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Abstract

The present paper proposes a new methodology to model the lapse risk in life insurance by
integrating the dynamic aspects of policyholders’ behaviors and the dependency of the lapse
intensity on macroeconomic conditions. Our approach, suitable to stable economic regimes as
well as stress scenarios, introduces a mathematical framework where the lapse intensity follows
a dynamic contagion process, see [11]. This allows to capture both contagion and correlation
potentially arising among insureds’ behaviors. In this framework, an external market driven
jump component drives the lapse intensity process depending on the interest rate trajectory:
when the spread between the market interest rates and the contractual crediting rate crosses
a given threshold, the insurer is likely to experience more surrenders. A log-normal dynamic
for the forward rates is introduced to build trajectories of an observable market variable and
mimic the effect of a macroeconomic triggering event based on interest rates on the lapse in-
tensity. Contrary to previous works, our shot-noise intensity is not constant and the resulting
intensity process is not Markovian. Closed-form expressions and analytic sensitivities for the
moments of the lapse intensity are provided, showing how lapses can be affected by massive
copycat behaviors. Further analyses are then conducted to illustrate how the mean risk varies
depending on the model’s parameters, while a simulation study compares our results with those
obtained using standard practices. The numerical outputs highlight a potential misestimation
of the expected number of lapses under extreme scenarios when using classical stress testing
methodologies.
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1 Introduction

This paper introduces a new mathematical framework in which the modeling of lapse decisions
allows to embed relevant effects not properly captured in the existing literature for modeling lapse
risk. Naturally arising in real life, these effects are identified as correlation and contagion among
policyholders’ behaviors, and their dynamic aspect related to macroeconomic conditions.

Since the 1980s’, the lapse risk has become one of the three main risks faced by life insurers,
with market and credit risks!. Policyholders’ behaviors have a direct impact on the financial per-
formance of the insurance company and are therefore crucial for the stakeholders of the firm. As
stated in [40], most activities of the insurance company are affected by policyholders’ behaviors:
product design, pricing, reserving, capital allocation, ALM and risk management. We study here
the impact of policyholders’ behaviors on the solvency of the insurance company: the introduction
of fair value accounting, principle-based reserving constraints and more restrictive requlatory capital
requirements (Solvency II, ORSA) have raised the need for insurance companies to regularly moni-
tor and update policyholders’ behavioral assumptions embedded in internal models. Identifying and
quantifying the risk factors underlying their insurance products is also of paramount importance
(see [40]). To protect the policyholders, insurance regulators require the companies to improve their
lapse risk management by performing stress tests (see [6]). The same applies for banks, due to the
increasing attention paid by the European Banking Authority [14] on the prepayment risk arising
from non-trading activities. In general, appropriate integrated stress testing program should cover
scenarios with i) sudden interest rates movements and ii) the breakdown of behavioral assump-
tions. The lapse risk modeling is therefore crucial: regulators need to understand it in order to
define adequate capital requirements so as to guarantee the overall stability of the system, and risk
managers need to monitor lapse behaviors to prevent large losses that could affect their own activity.

Although this paper assumes a risk management perspective and focuses on estimating risk
measures associated to losses, it is important to note that lapses can also have a positive impact on
the insurer’s balance sheet, depending on the economic context and the portfolio under study. For
instance, life insurance contracts (with guaranteed return) underwritten more than fifteen years
ago are very costly in terms of insurers’ reserves, and corresponding lapses are 'good news’ for the
insurer. From a purely financial viewpoint, the key aspects are the pricing and hedging of the
surrender option embedded in most of life insurance contracts, since this option can be exercised
at any time.

Nowadays, policyholders and financial markets are becoming increasingly connected, and in-
formation about new products are spread out much more quickly. The critical aspect of this fast-
evolving area is thus the dynamic nature of policyholders’ behavior, which results in relationships
which are not simple aggregations of underlying stable processes. As a consequence, the modeling
of such events is particularly challenging, and dynamic assumptions must be flexible enough to be
adapted to the policy’s characteristics (specific product, e.g. unit-linked contracts) or to external
risk factors.

The question about How to model lapse behaviors? has been addressed in various papers, see
for instance [34], [22], [21], [20], [28]. Statistical methodologies include classification trees, general-
ized linear models (GLM), and survival analysis. These techniques enable to integrate risk factors

!See EIOPA Report on the fifth Quantitative Impact Study (QIS5) for Solvency II, 2011.



as covariates (e.g. tax relief, contract features, policyholder’s characteristics, firm’s reputation,
competition, regulation, and financial markets), thus leading to heterogeneous predictions depend-
ing on the policyholder’s profile. However, they globally fail at giving accurate lapse predictions
in changing economic environments since policyholders’ behaviors are considered independent, see
[27].

In life insurance, the contracts are likely to remain in force for years or decades, which explains
why practitioners are used to modeling lapses by distinguishing between structural (baseline risk)
and temporary lapses (related to some disturbance). In the same spirit, [32] has shown through
empirical studies that the causes of lapse are globally of two sorts: liquidity needs for personal
projects and agents’ rationality, respectively associated to structural and temporary lapses. Poli-
cyholders’ personal plans (e.g. purchase a new car) are very difficult to anticipate for the insurer,
but they remain quite stable and independent events over time in a large portfolio. On the other
hand, agents’ rationality can make policyholders’ decisions become highly correlated in adverse
scenarios (e.g. following some experts’ recommendations or largely broadcasted rumors). The
main assumption underlying every classical statistical model (independence among individuals)
thus becomes violated, causing standard practices (such as GLM) for pricing and reserving to be
unadapted. This phenomenon of copycat behaviors and contagion has been observed a few times in
bank and insurance sectors, and represents the major threat for insurance companies: the riskiness
increases because the policyholders simultaneously take the same decision before the contractual
maturity. Whatever the situation, i.e. massive lapses or no lapses, the main issue concerns liquid-
ity: either policyholders immediately retrieve their surrender values when lapsing their contract,
or the insurer has to pay for guaranteed returns that may lead him to bankruptcy (except if the
profitability of the company is higher than these returns, which would never be the case in such
a context). To take this into account, regulators have historically defined simple risk management
rules to calculate the Solvency Capital Requirement (SCR). Computing the SCR generally requires
to assess a baseline risk (structural lapses) to which arbitrary shocks (that stand for temporary
lapses) are applied, see for instance the technical specifications of the 5" QIS in the European
directive Solvency II%. In these recommendations to evaluate the SCR related to the lapse risk in
life insurance, the upper-shock of the standard formula consists in adding temporary lapses to the
structural part, where the temporary lapse rate can represent up to 30% of the insurance policies
with a positive surrender strain. Concerning the development of (partial) internal models, many
companies are re-examining their entire actuarial assumption-setting in order to ensure that their
risk assessment is appropriate for the environment in which they are currently operating. Most of
actuaries currently use a standard deterministic model based on a S-shaped curve® that links the
temporary lapses to the policyholder’s satisfaction (through the contract return). [25] suggests a
stochastic extension to this framework and models the insureds’ decisions with a common shocks
model, resulting in a bimodal lapse distribution to account for this 0-1 decision in adverse market
scenarios. Although trying to artificially integrate the correlation effect, these approaches have
some limits since they are ’static’: shocks are determined a priori, and the potential contagion
among policyholders’ behaviors in extreme situations is not considered.

2More precisely concerning the lapse risk, see http://archive.eiopa.europa.eu/fileadmin/tx_dam/files/
consultations/QIS/QIS5/QIS5-technical_specifications_20100706.pdf, pp.155-159

3See the ONC document by the french regulator (ACPR): https://acpr.banque-france.fr/fileadmin/user_
upload/acp/International/Les_grands_enjeux/Exercice-preparation-solvabilite-II/20130527-0NC-2013.
pdf. Note that ACPR does not encourage everyone to use it (to avoid systemic risk).



