)

I 2 T ε/ 10 
1 i I 0 j 100rψ -3/4 i r j j! T ψ i-1 <p T ψ i |λ f (p)| √ p j 2
T ε/10

1 i I T 200rψ 1/4 i 0 j 100rψ -3/4 i r j j! 2 T 2ε/10 e 2rI ε,r T 3ε/10 .
For the first term on the right-hand side of (3.11), we have

I 1 1 i I 0 m 200rψ -3/4 i j+k=m j, k 0 r m j!k! T ψ i-1 <p 1 ,...,pm T ψ i Θ(p 1 • • • p m )|λ f (p 1 ) • • • λ f (p m )| √ p 1 • • • p m 1 i I 0 m 200rψ -3/4 i r m 2 m m! T ψ i-1 <p 1 , ..., pm T ψ i Θ(p 1 • • • p m )|λ f (p 1 ) • • • λ f (p m )| √ p 1 • • • p m •
According to the definition of Θ(•) in Lemma 2.5, we can assume m = 2n. Thus (3.13) I 1

1 i I 0 n 100rψ -3/4 i (2r) 2n (2n)! T ψ i-1 <p 1 , ..., pn T ψ i |λ f (p 1 ) • • • λ f (p n )| 2 p 1 • • • p n Φ(p 1 , . . . , p n ),
where

(3.14) Φ(p 1 , . . . , p n ) := Θ(p 2 1 • • • p 2 n )
|{(q 1 , . . . , q 2n ) :

q 1 • • • q 2n = p 2 1 • • • p 2 n }| |{(q 1 , . . . , q n ) : q 1 • • • q n = p 1 • • • p n }| with primes T ψ i-1 < q 1 , . . . , q 2n T ψ i . Write p 2 1 • • • p 2 n = p 2ν 1 n 1 • • • p 2ν n with (p n i , p n j ) = 1 for i = j. By direct calculation, we have Θ(p 2 1 • • • p 2 n ) = 1 2 2n 1 j (2ν j )! (ν j !) 2 ,
(q 1 , . . . , q 2n ) :

q 1 • • • q 2n = (p 1 • • • p n ) 2 = (2n)! 1 j (2ν j )! , |{(q 1 , . . . , q n ) : q 1 • • • q n = p 1 • • • p n }| = n! 1 j ν j ! • These imply that Φ(p 1 , . . . , p n ) = (2n)! 2 2n n! 1 j ν j ! (2n)! 2 2n n! •
Inserting this into (3.13) and using (2.4), we find that (3.15)

I 1 1 i I 0 n 100rψ -3/4 i 1 n! r 2 
T ψ i-1 <p T ψ i |λ f (p)| 2 p n exp r 2 p T ψ I |λ f (p)| 2 p ε,r (log T ) r 2 .
Now the required bound follows from (3.11), (3.12) and (3.15).

Next we shall consider further the integral on T together with the second sum inside.

Proposition 3.2. Let f ∈ H * κ , r > 0 and 0 < ε 1. Under the previous notation, we have

T exp 2r e p T ψ I λ f (p) log(T ψ I /p) p 1/2+1/(ψ I log T )+iτ log T ψ I + 1 2 p T ψ I /2 b f (p 2 ) p 1+2iτ dτ H(log T ) r 2 ,
uniformly for T 100 and T ε H T , where the implied constant depends on f , r and ε.