Here, correlation and contagion among policyholders are embedded in the modeling of the lapse
intensity process. The novelty of our approach is to introduce the interest rate dynamics as the
external factor affecting the lapse decision, thus potentially generating temporary surrenders. Our
mathematical framework is suitable to model the structural and temporary lapses at the same time
under both stressed and unstressed scenarios, still keeping a full analytical tractability of some
relevant risk measures. We leverage on a specific extension of Hawkes processes ([17]), the so-called
dynamic contagion process (]3], [11]). Hawkes processes are a powerful tool applied both in finance
([16]) and insurance ([8, 9, 10]), where the intensity process is piecewise deterministic and enables
to integrate the phenomenon of contagion between events ([12]). In our setting, the external shocks
(represented by the shot-noise intensity) added to the Hawkes-based intensity capture the correla-
tion among policyholders’ behaviors when facing adverse economic scenarios. An external market
driven jump component drives the lapse intensity process depending on the spread between the
market forward interest rates and the contractual crediting rate: when this spread crosses a given
threshold, the likelihood of surrenders increases. The risk management perspective assumed in this
paper does not aim at considering pricing/hedging issues related to interest rate derivatives, but
rather to have a mathematical setting (a log-normal dynamic for the forward rates) to build trajec-
tories of an observable market variable and mimic the effect of a macroeconomic triggering event
based on interest rates on the lapse intensity. Contrary to previous works, our shot-noise intensity
is not constant and is derived from an inverse Gaussian distribution: the resulting intensity process
is then not Markovian.

The paper is organized as follows: Section 2 discusses the financial setting and describes the
proposed mathematical framework by defining the lapse intensity process. Section 3 derives the
main theoretical results and provides closed-form expressions for the moments of the lapse intensity;
a sensitivity analysis of the long-run mean lapse intensity to each model’s parameter is provided
and discussed by leveraging on its decomposition in three terms, i.e. structural, market-driven and
contagion components. This result is particularly relevant for stress testing and risk monitoring, for
example to perform ”what-if analysis” under specific scenarios. Further analyses are then performed
in Section 4 so as to determine the qualitative impact of the model parameters on the mean risk
level for different time horizons. Finally, Section 5 presents a real-world application with numerical
results on the number of lapses, associated risk measures and capital requirements: we compare
and discuss our results to standard practices (e.g. Solvency II, market practices), and show that
huge differences can exist between all aforementioned approaches.

2 Policyholders’ behaviors and lapse risk dynamics

As previously mentioned, the lapsation can be triggered and driven either by structural or tempo-
rary risk factors: structural risk factors typically indicate the drivers arising from specific policy-
holders’ needs or taxation, while temporary risk factors are more often related to macroeconomic
conditions.

The proposed methodological framework aims to model the policyholders’ propensity to lapse
by means of a dynamic contagion process (see [11]), in order to build an integrated setting allowing
to capture both structural and temporary drivers. Besides the influence of structural risk factors,
the model focuses on an interest rate hypothesis by assuming that the only temporary risk factor



driving lapses is the spread between the market observable interest rate level and the contractual
crediting rate defined by the insurance contract. As discussed in [40], lapses are recognized to be
negatively correlated to internal rates of returns (such as minimum guaranteed contractual rates)
and positively correlated to external rate of returns, such as market interest rates or stock returns
(see [7], [22]). From an economic point of view, the reference rate underlying the propensity of
policyholders to surrender is identified in the market observable forward rate, thus considering the
influence of the expectations about future interest rates levels on the lapse intensity dynamics.

Here we consider the scenario in which an investor, before taking his decision to surrender,
looks at the forward rates in the market and decides whether to surrender or not depending on the
observed return. Of course, the sensitivity of policyholders to interest rate movements differs from
one insured to another depending on the contract and market conditions, and big investors (having
a huge sum insured) are usually more rational and tend to surrender more often and more quickly.
Given that the lapse risk is always material for large contracts, if the insurer is able to anticipate
the behavior of such policyholders via the lapse risk modeling, he can prevent huge losses coming
from them and their reaction to the forward rate dynamics.

The financial literature for modeling forward rates provides many examples of log-normal dy-
namics for both the modeling of forward LIBOR rates and forward swap rates ([29], [2], [18] [31],
[35], [30], [4]). As stated in [4], one of the most popular families of interest rate models are the
market models: the log-normal forward-LIBOR model and the log-normal forward-swap model are
the market standards to price cap/floor and swaptions based on Black’s formula, i.e. the market
quotes liquid cap/floor and swaptions implied volatilities implicitly assuming forward LIBOR and
swap rates following a log-normal dynamics.

The introduction of the interest rate dynamics in this paper does not have the aim to price
bonds, but rather to build trajectories of an observable market variable in order to mimic and
study the impact of a macroeconomic triggering event - based on interest rates - on the lapse
intensity. Despite the specific features of each aforementioned model, a log-normal dynamics for
the market forward rates is thus introduced into the modeling as a fair representation, at least as
first general approximation, of a forward rate dynamics.

2.1 The mathematical model for the lapse intensity

We model the situation in which policyholders decide whether to lapse or not at random (discrete)
time intervals, and the probability of a lapsation decision is captured by the hazard function A;:
the probability of experiencing a lapse in a time interval of length dt is approximately A\; dt. The
current Subsection is dedicated to the definition and discussion of the stochastic intensity A;.

Let us consider the portfolio of policyholders of an insurance company and let (N¢):>o be the
counting process describing the number of lapses over the whole portfolio at time ¢, where lapses
occur at random times {Ti}i:m’._,. Now, define the dynamic contagion process for the intensity A
associated to the counting process N; as:

A = A+ (Qo—A)e ™ + ;Xi S T ;Yje_ﬁ(t%)l{fﬁt}’ 1)
12> J=



where

e ). > 0 is the constant reversion level,
e )\o > 0 represents the initial constant value (starting point) of the stochastic intensity process,
e 3 > 0 is the constant rate of exponential decay,

e {X;}i=12, . areii.d. exponential random variables X; ~ Exp(7y),y > 0, for the magnitude of
self-excited jumps arriving at random times 7,

o {Y;}j—12,.. areiid. exponential random variables Y; ~ £xp(d),d > 0, for the magnitude
of eztemal Jumps arriving at random times T]7 followmg a counting process N; related to
the market interest rate dynamics. We assume that the random times T are hitting times
linked to the event in which the relative gap RG{ between the market interest rates and the
insurance company’s crediting rate crosses a threshold B > 0:

Tjs1 = inf{t>Tj, RG] = B}, (2)

with Ty = 0, the generic relative gap defined as
RG} = ——1 T <t < oo, (3)

where F} is the market observable forward rate at time ¢ and R%_ the contractual crediting
J

rate at time 7). The relative gaps evolve in time with a stochastic dynamics driven by the

dynamics of market forward rates, whose evolution is assumed to follow a geometric Brownian

motion (GBM) as
dF;
— = pdt + odW,, Fy >0, (4)
Fy
with p, 0 € R and (W;);>0 a standard Brownian motion. Coherently with these assumptions,
we derive in Section 3 the model inherent distribution for the inter-arrival times AT] =

T T] 1 in order to evaluate the moments of the lapse intensity.

The model in Equation (1) corresponds to a dynamic contagion process (see [11]), i.e. an
extension of the classical Hawkes intensity. By using the same notation, the classical Hawkes
intensity can be written as

A= e+ Qo= A)e P+ Y X e PTI (5)
i>1

corresponding to the first three terms of Equation (1).

Differently from a deterministic Cox-type constant intensity which has been widely used in the
actuarial literature for lapses (see [5]), Hawkes-based intensity is stochastic and increases whenever
the point process Ny jumps. These self-ezcited jumps of magnitude X; allow to capture massive
lapses generated by the breakdown of classical policyholders’ behavioral assumptions. A widespread



panic situation in the market could make policyholders much more inclined to lapse due to corre-
lation and contagion effects (copycat behaviors), and thus making lapse risk much more difficult to
monitor for insurance companies, as discussed in [26].

When looking at Equation (5), the policyholder lapsation at time 7; has an impact of magnitude
X; on the intensity process A;: this impact exponentially vanishes over time at the (constant) rate
B until the mean-reversion level A, is reached. Nevertheless, the temporary risk factor that can
originally cause the contagion is not explicitly incorporated, while this is the case in Equation (1)
thanks to the external jumps at random times Tj.

The dynamic contagion process defined in Equation (1) represents a more general mathematical
setting embedding both sources of risk, self-excited and external jumps, and linking one underlying
component to the gap between the external market interest rates and the insurance company’s
crediting rate. From this perspective, the intensity process defined in Equation (1) provides a
suitable framework to integrate and capture in the modeling both contagion and correlation effects
observed among policyholders’ behaviors, linking them to an observable market component that
can originate and drive contagion. Without loss of generality, we assume that the magnitude of
both self-excited and external jumps is exponentially-distributed with, respectively, parameters -y
and 6. The lapse intensity process A; therefore depends on both:

e (i) the point process (Ni)t>0, introduced as a technical tool to model contagion inside the
portfolio, and driven by the self-excited jumps at random times T; (it increases by 1 each time
a lapse is registered);

e (ii) an additional external point process (Nt>t20 related to the external jumps arriving at
random times T}j: N; = Zj>1 1{T~<t} and linked to the dynamics of market observable forward
= i
interest rates.

Remark 1 Notice that the stochastic intensity process A\; defined in Equation (1) is always above
the constant reversion level A., i.e. Ay € [Ae, 00). The following special cases are discussed:

e if A\. =0, the distribution of \¢ converges to the distribution of a degenerate random variable
at 0 ast — o0;

o if \o = )¢, the term (Mg — ) -e~Pt disappears, representing the scenario in which the starting
point of the system already equals the constant reversion level, i.e. no further mean reversion
adjustments are needed. In this case, the long run level of the intensity driven by the structural
risk factors component has already been reached.

In order to describe the component linked to the market observable forward rates, let us con-
sider a life insurance portfolio of individuals holding saving contracts with guaranteed return RY,
embedding a surrender option that can be exercised at any time. When policyholders have to
decide whether to keep the insurance contract or lapse it, they are often inclined to compare it
with other insurance or financial products: most policyholders base their lapsation decision on how
attractive they deem their policy w.r.t. some alternatives in the market, rather than on a pure ’fair
value’ logic underlying their option. Thus, the insurer must pay attention to the way the products
are presented and to the available alternatives on the market.



All along the contract lifetime, policyholders usually compare their contractual crediting rate
((Rf)t>0) to some benchmark mid/long-term interest rate observed in the market, namely the mar-
ket forward rate (F});>0 as proxy of a representative benchmark rate.

The contractual crediting rate encompasses a potential profit benefit depending on the com-
pany’s profitability, and can sometimes be higher than the guaranteed rate. The economic intuition
underlying the model is that lapse decisions can be driven by the comparison between the contrac-
tual crediting rate and the market observable interest rate levels. How can the market interest rate
trajectory F; impact the lapse risk? A rational policyholder is obviously more inclined to lapse as
the spread between the market interest rate and the crediting rate increases. Let us indicate this
spread at time ¢ = 0 as the first relative gap RGY, defined as:

F, — RS

0._
RGY = I

(6)
where F} is the market forward interest rate at time ¢, and R := RY coincides with the guaran-
teed return RY (close to 0 for most of life insurers in 2015). A large relative gap RGY indicates
that alternative investment opportunities become more attractive than the current insurance po-
sition held by the insured. At the contract inception, RG8 ~ 0 for market clearing competitive
reasons, then F; at least equals RY since the life insurance contract should offer more guarantees
than the benchmark market rate. The same relative gap can be defined for each point in time,
and the company can adjust the contractual crediting rate to prevent massive copycat behaviors.
The economic intuition is based on policyholders’ reactions towards the profitability of alternative
investment opportunities: if the relative gap at time ¢ becomes greater than a certain level, the
insurer can reasonably expect to experience some temporary surrenders. This should be particu-
larly relevant for “big” investors, i.e. policyholders having a huge sum insured. We can expect big
investors being more responsive to changes in the market observable forward rates than “small”
customers, and their lapsation more relevant for the insurance company from both a liquidity and
financial perspective. Let us assume that subsequent adjustments of the contractual crediting rate
can be made by the insurer each time the relative gap becomes greater than an exogenous threshold
B > 0 (generalization of this setting to the case of a decreasing interest rate regime would be quite
straightforward).

Let us assume 1} being the first time the relative gap hits the exogenous threshold B, and say
that the insurer instantaneously updates the contract credited rate by rising it up to the market
interest rate level, i.e. R%l = FTl' As a consequence, the new relative gap RG} is given by

— RS _ -
RG% _ Ft CRTl _ Ft FT17
Rﬁ Fy

Ty <t < .

If the insurer follows this mechanism to set the contractual crediting rate, subsequent adjustments
will be operated as soon as RG} = B, RG? = B, the generic RGF = B, and so on. These events
thus characterize the sequence of hitting random times (7}),;—o,1,... satisfying

~

Tjy1 = inf{t >Tj, RG] = B},
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Figure 1: Market interest rate dynamics and contract credited rate adjustments. Sim-
ulated path of a GBM with Fy = 1.5%, p = 5%, 0 = 30%. The random times 7} at which the
contractual crediting rate R is adjusted are reported for an exogenous threshold set to B = 10%.

and associated to the generic relative gap

F—R: F—-F; .
7 = 7 L T; <t <oo. (7)
T

i T

RGI =

Figure 1 illustrates the updating mechanism of the contractual crediting rate for a simulated path
of the market forward interest rate F}, whose dynamics follows a GBM defined in Equation (4).
The adjustments of the contractual crediting rate are not instantaneous in practice, thus we deem
reasonable and more realistic to consider that the propensity of policyholders to lapse can jump
(see the last term in Equation (1)). In particular, we suppose it to jump at random times Tj, and
then to vanish over time thanks to subsequent efforts made by the insurer.

Figure 2 shows a typical trajectory of the proposed dynamic contagion process for the intensity
At defined in Equation (1): one trajectory of the underlying market interest rate dynamics driving
the external jumps is reported in Figure 1.