Proof. For 0 m M T := [ψ I log T / log 4] (2 m T ψ I /2 ), define

P m (τ ) := e 1 2 2 m <p 2 m+1 b f (p 2 ) p 1+2iτ , P(m) := τ ∈ T : |P m (τ )| > 2 -m/10 but |P j (τ )| 2 -j/10 (m + 1 j M T .
If τ belongs to none of these sets, then |P j (τ )| 2 -j/10 for all j M T and e 1 2

p T ψ I /2 b f (p 2 ) p 1+2iτ 1.
If we denote by J the integral to estimate, the contribution of such part of τ to J is H(log T ) r 2 thanks to Lemma 3.1. Let J m be the integral of the same integrand over P(m). Then

(3.16) J H(log T ) r 2 + J 0 + • • • + J M T .
Using the fact that |P m (τ )| 2 -m/10 for τ ∈ P(m) and Lemma 2.5 with N = 1, we have

|P(m)| = P(m) dτ T +H T 2 m/10 P m (τ ) 2n dτ = 2 mn/5 2 m <p 1 , ..., p 2n 2 m+1 1 i 2n b f (p 2 i ) 2p i T +H T 1 i 2n cos(2τ log p i )dτ = 2 mn/5 2 m <p 1 , ..., p 2n 2 m+1 1 i 2n b f (p 2 i ) 2p i HΘ(p 1 • • • p 2n ) + O (p 1 • • • p 2n ) 2 ,
where

(3.17) n = n(m) := [2 3m/4 ] if 2 m log T , c(ε, r) if 2 m > log T .
Here c(ε, r) is a positive constant large enough and c(ε, r) ∈ [6r 2 + 2r, e c(ε)r ε/700]. With such choice of n, it is easy to see that the contribution of the error term

O (p 1 • • • p 2n ) 2 to |P(m)| is 2 mn/5 2 5mn T ε/10 , since |b f (p 2 )| 2.
For the main term, according to the definition of Θ(•), we can assume that

p 1 • • • p 2n = q 2 1 • • • q 2 n .
We can bound the contribution of the main term to P(m) as before to write, with the notation (3.14), (3.18)

|P(m)| H2 mn/5 2 m <q 1 , ..., qn 2 m+1 1 i n b f (q 2 i ) 2 4q 2 i Φ(q 1 , . . . , q n ) + H 1/10 H2 mn/5 2 m <q 2 m+1 1 q 2 n (2n)! 2 2n n! + H 1/10
H2 -(4/5)mn n n + H 

J m T exp 4r e p T ψ I λ f (p) log(T ψ I /p) p 1/2+1/(ψ I log T )+iτ log T ψ I dτ P(m) (log T ) 2r dτ 1/2 H(log T ) 4r 2 × H2 -(4/5)mn n n + H 1/10 (log T ) 2r 1/2 H(log T ) 2r 2 +r 2 -(2/5)mn n n/2 + H 3/5 .
This and (3.17) imply that (3.20)

(log 2 T ) 2 2 m T ψ I /2 J m H(log T ) 2r 2 +r (log 2 T ) 2 2 m log T 2 -(1/40)mn + log T 2 m T ψ I /2
2 -(2/5)mn + H 9/10 H(log T ) 2r 2 +r e -(log 2 T ) 3/2 /30 + (log T ) -c(ε,r)/10 + H 9/10

H(log T ) r 2 .
Now we bound J m when 2 m (log 2 T ) 2 following the argument of Harper. By the definition of P(m), we have

e p 2 m+1 λ f (p) log(T ψ I /p) p 1/2+1/(ψ I log T )+iτ log T ψ I + 1 2 p T ψ I /2 b f (p 2 ) p 1+2iτ p 2 m+1 1 √ p + 1 p + 1 c2 m/2
for τ ∈ P(m), where c > 0 is an absolute positive constant. Introduce the notation

F (τ ) := e 2 m+1 <p T ψ I λ f (p) log(T ψ I /p) p 1/2+1/(ψ I log T )+iτ log T ψ I •
According to the definition of T and T (m), and similarly to (3.8), we have

J m e cr2 m/2 P(m) exp{2rF (τ )}dτ e cr2 m/2 2 mn/5 T P m (τ ) 2n i 0 j 100rψ -3/4 i (rF i (τ )) j j! 2 dτ
where F i (τ ) is defined by (3.5) and i in the product satisfies T ψ i-1 > 2 m+1 and i < I. Since the primes p in P m (τ ) are different from those in F (τ ), Lemma 2.5 is applicable with M (product of primes from P m (τ )) and N (product of primes from F (τ )). A similar argument for proving (3.13) and (3.15) allows us to deduce, for 2 m (log 2 T ) 2 and n = [2 3m/4 ],

(3.21)

J m He cr2 m/2 2 mn/5 exp r 2 2 m+1 <p T ψ I |λ f (p)| 2 p 2 m <p 1 , ..., p 2n 2 m+1 Θ(p 1 • • • p 2n ) p 1 • • • p 2n + H 3/10
H(log T ) r 2 e cr2 m/2 2 mn/5 (2n)! 2 2n n!

2 m <p 2 m+1 1 p 2 n + H 3/10 H(log T ) r 2 e cr2 m/2 -2 3m/4 .
This implies that (3.22)

2 m (log 2 T ) 2 J m H(log T ) r 2 2 m (log 2 T ) 2 e cr2 m/2 -2 3m/4 H(log T ) r 2 .
Inserting (3.20) and (3.22) into (3.16), we get the required inequality.

For 1 i j I, define

G i,j (τ ) := e T ψ i-1 <p T ψ i λ f (p) log(T ψ j /p) p 1/2+1/(ψ j log T )+iτ log T ψ j .
And for 0 j I -1, define (3.23)

S j := τ ∈ [T, T + H] : |G i, (τ )| ψ -3/4 i (1 i j and i I) but |G j+1, (τ )| > ψ -3/4
j+1 for some j + 1 I .

Similarly to Lemma 3.1, we have the following lemma.

Lemma 3.3. Let f ∈ H * κ , r > 0 and 0 < ε 1. Then we have

S j exp 2r e p T ψ j λ f (p) log(T ψ j /p) p 1/2+1/(ψ j log T )+iτ log T ψ j dτ H(log T ) r 2 exp -ε 51 ψ -1 j+1 log ψ -1 j+1
uniformly for T 100, T ε H T and 1 j I -1, where the implied constant depends on f , r and ε. What's more, we have

|S 0 | He -(log 2 T ) 2 /10 .
Proof. Since the proof is similar to that of Proposition 3.1, we just sketch the proof here. For 1 j < k, define

S j,k := τ ∈ [T, T + H] : |G i,j (τ )| ψ -3/4 i (1 i j), but |G j+1,k (τ )| > ψ -3/4 j+1
.

Denote by K j the integral to bound and by K j,k the corresponding integral over S j,k . Then

(3.24) K j K j,j+1 + K j,j+2 + • • • + K j,I
and with the notation ε := [ε/(10ψ j+1 )]

K j,k = S j,k 1 i j exp{rG i,j (τ )} 2 dτ |G i,j (τ )| ψ -3/4 i (1 i j) 1 i j exp{rG i,j (τ )} 2 ψ 3/4 j+1 G j+1,k (τ ) 2 ε dτ ψ (3/2) ε j+1 T +H T 1 i j 0 n 100rψ -3/4 i (rG i,j (τ )) n n! 2 G j+1,k (τ ) 2 ε dτ.
In the last inequality, we have a similar argument to establish the first inequality of (3.10).

Expand the square and the power n and 2 ε , and proceed as the proof in Lemma 3.1 and Proposition 3.2 for estimating the last integral. We can obtain

K j,k ψ (3/2) ε j+1 H exp r 2 p T ψ j |λ f (p)| 2 p εψ -1 j+1 20 T ψ j <p T ψ j+1 |λ f (p)| 2 p ε + H 4/5
for j + 1 k I. Inserting it into (3.24), we get (3.25)

K j H(I -j)ψ (3/2) ε j+1 × × exp r 2 p T ψ j |λ f (p)| 2 p εψ -1 j+1 20 T ψ j <p T ψ j+1 |λ f (p)| 2 p ε + H -1/5 .
For j = 0, the left-hand side of (3.25) is |S 0 | which is