Remark 2 Notice that Ny does not (necessarily) jump at random times Tj, since we are not sup-
posing to have a lapse each time the threshold B is crossed by the relative gap between the interest
rate and the contractual credited rate. Equation (1) is rather modeling a more general case: each
time the spread between market interest rates and the contractual crediting rate crosses the thresh-
old, a jump in the intensity is registered, thus injecting volatility via additional internal turbulences
in the dynamic contagion process (upward movement driven by the external jump component). In
such a case, the counting process N increases by 1. The counting process N; instead jumps only in
case of lapses: it can jump at time Tj only if a policy termination is registered at the same time,
thus in the case oij = Ty for some (j,k). If no policy termination is registered at time Tj, the
unique effect of RGZ > B will be an external jump in the intensity.
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Figure 2: Intensity dynamics )\; and counting process N;. The two first graphs respectively
show one particular sample path of the interest rate and the corresponding intensity A; given in
Equation (1). Vertical lines stand for the ezternal jump times T] The third graph is associated
to the counting process N;. The barrier for the relative gap is B = 10%, while the base case
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3 Theoretical results: moments of the lapse intensity

This section is devoted to the derivation of theoretical results concerning the moments of the lapse
intensity A\; defined in Equation (1). The expected number of lapses within a given time horizon
will also be given in closed form. First, let us briefly recall some useful properties of the counting
process (Nt)tzo, and the external events random times Tj associated to jumps in the intensity.

3.1 Market interest rate dynamics and external jumps

The random times (7})—o,1,... are hitting times of the process describing the evolution of the relative
gaps RG{ defined in Equation (7). Our methodology is developed under the assumption of a specific
stochastic dynamics for the interest rate. Here, a GBM with drift x and diffusion coefficient o is
considered for the market forward rates (see Equation (4)), whose solution is given by

F,=F,- e(,uf<72/2)t+aWt‘ (8)

The generic relative gap RGJ thus satisfies log(RG] +1) = u(t —T}) + o (W; — WTJ_), and the events

Tj can be characterized as follows:
Ty =Tj_1 +inf{t >0, (u— 0?/2)t + oW; = log(1 + B)}, (9)

by exploiting the independence of the Brownian increments. This property guarantees that the
inter-arrival times AT; = T — Tj_; are independent, with a well known distribution (see [39]).
Indeed, (AT})j=1 2, are inverse Gaussian random variables with mean 6; = 2log(1+4 B)/(2u — 0?)
and shape 03 = (log(1 + B))?/0?. Hence, for t > 0, their density and cumulative distribution
function (CDF) are respectively given in closed form by

1
B B \2 Oa(t — 61)2
B 0y (1 20, [6, [t
G(t) = @( . <91 1))+exp{01}<1>< " <91+1>>, (11)
with ®(-) being the standard normal CDF (see [38, p. 43]).

Notice also that T = Zi:l ATy, and introduce the renewal function h(t) = E[N;]. Knowing that
the ATj’s are independent and identically distributed (i.i.d.), we have }P’(TJ < t) = G’*(t) where
G7* is the j-fold convolution of G. Using E[Ny] = > =0 P(Nt > j), we have

h(t) = E[N;] = i GI*(t). (12)
j=0

As shown in [38], the CDF G7* is still an inverse Gaussian, with mean j6; and shape jfs.
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3.2 Recursive formulas for moments derivation

We derive here the moments of both the intensity A; and the number of lapses. To this end, we
consider the moment generating function (MGF) of the intensity, denoted by m(t, ) = E[e?*]. Let
m™(t,0) be the n'" derivative of m with respect to 6, such that m((t,0) is the n' " moment of
A¢. Seemingly, denote by £(t,6) and (t ) the MGF of the processes Z; and Zy, defined as

Nt ﬁt ~
Zy =Y X’ and  Z =) Ve’ (13)
i=1 =1

These processes are discounted compounded renewal processes (see [24]), and § (") (t,0) and £ (t,0)
refer to the ' derivative of £(t, #) and £(t, §) with respect to 6. Hence, the process \; can be written

in the following form )
M= (A + (do = )‘C)eiﬁt) +e Pz 1 e P,

which is useful for the results stated in the propositions below.

Proposition 1 The MGF of \¢ can be decomposed as follows:

m(t,0) = PPt Po=A)e™ ) ey 9Bt E(1 9T, (14)
with £(t,0) and é\(t, 0) being the MGF of Z; and 7.
Proof: see Appendix A.1 |

The moments of the lapse intensity thus directly depend on those of Z; and Z, which are derived
via a recursive formula (see [24]).

Lemma 1 The MGFs &, 5 of Zy = Z 1 X Pl and Zt ZN‘1 YJeBTJ are given by the recursive
formulas

£ = 1+ /t (%) £(t — u, 0" )m ™ (u, 0)du, (15)
(52

~ t HePu ~

fo) = 1+ [ (7250 ) - woean), (16)

where h(t) is given in (12). The moments of Z, Z; have the following form:

n—1 | t
€60 = 3 o [ e, 0)m® (u, 0)du, (1)
: 0
E0,0) = Zk, e [ = w0yinu), (18)
Proof: see Appendix A.2. |
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Notice that the functions £ (t,8) are mainly dependent on the knowledge of m(1)(t,0), which is
the expectation of the lapse intensity. This first moment can be inferred by resorting to techniques
based on the infinitesimal generator of a Markov process and martingale arguments, as in [11].
In their paper, the exponential distribution of the inter-arrival times of external jumps makes the
process A; be Markovian, which is not the case in our setting. Even if the lapse intensity A\; defined
in Equation (1) is not a Markov process, it is possible to transform it into a Markovian one by
introducing as supplementary process, the time elapsed since the last external jump (or the time
remaining to the next one), referring to the method described in [15]. In order to achieve this
result, we rely on a differential argument based on the recursive formulas reported in Proposition
1 and Lemma 1. This allows us to deduce another recursive equation satisfied by the derivatives
of m(t,0).

Proposition 2 For n > 1, the n'* derivative of the lapse intensity MGF is given recursively as
follows:

m™(E,0) = e+ (Ao —A)e PHmV (¢, 0) (19)
n—1
—(n—1)Bt (. : (i)
+; ( Z, )e (Iz(t,e) +Ti(t, 9))m (t,0),
where It and Jy, for {k =1,2,...} are given by

L(t,0) = I(t,60) — ki1 (t,0)¢D(t, e P,
L(t.0) = IV (t,0) — kIj_1(t, )€V (¢, 077,

~

with Io(t,0) = D (¢, 0e=1) /£(t,0e=P) and To(t,0) = EV(t,0e=P) JE(t, 0= P1).
Proof: see Appendix A.3. |

A particular application of the above result is the derivation of the consecutive moments of the
intensity process A; by letting # = 0 in Equation (19). This recursive formula is then used to get
the analytic expression of the first moment of the intensity process as shown in the Lemma below.

Lemma 2 (First moment) The expectation of the lapse intensity \; is given by

t
D) = (e BA N —-hye, BA 1 / ~(B-1)(t=s) s
E[N] :=m'(¢t,0) ()\0 5 1/7) e + -1/ + 5/ e R'(s)ds,  (20)

and is the solution of the differential equation

omW(t,0) 1\ ) Ly
g = B - <ﬂ— 7) mi(t,0) + Sh(t),

with h(t) given in Equation (12).

Proof: see Appendix A .4. |
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This result is crucial for the derivation of some relevant risk indicators and the quantification of
correlation and contagion effects on lapse rates. For instance, we can derive the expected number
of lapses over a given time horizon. Using Lemma 2, we can write:

E[N,] =E Uot )\Sds] = /Otm(l)(s,O)ds, (21)

where Fubini-Tonelli’s theorem has been used.

Notice that the first moment in Lemma 2 involves an infinite series associated with the external
jumps component. Knowing that h(t) = 272, G7*(t) is linked to a distribution function and has a

density given by h/(t) =372, ¢7*(t) (where ¢g7* is the derivative of G7*), we can write

E[\] = ()\o - 517 f Af /7> e—<5—%>t+ — 1 /fy Z / 7 ( —=gs | (22)

The numerical calculation of (22) is closely related to the computation of the infinite sum

3 / 7 (5)e~ (B-1/(E9) g,

j>1

Nevertheless, only the first £ terms of this sum have a significant quantitative impact on the
expectation, and the number of relevant terms k depends on the values of the parameters 61 and
6. The inverse Gaussian density ¢7* is flattening as j increases, which makes the product with the
exponential density quickly go to zero. This also explains why there exists a closed-form formula for
the expectation of the intensity process, as reported in Proposition 3. To illustrate this behavior,
Figure 3 reports these densities for various values of j.