HIψ (3/2)[ε/(10ψ 1 )] 1 ( ψ 1 20 ) -[ε/(10ψ 1 )] + H -1/5
He -ε(log 2 T ) 2 /10 , with the help of (2.4) and the fact that I log 3 T and ψ 1 = (log 2 T ) -2 . For 1 j I -1, the contribution of H -1/5 on the right-hand side of (3.25) to K j is (I -j)ψ

(3/2)[ε/(10ψ j+1 )] j+1 H 4/5 H exp -ε 51 ψ -1 j+1 log ψ -1 j+1 since I log 3 T . Observing that I -j = log(ψ I /ψ j )/ log 20 log ψ -1 j+1
log 20 , and

T ψ j <p T ψ j+1 |λ f (p)| 2 p 4 T ψ j <p T ψ j+1 1 p 40,
the contribution of the first term on the right-hand side of (3.25) to K j is

H(log T ) r 2 exp -ε 51 ψ -1 j+1 log ψ -1
j+1 , according to (2.4) again.

Similarly to Proposition 3.2, we have the following proposition. The proof is very similar. The only difference is to apply Lemma 3.3 in place of Lemma 3.1.

Proposition 3.4. Let f ∈ H * κ , r > 0 and 0 < ε 1. Then we have S j exp 2r e p T ψ j λ f (p) log(T ψ j /p) p 1/2+1/(ψ j log T )+iτ log T ψ j + 1 2 p T ψ j /2 b f (p 2 ) p 1+2iτ dτ H(log T ) r 2 exp -ε 51 ψ -1 j+1 log ψ -1 j+1
uniformly for T 100, T ε H T and 1 j I -1, where the implied constant depends on f , r and ε.

Next we follow the method of Soundararajan to give a weaker estimate for M r (T, H; f ), which will consist in the first step of the iteration presented in Section 4. 

] : S 1 (τ ) v 1 } T +H T S 1 (τ ) v 1 2 dτ H √ log 2 T ev 2 1 . Taking = [v 2 1 / log 2 T ] if v ε 2 (log 2 T ) 2 and = [10v] if v > ε 2 (log 2 T ) 2 , then we get (3.27) |{τ ∈ [T, T + H] : S 1 (τ ) v 1 }|      Hv log 2 T e -9v 2 /(64 log 2 T ) if v ε 2 (log 2 T ) 2 , He -4v log v if v > ε 2 (log 2 T ) 2 . Similarly we have {τ ∈ [T, T + H] : S 2 (τ ) v 2 } T +H T 8S 2 (τ ) v 2 dτ.
Taking = [vε/4 -1] and using Lemma 2.2 again, we obtain

{τ ∈ [T, T + H] : S 2 (τ ) 1 8 v} He -ε 8 v log v .
This and (3.27) imply that

S T,H (v)     
Hv log 2 T e -9v 2 /(64 log 2 T ) for 10 log 2 T v 1 2 (log 2 T ) log 3 T ,

He -ε 33 v log v
for v > 1 2 (log 2 T ) log 3 T . Together with (3.26) and the trivial bound S T,H (v) H for v 10 log 2 T , we can obtain the required inequality.

Proof of the upper bound for the higher moments

We have been ready for the proof of the upper bound of (1.9). Let f ∈ H * κ , r > 0 and 0 < ε 1. Let I, T and S j be defined as in (3.3), (3.4), and (3.23). Then

[T, T + H] = T ∪ ∪ 0 j I-1 S j .
Thus we can write

(4.1) M r (T, H; f ) L + L 0 + L 1 + • • • + L I-1 ,
where

L := T |L( 1 2 + iτ, f )| 2r dτ, L j := S j |L( 1 2 + iτ, f )| 2r dτ.
Assume GRH for L(s, f ). First we can apply (3.1) with x = T ψ I and Proposition 3.2 to deduce immediately that

(4.2) L H(log T ) r 2 .
Secondly the Cauchy-Schwarz inequality, Lemma 3.3 and Propositions 3.5 imply

(4.3) L 0 |S 0 | S 0 |L( 1 2 + iτ, f )| 4r dτ 1/2
He -(log 2 T ) 2 /10 H(log T ) c 0 (ε,r) 1/2 H.