Proposition 3 Set k := (02/03) —2(3 — ;), where (61,02) are the parameters of the inverse Gaus-
sian law given in (10). The first moment of the intensity process can be written in closed form as
a function of the parameters defining the dynamic contagion process.

(i) If (B— %) < =o?/2" (or equivalently k > 0), then

20
ElN] = <)\0 - f)\f/) et 4 ﬁ)\lc/'y % Bt (23)
- [ (SEE) g (5]
§>1
(ii) else 6y (j01—1)2
E[\] = ()\0 - 5?1/7) e B Bf% + %ZJQT x Re(w(z;)), (24)

Jj=1

where ® is the standard normal CDF, Re(.) indicates the real part, w(z;) = e_zlz’(l —erf(—izj)),
with z; = \/ =5 + ij g—% and erf(z) = (2/v7) [ et dt.
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Proof: see Appendix A.5. n

As we can notice from Equations (23)-(24), the mean lapse intensity at a generic time ¢ can be
decomposed as the sum of three terms: the first two components are only affected by structural
and contagion risk factors, via parameters 3,7, Ao, A\¢c, while the last term involves all parameters
defining the market-driven component linked to the external jumps and thus to the interest rate
dynamics and the distribution of inter-arrival times.

We are now interested in deriving the limiting behavior (as t — o0) of the mean intensity, since
it is a key driver for monitoring the lapse risk profile. This can be done by leveraging on the
stability assumption of the form /3 > 1, similar to the one used in the original Hawkes framework
(see [3] for general decay functions, as well as the externally excited framework considered in [11]).
This condition ensures the stability of the lapse intensity in the long run, i.e. the lapse intensity
converges to its long-run equilibrium level. The following proposition reports the limiting behavior
of the first moment of the intensity process A:.

Proposition 4 Under the condition By > 1, the limiting expected lapse intensity \Z can be written

as follows:
BAc 1

B—1/7 80,8 —1/7)’

E 1 —
AZ = lim B[\] = (25)
with E[\] given in Equation (22).

Proof: see Appendix A.6. ]
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Figure 3: Density ¢’*(t) of the sum of j i.i.d. inverse Gaussian random variables. The
graph reports the behavior of the density function g7*(¢) of an inverse Gaussian law for different
values of j € {1,2,3,5,10, 15}, where the density function g(¢) is given in Equation (10).
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Let us discuss the result given in Equation (25): the expectation of the lapse intensity as time
t — oo can be disentangled in distinct components as:

S M
e (26)
where o0

A= B, (27)

< 1 p— o2

o 1 2 2

Ace 561  dlog(l+ B)’ (28)
Ao = (B=1/7), (29)

represent, respectively, the structural component, the market-driven component and the contagion
component (in Equation (28) we have used 6; := 2log(1 + B)/(2u — o?)).

Let us consider the structural component Xﬁo: it is uniquely related to structural risk factors
and self-excited jumps driving the lapse dynamics. This term is function of the constant reversion
level A. and the rate of exponential decay 8. Besides the effects of the structural risk factors, an
adjustment to the lapse intensity is assumed to come from the market-driven component A\ | since
interest rate levels are driving the intensity via the external jumps by injecting additional internal
turbulence in the modeling. As we can see from Equation (28), this market-driven component is
an upward correction (under pu — %02 > 0) for the mean intensity, which is function of the size
of external jumps 4, the drift p and the diffusion coefficient o of the market forward interest rate
dynamics, the threshold B capturing the movements of the relative gap between market interest
rates and the contractual crediting rate. Observe that sign(u — %02) is affecting the sign of A\,
by representing the combination of drift and convexity adjustment for the forward rate dynamics.
In case of p — %02 > 0, forward rates are increasing, thus the relative gap is more likely to cross
the threshold B by generating internal turbulence into the lapse intensity via the external jumps.
In case of p — %02 < 0, we must have:

1
ow— 502 > — B -dlog(1l + B) (30)

coming from A3 + AM > 0, in order to guarantee the positiveness of the expected mean lapse
intensity /_\fo. The contagion component S\go is instead driven by parameters (,, thus having the
rate of exponential decay and the mean size of self-excited jumps as underlying risk factors. The
positiveness of the contagion component is guaranteed by the stationary condition S~ > 1. Tables
1 and 2 summarize the effect of each model’s parameter on the mean lapse intensity in the long run
and disentangle the sensitivity by highlighting the re-activeness of the structural, market-driven
and contagion components.

Remark 3 Observe that the starting point of the intensity process Ao does not enter neither in
the long-run structural component /_\Oco nor in the long-run market-driven component 5\%, while it
is the case for short and mid time horizons, see Equations (23)-(24). When t < oo, subsequent
adjustments to the long run mean must be done, thus fluctuations around the long run mean depends
on the starting point; when considering t — oo we are implicitly studying a long run equilibrium
convergence level, that is why the starting point plays no role in A% . Notice that if A. = 0 we have
a null structural component Xﬁo = 0, meaning that the expected lapse intensity only depends on the

market-driven and contagion components, i.e. Equation (26) simplifies to \Z, := Xoﬂg/j\go
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4 Lapse intensity: sensitivity to the model parameters

The aim of this Section is to study the role played by each model’s parameter in the proposed math-
ematical framework by highlighting its influence on the lapse risk. In order to analyze and measure
this impact from both a qualitative and quantitative perspectives, we consider the expectation of
the intensity process E[\;] as the main risk indicator, see Proposition 3 and Figure 4 (base case).
We focus hereafter on the expectation E[\;] for three main reasons: i) it gives the most relevant
information concerning the impact of the dynamic integration of correlation and contagion on the
mean risk level supported by the insurance company; ii) it enables to derive other qualitative and
quantitative results (such as the average number of lapses) quite easily; iii) its sensitivity to each
model’s parameter can be derived in analytic closed form. This is what we do by considering the
long-run mean intensity given in Equation (25) for the expected mean lapse intensity as ¢ — oo.
In particular, sensitivity and elasticity to the model’s parameters are derived for each component
in which the lapse intensity can be disentangled in, i.e. the structural component j\go, the market-
driven component 5\%, the contagion component S\OCO.

Let us have a look to Figures 4 and 5 for a visual insight of the qualitative behaviour of E[\;] .
Table 4 summarizes the directional impacts observed in the mean lapse intensity for a change in the
model’s parameters by considering different time horizons while Tables 1-3 focus on the long term
mean lapse intensity, i.e. A\Z given in Equation (25) and its components A3, AM A (structural,
market driven, contagion) by reporting the analytic expression of the sensitivity to the model’s
parameters and the corresponding elasticity.