Finally, for 1 j I -1 inequality (3.1) with x = T ψ j implies that

log |L( 1 2 + iτ, f )| e p T ψ j λ f (p) log(T ψ j /p) p 1/2+1/(ψ j log T )+iτ log T ψ j + 1 2 p T ψ j /2 b f (p 2 ) p 1+2iτ + 2 ψ j + O f (1).
By Proposition 3.4, it follows that

L j H(log T ) r 2 exp -ε 51 ψ -1 j+1 log ψ -1 j+1 + 4rψ -1 j .
Summing over 1 j I -1 and using a similar argument to (3.9), we can deduce that (4.4)

L 1 + • • • + L I-1 H(log T ) r 2 .
Together with (4.2), (4.3) and (4.4), we get the upper bound in Theorem 1.1.

Proof of the lower bound

In this section, we adapt Heath-Brown's method [START_REF] Heath-Brown | Fractional moments of the Riemann zeta function[END_REF] to prove the lower bound part in Theorem 1.1. As indicated in the introduction, in order to obtain the correct order of M r (T, H; f ), we need to apply the Rankin-Selberg theory.

Let f ∈ H * κ and r > 0. When L(s, f ) = 0, we define L(s, f ) r by L(s, f ) r = exp(r log L(s, f )),

where log L(s, f ) = log |L(s, f )| + arg L(s, f ) with -π < arg L(s, f ) π. We also define λ f,r (n) by the formula (5.1)

L(s, f ) r = n 1 λ f,r (n)n -s (σ > 1).
Clearly λ f,r (n) is multiplicative, and for all positive integers j and n we have

(5.2) λ f,rj (n) = n=n 1 n 2 •••n j λ f,r (n 1 )λ f,r (n 2 ) • • • λ f,r (n j ).
Specially, we have

(5.3) λ f,r (p) = rλ f (p) and ∀ε > 0 : λ f,r (n) r,ε n ε
for all prime numbers p and integers n.

In the sequel we write r = u/v. Here v = 1 and u is any positive real number when GRH holds for L(s, f ) (to ensure that g f,r (s, N ) defined in (5.6) is a regular function); if not, u and v are positive co-prime integers. T r(2σ-1) J T,H (σ) + e -rT 2 /20 (5.4)

J T,H (σ) H (σ-1/2) J T,H ( 1 2 ) 3/2-σ (5.5) uniformly for 1 2 σ 3 4 , T 2 
and T ε H T , where the implied constants depend on f , r and ε.

Proof. With the help of the functional equation (1.6) and the Stirling formula, we have

|L(1 -σ + iτ, f )| f |L(σ + iτ, f )|(1 + |τ |) 2σ-1 . Define F (s) = L(s, f )e (s-it) 2 for t 2. Then it follows that R |F (1 -σ + iτ )| 2r dτ R |L(σ + iτ, f )| 2r (1 + |τ |) 2r(2σ-1) e -2r(τ -t) 2 dτ.
In view of the convexity bound for L(σ + iτ, f ), the contribution of the lines (-∞, t

/2] ∪ [3t/2, ∞) to the last integral is t/2 -∞ + ∞ 3t/2 (1 + |τ |) 2r e -2r(τ -t) 2 dτ t 2r e -rt 2 /2 e -rt 2 /3 . Therefore R |F (1 -σ + iτ )| 2r dτ e -rt 2 /3 + t 2r(2σ-1) R |L(σ + iτ, f )| 2r e -2r(τ -t) 2 dτ.
Applying Lemma 2.4 to F (s) with (α, γ, β) = (1-σ, 1 2 , σ) and q = 2r and using the preceding inequality, we can deduce R |L( 12 + iτ, f )| 2r e -2r(τ -t) 2 dτ e -rt 2 /8 + t r(2σ-1) R |L(σ + iτ, f )| 2r e -2r(τ -t) 2 dτ.