Structural Market-driven Contagion Long-term
component component component expected intensity
Model
" ANZ, M NG g
parameter | —5= 50 = o
p
Ao
s e axg 1
Ac e = 0>0 Dhe e AT
s ang NE 1 (a3 iE
B 26 =X2>0 W—1>0 8 AT Gﬁz_)\oo
a1 Nl axg A M
ry " B'Y 'Y2 > 0 ‘2’}3 - 7]3,‘{ (5\&)2
12)) 1 0 _ oA 1
I o = sogaixn) > 0 ou — op 3C
M o <0 anE a1
g do 5log(1+B) o 00 AC
B M p—3o® g _ M 1
OB 5(1+B) logZ(1+B) B 9B 2O
5 oA _ 1 (n=30%) AL _ oAl 1
95 32 log(i+B) 95 — 85 aC

Table 1: Long term horizon: sensitivity of the expected lapse intensity on the model’s
parameters. Analytic expressions of the sensitivity of the expected intensity on each models’
parameter p. The effect on A2 is reported as function of the structural, market-driven and contagion
components, namely A3, \M AC  The sensitivity of the structural component, the market-driven

component and the contagion component in which the intensity can be disentangled are reported.
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Long term mean intensity level A\Z := E[)\;] in Equation (25).
Model
. .
parameter 827; sign(=5:=)
p
Nl B
A . @ >0
g 1 Ae u—io? . Ao p—1o?
A o8 = "I (% + stism) st + st
axt XS +xM
v oy T 42(B-1)? <0
Bj\fo o 1 >0
K on — 5(B—1)log(1+B)
g o <0
g 90— 3(A—L)log(1+B)
Ny _ _ (u—307) 1 o1 2
B aB — 5(@3%) (1+B)logZ(1+B) sign(z0° — )
Xl 1 (p—g0?) 01 2
o 95 = T (5-L)log(11B) sign(30” — 1)

Table 2: Long term horizon: sensitivity of the expected lapse intensity on the model’s
parameters. The table reports the analytic expression of the sensitivity of the expected lapse
intensity on each models’ parameter, generally indicated as p together with a study of its sign.

structural market-driven contagion
component component component
Model
t - _ L - N p - _ L p
paramever | 1;s p) = g, x5 MOMp) T Tap XS NSp) "= "ap " X3
p
Ac NS A = L
p N8 =1 N(E,8) = /f% >1
- _ 1
gl 0% T 365
%
K N, = p—1io2
2
o NAM o) e
B _ _ B
N(3x,B) (¥ B)log(11B)
0 o = —1

Table 3: Elasticity of the lapse intensity components on the model’s parameters. The
Table reports the analytic expression of the elasticity of the lapse intensity components on each
models’ parameter, generally indicated as p. The elasticity is reported, separately, for the structural,
market-driven and contagion components; the elasticity of each component w.r.t. the generic model

parameter p is denoted as NGRS, p) TOM p)> 11

(A&.p)
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Since the main novelty of the proposed mathematical framework is the introduction of a macroe-
conomic variable into the lapse risk modeling, let us start by considering how the market param-
eters affect the first moment of the intensity process A;. In particular, let us start by analyzing
the external/market-driven component \M and analyze how changes of the GBM parameters affect
the first moment of the intensity process A;. First, look at the drift u: according to Figure 5, a
greater drift corresponds to a higher mean intensity process for each time horizon. A greater drift
naturally makes the exogenous barrier B be hit more often (everything else fixed), thus increasing
the external risk component by generating the occurrence of additional external jumps. This is be-
cause we are assuming the market forward rates growing at a higher rate. The resulting long-term
mean of the intensity process is also higher, while the time to reach this stationary equilibrium
regime does not seem to be significantly impacted. Figure 5 shows that this long-term behavior
is approximately reached at ¢t = 50, for each considered level of the drift parameter u. As we can
see from Tables 1-3, the drift parameter only affects the market-driven component Xg which has
a positive sensitivity to this parameter and an elasticity bigger than 1 (under p — %0'2 > 0). On
the contrary, the volatility o reveals to have an impact on the time needed by the mean intensity
to reach its long-run equilibrium XOEO: the more o increases, the longer this time is. Increasing
the volatility in the interest rate dynamics means increasing the level of uncertainty characterizing
the system, and more uncertainty obviously postpones the stability by injecting turbulence in the
system. In mathematical terms, this can be seen by looking at Equation (25) and Proposition

o e
N N
[ v |
2 =2
w o | w o |
o | v |
S . . o ) .
---- Theoretical expectation ---- Theoretical expectation
—— Mean of simulations —— Mean of simulations
""""" Long-term behavior === Long-term behavior
T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Time Time

Figure 4: Expectation of the lapse intensity process for ¢ € [0,100]. The plots compare
the outcome of a Monte Carlo simulation (2 - 10* trajectories) to the theoretical expressions of
Proposition 3. On the left the case of Equation (23), with parameters: Fy = 1.5%, p = 1%,
oc=1%, B = 10%, A\g = 0.3, A\, = 0.2, 6 = 1.5, v = 2, and 8 = 0.6. The plot on the right
corresponds to the case of Equation (24), with the same values of parameters except that o = 5%.
The two plots also report (dotted line) the long term value of the lapse intensity AZ derived in
Equation (25). We have A\Z = 1.89 on the left and AZ = 1.81 on the right.
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3: increasing o makes the mean intensity process raising in the short run and decreasing in the
long-term. As for the drift y, the volatility parameter o only affects AM: the negative sensitivity
of the market-driven component w.r.t. o reported in Table 1 corresponds to a negative sensitivity
of the resulting long-run equilibrium level A2 (see Table 2). .

Let us now focus on the exogenous barrier B defined for the relative gaps RGY capturing the spread
between the contractual crediting rate and the market rate. The barrier B can be seen as a proxy for
an elasticity-based measure in a pure economic sense: this threshold is indeed introduced to reflect
the policyholders’ sensitivity to interest rates movements. It is therefore linked to the propensity
of policyholders to react when the relative gap tends to increase: the higher B gets, the lower the
effect on the mean intensity process is. A higher number of external jumps will instead occur if B
decreases, making the intensity greater via an interest rate market-driven effect. Tables 1-3 show
that the sign of both sensitivity and elasticity w.r.t. this parameter strictly depends on the sign of
w— %02, i.e. on the growth rate and convexity adjustment underlying the forward rate dynamics.
The external/market-driven component of the intensity process is also affected by parameter §.
Changing § produces an impact similar to the one produced by a bump in the exogenous barrier
B, since the ratio 1/§ directly relates to the mean size of external jumps (as we can see from the
analytic expressions of the sensitivities reported in Tables 1 and 2).

Let us consider now the parameters of the self-excited component S\OCO: the exponential decay £
has one of the most relevant impacts. This parameter represents the speed at which the intensity
A+ decreases once a jump has occurred. Not surprisingly, a low 8 has two main consequences: i) it
makes the time to reach the long-run expected level longer; ii) it considerably increases the mean
intensity E[);], for each time horizon (see Table 4). As time passes, a low [ increases the gap with
respect to the base case intensity process, highlighting that the effect of 5 clearly accumulates over
time and leads to a much higher long-term mean intensity. As we can see from Tables 1-3, the
contagion component has a positive constant derivative w.r.t. S and an elasticity > 1, meaning that
a 1% increase in § translates into a bigger %—change in the component S\go. The same argument
applies when considering a change in A\, after a variation of y parameter, which is in line with the
stationary condition: when [ is greater than the mean size 1/ of self-excited jumps, the mean
intensity process remains finite in the long run. This relation explains why their effect is similar:
when v gets higher, the mean size of internal jumps decreases, so that the mean lapse intensity pro-
cess AL is lower, as well as the elapsed time before reaching the stationary level. Recall that these
two parameters (3, capture the self-excited component of the proposed dynamic contagion process.