Then we can get (5.4) by integrating for ∆ 1 t ∆ 2 . Similarly, we have

R |F (σ + iτ )| 2r dτ R |F ( 1 2 + iτ )| 2r dτ 3/2-σ R |F ( 3 2 + iτ )| 2r dτ σ-1/2 R |L( 1 2 + iτ, f )| 2r e -2r(τ -t) 2 dτ 3/2-σ , since R |F ( 3 2 + iτ )| 2r dτ 1.
Finally, integrating for ∆ 1 t ∆ 2 and using the Hölder inequality, we obtain (5.5).

For N 2, r = u/v and σ 1 2 , define (5.6) S f,r (s;

N ) := n N λ f,r (n)n -s , g f,r (s; N ) := L(s, f ) u -S f,r (s; N ) v ,
where λ f,r (n) is defined as in (5.1). Define

K T,H,N (σ) := R |g f,r (σ + iτ ; N )| 2/v w T,H (τ )dτ. Lemma 5.2. Let f ∈ H * κ , r > 0 and 0 < ε 1. Then we have K T,H,N (σ) f,r,ε K T,H,N ( 1 2 ) 3/2-σ (HN -2/v+ε ) σ-1/2 uniformly for 1 2 σ 3 4 , T 2, T ε H T and T ε/2 N T ε . Proof. Applying Lemma 2.4 to F (s) = g f,r (s; N )e u(s-it) 2 with (α, γ, β) = ( 1 2 , σ, 3 
2 ) and q = 2/v where t 2 is a parameter, it follows that for

1 2 σ 3 4 , R |F (σ + iτ )| 2/v dτ R |F ( 1 2 + iτ )| 2/v dτ 3/2-σ R |F ( 3 2 + iτ )| 2/v dτ σ-1/2
.

Integrating for ∆ 1 t ∆ 2 and using the Hölder inequality, we have (HN -2+ε ) 1/v H 1-1/v HN -2/v+ε .

(5.7) K T,H,N (σ) K T,H,N ( 1 2 ) 3/2-σ K T,H,N ( 3 2 ) σ-1/2 . Observing that S f,r (s; N ) N T ε for 1 2 σ 2, τ ∈ R and L( 3 2 + iτ, f ) 1 (τ ∈ R), we conclude that g f,r ( 3 2 + iτ ; N ) T vε (τ ∈ R). Therefore (5.8) K T,H,N ( 3 2 ) ∆ 2 ∆ 1 T +H t-t ε |g f,
Putting it back to (5.8) and then to (5.7) and noticing that the term e -rT 2ε can be absorbed by HN -2/v+ε , we obtain the required inequality.

5.2. Companion to J T,H (σ) and K T,H,N (σ). In this subsection we shall apply the Rankin-Selberg theory to prove Lemma 5.3 below, which will consist in the main tool in this section. For f ∈ H * κ , the Rankin-Selberg L-function is defined by (5.9) L(s, f × f ) := p 1 -α f (p) 2 p -s -1 1 -β f (p) 2 p -s -1 1 -p -s -2 (σ > 1), where α f (p) and β f (p) are the local parameters of f . According to the Rankin-Selberg theory, it is well know that L(s, f × f ) has a simple pole at s = 1 (see e.g. [START_REF] Iwaniec | Topics in classical automorphic forms[END_REF]). Thus there are two positive constants A f and B f such that (5.10) A f (s -1)L(s, f × f ) B f (1 < s 2). for real s > 1 by (5.3). Write H f (s) := L(s, f × f ) -r 2 G f (s). Since H f (s) > 0 for s > 1, we can define h f (s) := log H f (s) for these s. Using (5.9) and (5.13), for s > 1 we have h f (s) = p log 1 + r 2 λ f (p) 2 p -s -r 2 log 1 -α f (p) 2 p -s -1 1 -β f (p) 2 p -s -1 1 -p -s -2 .

Since α f (p) 2 + β f (p) 2 + 2 = λ f (p) 2 , the series on the right-hand side is absolutely convergent for s > 1 2 . Thus H f (s) = 0 for 1 2 < s 2. Combining this with (5.10) and in view of continuity of H f (s) on ( 12 , 2], there are two positive constants C f,r and D f,r such that (5.14) C f,r H f (s) D f,r (1 s 2).

Then

S * f,r (2σ; N ) (A f /2δ) r 2 C f,r -N -δ (B f /δ) r 2 D f,r 1 
2 (A f /2) r 2 C f,r δ -r 2 , provided C * f,r is so large that N δ e C * f,r 2(2B f /A f ) r 2 D f,r /C f,r
. This proves the lower bound part of (5.11).

Since λ f,r (n) is multiplicative and λ f,r (n) n ε , we have

S * f,r (2σ; N ) p 1 + r 2 λ f (p) 2 p -2σ + O(p -4σ+ε ) = L(2σ, f × f ) r 2 H f (2σ) p 1 + O(p -4σ+ε ) .
Now the upper bound of (5.11) follows from (5.10) and (5.14). We take σ = 1 2 + C * f,r log N in (5.11) and we have n -2σ n -1 for 1 n N . Then (5.12) follows immediately from (5.11).

Proposition 2 . 1 .

 21 Let f ∈ H * κ and let 0 = 0.4912... denote the unique positive real number satisfying e

  dτ with c j := µ j -2 1j and d k := ν k -2 2k . Here 0 1j µ j and 0 2k ν k such that j c 2 j + k d 2 k = 0. Since the p j , q k are distinct and |c j | µ j and |d k | ν k , clearly we have

Proposition 3 . 5 .

 35 Let f ∈ H * κ , r > 0 and 0 < ε 1. Assuming GRH for L(s, f ), there is a constant c 0 (r, ε) such that M r (T, H; f ) f,r,ε H(log T ) c 0 (r,ε) holds uniformly for T 2 and T ε H T .Proof. For T 2, T ε H T and v ∈ R, define S T,H (v) := {τ ∈ [T, T + H] : log |L( 1 2 + iτ, f )| v} . We can write (3.26) M r (T, H; f ) = -R e 2rv dS T,H (v) = 2rR e 2rv S T,H (v)dv. Define x := T 4/v and z := T 4/(v log 2 T ) . By bounding the second sum on the right-hand side of (2.11) of Proposition 2.1 trivially and by taking = 1 2 , we have log |L( 1 2 + iτ, f )| S 1 (τ ) + S 2 (τ ) + 1 2 v for v 10 log 2 T and T T 0 (f, r, ε), where S 1 (τ ) := p z b f (p) p 1/2+1/2 log x+iτ log(x/p) log x , S 2 (τ ) := z<p x b f (p) p 1/2+1/

|g f,r ( 3 2 +

 2 iτ ; N )| 2/v e -2r(τ -t) 2 dτ dt + e -rT 2ε T +3H T -3H |g f,r ( 3 2 + iτ ; N )| 2/v w T,H (τ )dτ + e -rT 2ε .Since v is always a positive integer, in view of (5.2), we can writeg f,r (s; N ) = L(s, f ) rv -S f,r (s; N ) v = n>N a n n -s (σ > 1),where a n n ε (n 1) for any ε > 0 thanks to(5.3). So Lemma 2.3 implies thatT +3H T -3H |g f,r ( 3 2 + iτ ; N )| 2 dτ H n N |a n | 2 n -3 + n N |a n | 2 n -2 HN -2+ε ,since N H. So we have