Finally, the mean lapse intensity has a dependence on parameters Ag, A\. via the structural
component. The initial intensity level Ay has no long-term effect on the mean intensity level (no
sensitivity of AZ to this parameter) and on the time to reach the stationary regime; this parameter
only affects the short term behaviour of the intensity process. Besides these effects driven by the
starting point of the process, the mean reversion level A. obviously impacts not only the short
term but also the long-term mean intensity. This is consistent with the analytic expression given
in Equation (22), where it is evident that E[);] increases if A. is higher.

Observe that 8 parameter is also affecting the structural component /_\fo and its impact in terms
of elasticity on this component is equivalent to the one produced by A.: indeed, Table 3 shows that
the elasticities 7zs ) and 73s ) are both equal to 1. Besides this, the effect of 8 on the mean

intensity level AZ is not equivalent to the one produced by . since 3 is affecting A\Z also via its

20



influence on the contagion component S\go due to the self-excited jumps.

Profile of Mean intensity level E[\;]: Time to reach
trajectory short-term  mid-term long-term | stationarity
Reference
model Figure 4 (left)

X T modified T ~ = ~

Ae T unchanged T T T ~

61 modified 1 1 i) b

~ 1 modified 4 + + i

w T unchanged T T T ~

ol modified T ~ 1 0

Bt unchanged A d + ~

) unchanged + + + 1

Table 4: Qualitative impact of the model parameters on the expected lapse intensity. We
summarize the impact of an increase in each model parameter on E[\;]. The symbol “1” corresponds
to a positive impact (increase) on the quantity of interest (as compared to the reference case, see
Figure 4 left side); the symbol “]” stands for a decrease in E[\;]; the symbol “~” means that there
is roughly no change, i.e. the impact is quite negligible, while “=" means no change at all.

5 Application to risk management

Due to new standards coming from the recent regulation, estimating key risk measures has become
a crucial activity to be carried out on a regular basis. In this section, we perform a comparative
study between the most widely used approaches to estimate the lapse risk in practice, i.e. the
S-shaped curve, the Solvency Il standard formula, and the proposed methodology. The study is
conducted via a simulation exercise, useful to illustrate the main ideas of the paper and their im-
plications in terms of real life practical issues for a company’s risk profile estimation.

The first step of the analysis is the statistical estimation of the parameters involved in the
proposed model. How can these parameters be estimated from empirical data by an insurance
company? Consider firstly the initial intensity level \¢g and its long-run stationary mean A.. As
already discussed in Section 2, Ag represents the initial force of lapse and is constant: the underlying
lifetime distribution before lapsing is thus exponential. Therefore, for a given portfolio and using
a moment-based estimation, a suitable value for Ay could be the inverse of the empirical mean of
times before lapse in a stable regime. Of course, this estimator is not efficient and presents some
limitations, contrary to the maximum likelihood estimator which has nice asymptotic properties.
However it has the advantage to be simple and easy-to-implement, whereas the likelihood approach
would require to derive the expression of the likelihood of the model. Approximation formulae (e.g.
Taylor series) or parameter inference for the likelihood of such a model seems quite complex and
is beyond the scope of this paper, but can surely be addressed in a further research project by
extending existing works (e.g. [33], [23], and references therein).
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Figure 5: Sensitivity of the expected lapse intensity E[)\:] to the model parameters for ¢ € [0,100]. The
comparison is made referring to the case depicted on the left in Figure 4, via a coeteris paribus analysis. Everything
else fixed, the sensitivity is analyzed by changing only the value of the parameter under study.
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Inside an insurance company, the empirical mean of times before lapse is usually well-known,
and an a prior: segmentation could be performed to integrate some risk factors specific to the
structural component underlying lapses. Assume that there are 1.000 contracts in the portfolio,
and that the company stores data on a daily basis. Up to the date of the analysis, let us say that
3 lapses are observed every 10 trading days, which means that A\g = 0.3. In a 1-year time horizon
(250 trading days), we should experience around 75 lapses (the yearly structural lapse rate would
then equal 7.5%). With a similar logic, the long-run lapse intensity level A. can be fixed by the
risk managers as the target level embedding limits coming from the risk management guidelines.
Indeed, when the time horizon is given, this quantity is linked to the final expected number of lapses
since the mean contract lifetime would approximately be known (at least under the assumption of
a stable economic regime). Say for instance that the insurer would like to experience no more than
2 lapses every 10 trading days, or equivalently 50 structural lapses a year. The mean inter-arrival
time for these events is thus 5 days, which leads to A, = 0.2.

Other parameters are more or less connected to the risk appetite of the company. For instance,
0 relates to the ability of the company to reassure the policyholders, and «, d tie in with the mean
size (in terms of sum insured) of lapsed contracts. Typically, ¢ should be lower than -, because
the lapsation by the richest policyholders may have a deeper (even much more critical) impact on
the insurer’s balance sheet. Since they are often advised, the richest individuals globally behave
more rationally, and are the first to react in unfavorable situations. In other words, external jumps
should be fewer but have a more significant quantitative impact on the P&L of the company.
The estimation of § and ~ is thus directly linked to the wealth of policyholders and depends on
the distribution of the intensity jump sizes. The parameters of the interest rate dynamics can be
estimated from historical data; while the barrier B, capturing the sensitivity of policyholders to
market movements, usually comes from an expert-based judgment (depending on companies, it can
vary between 10% and 50%).

We now compare some key risk indicators, estimated through the proposed dynamic contagion
model and alternative current market practices. More precisely, let us consider the expected number
of lapses and associated risk measures. To be compliant with the Solvency II framework, we work
under the following assumptions: i) the insurance portfolio is in run-off, and ii) the reference
time horizon is 1 year. With respect to the current financial context characterized by extremely
low interest rates, we focus on potential parallel upward shocks of interest rates curves and the
corresponding potential massive lapses (e.g. the most likely problematic scenario).

The risk measures under consideration are the Value-at-Risk (VaR) and the Tail- Value-at-Risk
(TVaR), respectively defined at the threshold p € (0,1) by

1
VaRa(N,) = inf{k : P(N; < k) > a}, TVaRa(N) = 1# / VaR,(Ny) dt.

They enable to quantify the riskiness of behaviors’ changes via the tail of the distribution of the
number of lapses. Indeed, VaR,(V¢) tells us that the number N; of lapses for a given period t
will be lower than VaR,(N;) with probability a. It gives the information about how the SCR is
modified by the consideration of both correlation and contagion effects embedded in policyholders’
behaviors. Numerical results are summarized in Table 5. The first conclusion is straightforward:
it seems that classical stress tests procedures (e.g. Solvency II and S-shaped approaches) bring
to an overall underestimation of the real lapse risk faced by life insurance companies. This is
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Solvency II S-shaped Hawkes counting Dynamic contagion
Standard formula curve (ONC) process process
Parameters | Risk level ~ Shocks | Risk level Shocks | E[N;] VaR., TVaR, | E[N:] VaR, TVaR,
10% 455 1028 1142
B 30% 75 1124 75 375° 291 776 837 312 818 930
50% 293 778 886
0.1 2461 4286 4559
0 0.5 75 112 75 375 291 776 837 702 1460 1594
1.5 455 1028 1142

Table 5: Impact of contagion and correlation on VaR,(N;), TVaR,(Ny) at level « = 99.5%, in a
1-year time horizon (¢t = 250) and for various levels of the barrier B and mean external jump size
1/6. Other parameters remain the same as in Figure 4 (left).

not surprising, since correlation and contagion effects among customers behaviors are not taken
into account in such methodologies. This means that in practice, the resulting estimation is not
conservative and a greater reserve should instead be considered to cover unexpected potential losses
coming from lapses. In this view, notice that the standard Hawkes process [17] provides lower
bounds for the number of lapses in the dynamic contagion case (which is consistent with their
economic and financial interpretation). Besides this, recall that the Solvency II shock applied to
the baseline risk was calibrated on a single product in a specific market, and is thus clearly neither
consistent nor realistic (even though it serves as a benchmark today) in all contexts. Concerning
the policyholders’ sensitivity to interest rate movements, Table 5 and Figure 6 exhibit a non-linear
behavior. Starting from an exogenous level B = 50%, a 20%-decrease of the barrier causes a 7%-
increase of the expected number of lapses, whereas the latter rises by around 30% when B goes
from 30% to 10%. Moreover, the TV aR results show that the right tail of the distribution of the
number of lapses is heavier in our setting than in all other cases considered in the comparison,
including the Hawkes model.