Lemma 5 . 3 . 2 ) -r 2 uniformlyσ 1 . 1 λ 1 λ 1 +

 53221111 Let f ∈ H * κ and r > 0. There are positive constants C * f,r and N f,r such that(5.11) S * f,r (2σ; N ) := n N λ f,r (n) 2 n -2σ (σ -1 Moreover for N N f,r we have (5.12) S * f,r (1; N ) (log N ) r 2 .Here the implied constants depend on f and r.Proof. We write σ = 1 2 + δ with δ > 0. Denote by µ(n) the Möbius function. ThenS * f,r (2σ; N ) n f,r (n) 2 µ(n) 2 n -1-2δ {1 -(n/N ) δ } = G f (1 + 2δ) -N -δ G f (1 + δ), f,r (n) 2 µ(n) 2 n -s = p r 2 λ f (p) 2 p -s

  Conrey et al. (see [2, Conjecture 2.5.4]) provided us the conjecture about M r (T ; f ) by considering the attached shifted moments, from what we can deduce the following one without considering the exact coefficients.

Conjecture 1. For f ∈ H * κ and r > 0, we have

  The second lemma is[START_REF] Montgomery | Hilbert's inequality[END_REF] Corollary 3]).

	uniformly for r ∈ N, T	2, T ε	H	T and 2	x	(H/ log H) 1/r , where the implied
	constant depends on ε at most.							
	Lemma 2.3. For any complex sequence {a					
	T	T +H	p x	a(p) p 1/2+iτ	2r	dτ	r!H	p x	p |a(p)| 2	r

  1/10 .

	By Cauchy's inequality, Proposition 3.1 and (3.18) allow us to deduce that
	(3.19)

  Lemma 5.1. Let f ∈ H * κ , r > 0 and 0 < ε 1. Then we have J T,H ( 1 2 )

	5.1. Some convexity estimates. For 1 2	σ 3 4 and 2 H T , define
		∆ 2
	J T,H (σ) :=	
		∆ 1

R |L(σ + iτ, f )| 2r w T,H (τ )dτ with w T,H (τ ) := e -2r(τ -t) 2 dt, where ∆ 1 = T + H 1/4 and ∆ 2 = T + H -H 1/4 .

With the help of Lemma 2.4, we can prove the following convexity estimate.

  r ( 3 2 + iτ ; N )| 2/v e 2r(τ -t) 2dτ dt +

		∆ 2 ∆ 1	t-t ε -∞	+	∞ T +H	T 2ε dτ dt e 2r(τ -t) 2
	∆ 2	T +H			
	∆ 1	t-t ε			
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Let S f,r (s; N ) be defined in (5.6) and 0 < ε 1 2 . For 1 2 σ 3 4 , T 2, T ε H T and T ε/2 N H 1-ε , define L T,H,N (σ) := R |S f,r (σ + iτ ; N )| 2 w T,H (τ )dτ.

Since w T,H (τ ) 1 for ∆ 1 + 1 2 H 1/4 τ ∆ 2 -1 2 H 1/4 , we can apply Lemma 2.3 to write

On the other hand, we have w T,H (τ ) 1 for all τ and w T,H (τ ) exp{-r(H

Then consequently by (5.11) of Lemma 5.3

4 ; and by (5.12) of Lemma 5.3

End the proof of the lower bound. Trivially we have

Then it follows that

2 ) H, (5.16) and (5.17) imply that (5.20)

log T , where C * f,r,ε is a large constant depending on f , r and ε. Then (5.17), (5.21) and (5.19) yield

On the other hand, by (5.16) and (5.15), there is a positive constant C 0 (f, r, ε) such that

Combining these with the precedent inequality, we can deduce that

Together with Lemma 5.1 and (5.15) again, we have

), where the implied constants depend on f , r and ε. So we can conclude that (5.20) holds no matter K T,H,N ( 12 ) H or not. Since w T,H (τ ) 1 for all τ , we have

w T,H (τ )dτ M r (T, H; f ) + O(1).

Then the lower bound follows from (5.20).