The introduction of correlation through the external component has a limited impact on the
quantities of interest only in case of a small mean size of external jumps. As we can see from
Figure 6, while the mean size of external jumps remains lower than a certain threshold (roughly
given by 6 = 0.4), the risk measures tend to increase slowly (yellow area). As soon as the mean size
of external jumps increases, the relationship between both quantities becomes instead exponential
(orange and red areas), highlighting the materiality of this component. Intuitively, this means that
the composition of the portfolio is crucial, and insurers most exposed to the lapse risk are the
ones having a great proportion of rich policyholders, since they are the first-to-react with possibly
huge amount of notional associated to the surrenders. The proportionality coefficient between the
Solvency II shock and the one given by our dynamic contagion process can go up to 40 in our
example, corroborating the results discussed above. In terms of capital requirements, one should
approximately apply the same coefficient to the current estimation based on Solvency II approach
in order to be conservative and cover in a proper way an extreme scenario concerning the lapse risk
faced by the company.
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Figure 6: Impact of B and the mean size of external jumps 1/ on the variation of the
Value-at-Risk. The z-axis is expressed as a proportionality coefficient. The comparison is made
between the Solvency II shock and the one computed from the dynamic contagion process.

6 Conclusion

This paper defines a methodological proposal to dynamically integrate correlation and contagion
effects among policyholders’ behaviors into the modeling of lapse risk in life insurance. Indeed,
correlation and contagion effects due to reactions to some ’external’ economic disturbance are
crucial for companies in order to define proper stress test scenarios. This paper introduces a
stochastic Hawkes-based lapse intensity: the external jumps affecting this intensity are assumed
to be linked to a market-driven component, i.e. the spread between the market interest rates
and the contractual crediting rate. We give in closed-form the moments of the intensity process,
and provide analytic expressions of the limiting expected lapse intensity and its sensitivities to
the model’s parameters showing that each source of risk (structural, market, and contagion) has
its own contribution to the long-run expected lapse level. Numerical comparisons and empirical
percentiles indicate that the lapse risk margins are probably underestimated when using current
practices. Possible improvements of the proposed setting could focus on separating the impacts
of a global crisis scenario affecting all policyholders and a critical scenario only affecting some of
them. This would allow us to set up a stress testing program able to monitor the behavioral risk
more precisely. In the same spirit, risk factors affecting the structural lapse rate - such as the
policyholder’s age - could be integrated using a standard regression approach to model Ay and ..
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This way, the link between mortality and lapses would be more deeply taken into account ([19],
[1]). Also, an alternative definition of the barrier B embedding time dependency should allow to
capture the fact that policyholders’ sensitivity fluctuates over time. Finally, let us mention that
the characterization of the intensity process as well as the distribution of the number of lapses
is of paramount importance: this could be done using the Laplace transform, or be based on a
Taylor series decomposition. However, this goes beyond the scope of this paper and we leave the
investigation of such interesting questions for future research.
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A Proofs

This Appendix contains the proofs of the main theoretical results derived in this paper.
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A.1 Proof of Proposition 1

The function m can be written as

m(t,0) = B[O e e b HA]

Then, the decomposition follows by conditioning on I = {73, -+ ,Tn,+1} U{X1,..., XN, +1}:
m(t,0) = OHO A [ [0 B ] o4 ]
= 60(’\C+(’\0_>‘C)6_6t)5(t,He_ﬂt)g(t,ee_ﬁt),

since Zg is independent of I in the second equality. |

A.2 Proof of Lemma 1
(i) The first identities directly follow from [24] as:

n—1

¢M(t,0) = 1 / te”5“§<k><t—u,0>dh<u>,
. 0

where h(t) = E[N¢] is the renewal function. Note that due to the martingale property of N;— fot Audu
and Fubini-Tonelli’s theorem we can write dE[h(u)] = E[A\,]du. Substituting this in the last equa-
tion and noting that E[\;] = m(1)(¢,0) leads to the desired formula.

(ii) The equalities directly follow from the results in [24] up to some basic algebraic calculation.

A.3 Proof of Proposition 2

Let Io(t,0) = ¢ (¢, 0e=5) /£(t, 0eP?), and consider the decomposition in (14) and the consecutive
derivation. First, we have

N (t,0eFt) 5 €D(t, 0
£(t,0e0r) € tE(t,ee—Bt) )m(t’e)’

= Ot (o= A)e ®m(t, 9) + et (Io(t, 0) + To(t, 9)) m(t,0).

mO(50) = (Oe+ (o= A)e ™)+ e

Secondly, we get by differentiation of the above equation with respect to 6 the function m(™ (t,0)
m@(E,0) = e+ (Mo — A)eP)mD (¢, 0) + b (Io(t, 0) + Io(t, 9)) mW(t,0)

+ e (100 + 1V (1,0)) m(,0)

Thus, by induction, some algebraic calculus and the relationship linking the Iy, (¢, ) and I (t, ) to
their consecutive derivatives, we come with the desired recursion of the m( (¢, 6). |

29



A.4 Proof of Lemma 2
(i) Letting n =1 in Equation (19), gives

_p £, 0P €D (¢, 0e )

e = (0t 2 D I,

~

Now, letting 6 = 0 and noting that m(¢,0) = £(¢,0) = £(¢,0) = 1, we can write the above equation
as follows
mW(t,0) = (Ae + (Mo — Ae)e ) + e e (£,0) 4 e LM (¢, 0). (31)

This equation does not directly yield to the desired formula for m(Y(¢,0), as the £ (¢,0) depends
on m(M(t,0). Indeed, we have from (17)

t
0,0 =~ [ M m(u,0)du
Y Jo

which makes (31) be an integral equation. Thus, it suffices to substitute £V (¢,0) and 5(1)(75, 0)
(given in (18)) into (31) and take the derivative with respect to the first variable to get the desired
differential equation.

(ii) The explicit form is straightforward given the initial condition m(1(0,0) = Ao. [

A.5 Proof of Proposition 3

Observe that the integral in the last term of Equation (22) can be interpreted as the convolution of

inverse Gaussian and exponential random variables, see [36]. By defining k := (62/6%) — 2(58 — %),
where (01, 02) are the parameters of the inverse Gaussian law, we can directly derive the above
result for the first moment of the intensity process by analytic computation. ]

A.6 Proof of Proposition 4

The result follows by applying the stability condition 5 > 1. Observe that the limiting behavior
of the first moment of the lapse intensity strongly depends on the limit of the last term in (20).
The latter is nothing but the convolution of the derivative h’ of the renewal function with the
exponential function, with A(t) given in (12). Using the key renewal theorem, see [37, Theorem 35,
p. 119], we have

b -y 1 [ _p-1yu— 11
lim e~ =) g (s —/ P G2l Ca P S
t—=o0 J ( ) (91 0 91,6—1/’}/

As a consequence, the first moment given in Equation (22) tends to the limit given in (25) as t goes
to 4-o00. |
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